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ABSTRACT. Consider a queue of N customers waiting to pur-
chase an item that costs 1 dollar. Of them, m customers have
a 1-dollar bill and n customers have only a (1 + ) dollar bill,
where u is a positive integer. The latter need to get change
in the amount of u dollars. If at the time of their service,
the cashier has less than u 1-dollar bills, they have to wait for
change according to some queue discipline. It is assumed that
the cashier has no initial change, and that all the queue ar-
rangements are equi-probable. Using transformations of lattice
graphs, we derive the probability distribution of the number of
customers who will have to wait for change under a queue dis-
cipline that corresponds to the ballot problem. Limiting results
and other applications are also given.

1 Introduction

Suppose N customers are queued up in a line to purchase an item that costs
1 dollar. There are two types of customers in the queue: Type I customers
have a 1-dollar bill and need no change; Type II customers have only a
(1 + p)-dollar bill, where u is a positive integer. The latter will need to get
change in the amount of x dollars. Let m (n) denote the number of type I
(type II) customers (m + n = N). The following assumptions are made:

(A1) The cashier initially has no change and its only source of change is
the receipts from the type I customers.

(A2) All the arrangements of the m + n customers in the queue are equi-
probable.

JCMCC 19 (1995), pp. 231-244



If at the time when a type II customer approaches, the cashier has less
than g 1-dollar bills (and thus unable to give change), then this customer
cannot be served and has to wait until there is change. Let W(m,n,u)
denote the number of type II customers who will have to wait for change. In
this paper we are concerned with the probability distribution of W(m, n, u).

To show the relationship to the ballot problem, let By(i) (B2()) de-
note the number of type I (type II) customers among the first i customers,
i=12,...,N. Since P[W(m,n,pu) = 0] = P[By(i) > pB2(3) Vi], finding
the probability that no customer will need to wait for change is analogous
to the classical ballot problem (with m > un). Generally, the ballot prob-
lem deals with the distribution of the random variable §(m, », 1), denoting
the number of indices ¢ such that B;() < uBa(i). The distributions of
8(m,n, p) and other similar random variables were derived by L. Takacs
[6], [7] and turned out to have important applications in nonparametric
statistics. A comprehensive discussion of ballot theorems and their ap-
plications is given in Takacs [8]. Various extensions and variations have
also been studied. For example, Engelberg [2] derived the distribution of §
without conditioning on the values of m and n, Takacs [9] studied various
related distributions by using properties of exchangeable random variables,
Srinivasan [5] obtained conditions for a uniform distribution of §, and Chao
et al. [1] derived the distribution of these random variables for any positive
real x. The queuing version has been mentioned by Gnedenko ([3}, p. 43)
but only for the simple case of m = n, and x = 1. Gnedenko uses the so-
called ‘reflection principle’ to show that in this case P (no customer waits
for change) = 1/(n+ 1).

In this paper we obtain the entire distribution of W(m,n,u) for any
integer valued parameters {m,n,p}. Although W(m,n,u) is related to
the ballot random variables, it is not the same as 6(m,n, u). Clearly, W
has a different range than § and there does not exist any explicit functional
relationship between them. In fact, W(m,n, ) is not yet well defined, since
it depends in general on the prevailing queue discipline. Thus, we make the
following additional assumption:

(A3) The customers who need to wait for change, stand in a secondary
queue with priority, namely, such a customer is served as soon as the
change is available. :

Other assumptions about the queue discipline would yield different distri-
butions of W. Such an alternative assumption is mentioned in Section 4.

The method we use features an extension of the methods used by Srini-
vasan [5] and Chao et al. [1] for the ballot problem, and it is based on
transformations of the queue arrangements. We also obtain a necessary
and sufficient condition for a uniform distribution of W, and the limiting
distribution of W/n.
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Let S(m,n, u; k) denote the set of queue arrangements in which k cus-
tomers have to wait for change, and |A| denote the cardinality of A. From
Assumption (A2) we have

|S(m,n, u; k)|
(")
m
Therefore, the problem is to derive |S(m,n, u; k)|. For the case of k = 0,

the well known result from the ballot problem (see for instance Takacs [7])
gives,

PW(m,n,p) =k} = , k=01,...,n (1.1)

o _mtl=—pn/m+n
IS(m,m i) = LS (T4 7), (12)

However, for k > 1, |S(m,n, u; k)| cannot be directly deduced from the
ballot problem results.

Define B(0) = 0 and B(i) = By($) — uBz(i), i = 1,..., N. The random
process B(i) represents the surplus or deficit of 1-dollar bills at the cashier
after ¢ customers have been served. It is therefore useful to view the process
graphically by plotting the points (i, B(3)), i =0, 1,..., N, and connecting
them by diagonal segments. Each realization of the queue is represented

"by a graph (a lattice path) that starts at (0, 0) and ends at (m + n,m —
#n). In this representation, the number of customers who have to wait
for change is exactly the number of descending segments that lie partly or
entirely below the z-axis. Thus, this is essentially a problem of counting a
particular type of lattice paths. Lattice path counting is a familiar problem
in combinatorics. For a good survey, we recommend Mohanty [4].

For the sake of brevity, the parameters m, n and g will sometimes be
omitted in our notation. For example, S(m,n,y;k) is often replaced by
S(k).

Now, for a graph u € S(k), k=0,1,...,n — 1, define:

z; = min{i > 0: B(i) = u}
and
z2 = min{i > z;: B(3) < u}.

It is easy to see that for k= 0,1,...,n — 1, z; always exists.

Let T(k) C S(k) be the set of graphs in S(k) for which z, also exists.
For a graph u € T(k), define segment I to be the segment of the graph on
the interval (0,z;], and segment 2 to be the segment of the graph on the
interval (zy, z5).

Let f be a mapping on T'(k) defined as follows: For a graph u € T(k),
f(u) is the graph obtained by interchanging segments 1 and 2, i.e., by
connecting segment 2 to the origin, and connecting segment 1 to the end
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of segment 2. The remainder of the graph on the interval (z2, m +n] is left
unchanged. An illustration of the mapping f is given in Figure 1.

x1 X2

Graphof 4, (k=2) Graph of f(u), (k=3)

m=9, n=4, p=2

Figure 1

The following lemma. states the key property of this mapping.
Lemma 1.1. For k=0,1,...,n—1, if u€ T(k), then f(u) € S(k+1).

The lemma follows from the fact that customer z5 is a type II customer
who does not wait for change in the graph u but waits in the graph f(u),
while all the other type II customers do not change their status under the

mapping f.
For a graph v € S(k), k= 1,2,...,n, define:

= min{i > 0: B(i) <0}
and
2o =min{i > 2;: B(i) = p+ B(z1)}.
Notice that for k= 1,2,...,n, 2 always exists.
Let R(k) C S(k) be the set of graphs in S(k) for which 2z, also exists. For

a graph v € R(k), we define segment I and segment 2 in the same manner
as we did for T'(k), now using 2; and 2; instead of z; and z,.

Let g be a mapping defined on R(k) as follows: For v € R(k), g(v) is
obtained by interchanging segments 1 and 2 (as in the definition of f), and
leaving the rest of the graph unchanged. An illustration of the mapping g
is given in Figure 2.

Lemma 1.2.
(1) For k=1,...,n, if v € R(k), then g(v) € S(k — 1).
(2) For k=1,...,n, if v€ R(k), then g(v) € T(k —1) and f(g(v)) = v.

(3) For k = 0,1,...,n—1, if u € T(k), then f(u) € R(k + 1) and
9(f(w)) =u.
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Graphof v, (k=23) Graph of g(v), (k=2)

m=9, n=4, ua=2
Figure 2

Part (1) can be proved by an argument similar to that used for Lemma
1.1. Parts (2) and (3) follow immediately from Part (1), Lemma 1.1, and
the fact that f maps z; to 2z and z2 to 21, and g maps 21 to z2 and 22 to
x) (Figures 1 and 2 illustrate these facts).

Since T'(k) and R(k) are finite sets, Lemmas 1.1 and 1.2 yield the fol-
lowing proposition which plays a key role in deriving the distribution of

Proposition 1.1. For k=0,1,...,n — 1, |T'(k)| = |R(k + 1), or alterna-
tively, for k=1,...,n, |T(k - 1)| = |R(k)|.

Now, from the definition of x5 and 29, it is clear that fork =0, 1,...,n-1,
if m—pun < p—1, then z; exists (since B(m+n) = m—pun < p). Similarly,
fork=1,...,n,if m—un > u—1, then 23 exists (since B(m+n) =m—un >
k=12p + B(z1)).

It follows that for any set of parameters {m,n,u}, exther x2 or zz (or
both) exist, which implies that either T'(k) = S(k) or R(k) = S(k). This
leads us to consider separately the three cases, m —uyn =y, m—pun > pu
and m — un < u. In the third case we also need to distinguish between
m — un > 0 and m — un < 0, hence four cases are to be considered. In the
next section, the tools we developed so far are used to derive the distribution
of W. Limiting results are derived in Section 3, and some extensions and
open problems are mentioned in Section 4.

2 The distribution of W(m,n,u)

We start with a sufficient and necessary condition for the uniformity of
W. Aside from being a nice counterpart to the uniform case of the ballot
random variables, it is useful in the derivation of the distribution of W in
the other cases.
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Proposition 2.1. P[W(m,n,u) = k] = ;l_ﬁ-, k = 0,1,...,n, namely
W (m,n, u) has a discrete uniform distribution on {0,1,...,n} if and only
ifm—pn=p-1.

Proof: If m — un = p — 1, then both z and z; exist. Therefore, T'(k) =
S(k), for k=0,1,...,n—1 and R(k) = S(k) for k=1,...,n.

Thus, it follows from Proposition 1.1 that |S(k)| = |S(k +1)| for k =
0,1,...,n — 1, which implies that |S(k)| = |S(0)] Vk = 1,...,n. Hence,
from (1.1) and (1.2)

P[W(m,n,pu) = k] = IS©)) _ m+1—pn

TN m+l » k=01,...,n. (21)

The conclusion follows by substituting m — pn = p — 1 in (2.1). The
condition is necessary since m — un = p — 1 is the only case where both z3
and z; exist for all k. ]

Before we proceed with the distribution of W, we need the following
lemma.

Lemma 2.1. If m — un < u, then

|S(m,n, p;n)| = ("”'") _ z‘:_l_(i(p-t- 1)‘+;4— 1)

n ',=oi+1 i
: (m+"_'—."(’+l)), - (2.2)
n—1

whereé =n—1—-[n— '—”:-'I, and [z] denotes the smallest integer greater
than or equal to z.

Proof: Let M(m,n,u) denote the set of graphs for which B(i) = u for at
least one ¢ > 0. Then :

semmpmi= (" 5) - MEmml, @3

Let M(m,n,u;j) denote the subset of M(m,n, ) corresponding to j =
min{i > 0: B(i) = u}. Thenu € M(m,n, y;3) if and only if (i) B(?) < p—1
Vie (0,j—1) and (ii) BG—1) = p—1. Let my = By(j —1) and ny =
Bs(j —1). From conditions (i) and (ii) it follows that ny = (j — p)/(s+1),
my = p(ny +1) — 1, and also

|M (m, n, 1 5)| =|S(m1, n1, gy n1)|-1S(m — my = 1,0 —ny, p)l. (24)

Since m; — un; = p — 1, we can apply Proposition 2.1 to determine
|S(m1,n1, 4;m1)]. Also, j can only take the values (i+1)p+i,i=0,1,...,¢,

236



where £ = n—1—[n—m/u]. Thus, by substituting j = (§4+1)u+1 in (2.4),
using Proposition 2.1, and summing over ¢ from 0 to ¢, we get |M(m,n, p)l.
The conclusion then follows from (2.3).

We shall refer to the uniform case in Proposition 2.1 as case 1, and
proceed by dividing the parameter space into three additional cases.

Case 2: m—pun > pu
Lemma 2.2. For k=1,...,n, |S(k)| = |S(0)| -2,_0 |T(3)|, where T*(3)
denotes the complement of T(i), with respect to S(i).

Proof: If m — un > pu, then 2, exists and R(k) = S(k), k = 1,...,n.
Therefore, by Proposition 1.1 we have |S(k)| = |T'(k — 1)|. But
S(k —1)=T(k — 1) UT*(k — 1), hence,
|S(k = 1)|=|T(k = 1)|+|T°(k - 1)|=|S(k)|+|T°(k — 1)], or equivalently,
[S(k — 1)|—-|S(K)| = |T*(k - 1)]. (2.5)
Applying a summation on both sides of (2.5) gives the desired result. 0O
Now, |S(0)] is given by (1.2), and |T°(k)| is given in the next lemma.
Lemma 2.3. For k=0,1,...,n-1,

(k)| = 1 m+1—p(n+1).((p+l)k+/z—l)

Tk+1 m+1-pk+1) k
m+n—pulk+1)—k
( A . (2.6)

Proof: It can be easily verified that a graph u belongs to T"‘(k) if and only
if (i) B(?) < p—1Vie (0,z) —1]; (ii) B(zy) = B(z, — 1) + 1 = p; (iii)
B(i) 2 pVi € (z1,m+n]. Let my = Bi(z1—1) and n; = Ba(z; —1). Then
from (i)-(iii) we have
IT¢(k)| = |S(m1, mi, pina)| - |S(m — my ~ 1,0 — ny, )
= |S(u(k+1) = 1, k, p; K)| - |S(m — p(k + 1), — k, 455 0)|.

The conclusion now follows by an application of (1.2) and Lemma 2.1. O

Applying lemmas 2.2 and 2.3 and substituting (1.2) for |S(0)|, gives the
distribution of W(m,n, 1) in case 2, as stated in the next proposition.

Proposition 2.2. If m — un > u, then
P[W(m,n,u) = k]

i fr =0
= +] -1
m+l-pun (m;:“) . '_0 |T°(z)|, k=1,...,n

m+1 (2.7)
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where |T°(3)] is given in (2.6).
Case3: 0<m—un<pu-1

Lemma 2.4. Fork=1,...,n, |S(k)| = |S(0)|+Z::°=1 |Re(3)|, where R°(3)
denotes the complement of R(i), with respect to S(i).

Proof: In this case z2 exists and T'(k) = S(k), for k = 0,...,n - 1.
Therefore, by Proposition 1.1, |S(k)| = |R(k + 1)|, and since S = RU R°,
we have

ISk + 1)| = |S(k)| = |[R°(k + 1)|. (2.8)
The assertion follows by summing both sides of (2.8). (]
An expression for |R°(k)| is given in the next lemma.
Lemma 2.5. For k=1,...,n,

ey J(E=DE+1) |21 fip+)+p-1
o= (4% - S ()
(+D)(k-1)—i-pu(Ei+1)
'(” 1o g )} (2.9)
p(n+1)—(m+1)

p—b+1 (n—k)(p+1)+p-b
& pn—k+1)-bd+1 n—-k ’

Proof: Let b = —B(z1). Then b can take the values 1,2,...,4, and a
graph v belongs to R°(k) if and only if (i) B(s) > 0 Vi € (0,21 — 1], (ii)
B(z, — 1) = p = b, (iii) B(i) < p — b Vi € (21,m +n]. Let R°(k: b) denote
the subset of R°(k) for a given value of b. Then (i)-(iii) imply that

|Re(k: b)| = |S(uln — k +1) —b,n— k,1;0)| - |S(u(k — 1),k = 1, p; k — 1)}

Equation (2.9) is obtained by applying (1.2) and (2.2), and summing over
b. Finally, note that if b > p(n+1) —m, then m —un > p—b, and hence z;
exists. Therefore, the summation over b is only from 1 to u(n+1)—(m+1).0

We can now write the distribution of W(m,n, u) for this case.
Proposition 2.3. If 0 < m — un < u— 1, then

P[W (m,n, ) = K]

{m_-:nlﬂﬂ fork=0
= — -1 o
miloun  (min) -YF RG], k=1,...,n. (2.10)

where |R°(i)| is given in (2.9).
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Case 4: m—un <0

In this case there will not be enough change for all the type II customers
and the number of customers who will never get change is d = [n — m/u].
Hence, W(m,n, u) only takes values that are greater than or equal to d.
By the same arguments as in the proof of Lemma 2.4, we have that for
k=d+1,...,n-1,

k

IS(R)| = IS(d)| + D |R°(i)]. (2.11)

i=d+1

The formula for |R°(k)| in this case is derived in a similar way as in Lemma
2.5. It is given in the next lemma without proof.

‘Lemma 2.6, Fork=d+1,...,n,

lm(k)lzg{ﬂ(n_uk:rjg_ljﬂ ((n-k)(;;tlk)w—j)
_{((m+j+k)-;li(fll—k+l)—1)_gﬁ(i(ﬂ+l)i+#-l)
_(m+j+k-1k-i1—n§n-k+2+i))}},

—-1-—1

where =k — 2 — [n— (m+7)/u].

An expression for |S(d)| is easily determined from the fact that if exactly
d customers wait for change, these must be the last d customers. Therefore,
we have '

IS(mtn’F;d)I = IS(mvn_d:I‘; O)I
=m+l-—p(n—d)(m+n—d). (2.12)

m+1 n—d

We can now present the’ distribution of W(m,n, u) in case 4.

Proposition 2.4. If m — un <0, then
P[W(m,n,pu) = k]

m+l—p§n—d! f k — d
= { mil 1 ew : ork=
mHCod) 4 (M) T Tian IRG), d<k<n (513

where R|°(i)| is given in Lemma 2.6.

Proposition 2.1, Lemmas 2.2 and 2.4 and (2.11) also show that the dis-
tribution of W(m,n, ) is decreasing in k if m — uyn > p — 1, uniform if
m — un = p — 1, and increasing in k if m — un < g — 1.
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38 A limiting distribution

Let X(m,n,u) = W(m,n,u)/n, ie., the proportion of type II customers
who need to wait for change. We consider limy—o0 P[X(m,n, ) < z),
0 < z <1, i.e. the limiting distribution of X (m,n,u) as the size of the
queue tends to infinity, and the ratio m/n is held approximately constant
(up to order of 1/n).

We denote r = m/n, and express X (m,n, u) simply as X,. In Propo-
sitions 3.1 - 3.3, we give the limiting distributions of X,, corresponding to
the first three cases mentioned in Section 2. It turns out that these limiting
distributions are either uniform or degenerate.

Proposition 8.1. If m—un = p—1Vn € N, thenlim, .o P(Xn £ z) =z,
0 <z <1, i.e, X, converges in distribution to the uniform random variable
on [0,1].

Proof: From Proposition 2.1 we have that .P[W(m, n,u) <kl = (k+
1)/(n + 1). Hence, for z € [0,1}, we have

len]+1

P[Xn < 2] = P[W(m,n, p) Son] = =

— 2,785 M — 00.

o
The next proposition deals with the limiting distribution in Case 2.

Proposition 8.2. If r > p, then X,, — 0 in distribution, i.e. X, converges
to the degenerate random variable with a unit mass at 0.

To prove the proposition, we need the following lemma.
Lemma 3.1. Let

_rthr-p) 1 (p+1)j+p-1 b j+1
bt () )

where r, j1 are positive real numbers, r > p, and j is a nonnegative integer.
Then

f:A,:"". (32)

=0 T

A proof of the lemma is given in the appendix.
Proof of Proportion 3.2: From Lemmas 2.2 and 2.3 we have

P{Xn = 5] = PW(m,n,1) =¥

-1 k-1
m+1—pun (m+n) ! Z .
_mtl-pm SOTG), k=0,1,...,n,
m+1 n rd (3.3)
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where the sum is zero if k = 0, and |T°(j)| is given in (2.6). By considering
the binomial expressions in (3.3) and (2.6) as ratios of polynomials in n,
we obtain

Jim P[Xn = —]=——-ZAJ
3=0

where A; is as defined in (3.1). Therefore, from Lemma 3.1 we have
hrn P[X,. =—=]=— —ZAj

Now,

Jlim P[X, < ——]—ZZA_.,

=0 j=k

= Z(l +3Ako)Aj > Z(l + 3)Aj.

3=0

Differentiating both sides of (3.2) with respect to r, we obtain

o

> (1+)4=1

Jj=0

Thus, for any given € > 0 we can find a ko such that 3522,(1+7)4; > 1—-e.
Hence,

lim P[X, < @] >1—-¢
n—oo n
and the conclusion follows. o

The next proposition gives the limiting distribution in Case 3. The ap-
proach is similar to the one used in the proof of Proposition 3.2, hence we
omit the proof.

Proposition 8.3. If 0 £ m—pun < p—1, then X,, converges in distribution
to the uniform random variable on the interval [0, 1].

It can be similarly shown that X, converges in distribution to the uniform
random variable on [0,1] if m = un+b, where b is a constant such that
b2pu-1.

Finally, we conjecture that, if » > 4, all the moments of W(m,n, u) are
bounded as n — oo. This conjecture arises from computations and heuristic
arguments.
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4 Concluding remarks

Extension to more general models

The results of Section 2 easily extend to the binomial scenario. Suppose
that instead of knowing m and n, we only know the total N, and that

Pla customer is of type I] = p
=1 — P[a customer is of type II], for some p € (0, 1).

Then m is now a binomial random variable, and by the law of total proba-
bility,

N
PW(N,p,u) = K] =) P[W(i, N —i,p) = k] - P(m = i)
=0

N
= > PIWGN =i =K (’:’ )p‘(l _p)N-i,

The probability P[W (i, N —i, ) = k] is obtained by referring to the appro-
priate case in Section 2. We can further assume that N is also a random
variable with a distribution k(z), z = 1,2,... (for example, a truncated
Poisson). In such a case

00

J 3\ .
P =k =3 Y PW (i =) = K- (1)1 -4,

J=1i=1

Applications

The distribution of W has applications similar to those of the ballot prob-
lem, especially in the area of nonparametric statistics. For example, W can
be used as a test statistic for testing the randomness of sequences of binary
observations (to be discussed in a future work).

Applications also exist in other fields such as inventory models. For a
simple example, suppose that items in a manufacturing facility are produced
one at a time as a Poisson process. Orders are received in batches of size
i, also as a Poisson process, independently of the production process. The
above results can be used to find the distribution of the proportion of the
times an order cannot be filled.

Open problems for future research

The queuing model presented in this paper gives rise to several other prob-
lems. We mention two of them, which are currently studied.
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1. The distribution of W under different queue disciplines — It can be
assumed for example, that Type II customers who cannot get change are
sent to the end of the line and are served last (provided that eventually
there is change for them). This assumption (which is applicable to certain
models) would yield a different distribution of W. Other queue disciplines
can be considered as well.

2. An Mp\M\1 gueue — Our model can be studied in the M\M\1 queue
formulation with two types of customers and P[ a customer is of type I] = p,
p € (0,1). Such a model can be appropriately labeled as Mp\M\1 queue.
The usual random variables such as the number of customers in the system,
the waiting time and the busy period, will be distributed differently than
in the standard M\ M\1 case.
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Appendix
Proof of Lemma 8.1: First we introduce the variable s = 1/(r + 1), so
that
rk "
o 0
Then (3.2) can be written as
0 .
2._1_((#+ 1).7.+;4-1)!§,-(1 _ )R+ = 1, (A1)
S J

By Stirling’s formula we have,
pHDi+p-1\ _ 1 (pty?
(™ ~A\ ) i

which guarantees uniform (and absolute) convergence of the series in (A.1).
Now, (A.1) is equivalent to

e (=1)F e+ 1)j+ s =1\ (G + D)8 sk _
;ém( j )( k )3’ .
or
oo M : .
(=DM ((u+1)i+p =1\ (G+Dp\ M _
Mz=o;i=0 j+1 ( J )(M—j)s L (A.2)
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The equality in (A.2) is true if and only if

M 1y . _ .
Z(._l)((ﬂ+l)a.+u 1)(U+1),“)=0, M=123...
it J M-j

J..
or equivalently, if and only if

g(‘l)j (];4) ((‘7 * ?f_"'lj - 1) =0, M=1,2,3,... (A3)

Finally, the left hand side of (A.3) is the Mth difference of
' L (GHDE+i-1
Y4 (J) = ( M -1 ’

which is a polynomial in j of degree M — 1. Therefore, (A.3) is true since
the Mth difference of a polynomial of degree less than M is always 0. Since
(A.3) is equivalent to (3.2), this completes the proof. a
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