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Abstract. To determine the error-correcting capability of a large error-correcting code it
may be necessary to generate the code, an intractable task. Using a stack-based algorithm
and utilizing structural properties of a code can reduce time required. Timing results are
reported for generating large codes using these methods on massively parallel platforms.

1. Intreduction

Linear codes were the first error-correcting codes studied [5]. Among them are
the well-known BCH codes, Reed-Solomon codes, and Goppa codes. A linear code
of length n and dimension k is simply a k-dimensional subspace of F*, the space of all
n-tuples with elements from finite field F = GF(q).

In the search for good codes, the coding theorist needs to know the probability that
a transmitted codeword will be correctly decoded. Important in such a determination
is a knowledge of the weights of codewords. In some circumstances, the number of
codewords with each weight that occurs, the weight distribution of the code, can be
determined without the generation of the code: the MacWilliams identities [7] and
Pless power moments [9] provide such means. When such methods are not
applicable, the entire (n,k) linear code may be generated by taking all linear
combinations of a k x n generating matrix whose rows are basis vectors of the code.
Requiring at least q* operations, linear code generation belongs to the set of
computational problems referred to as NP-complete {1].

Here we discuss code generation techniques with a view to making the task more
feasible for large (k > 30) binary codes. Empirical results are presented. A discussion
of techniques appropriate for non-binary codes is presented in an appendix.

2. Linear Code Generation

Let C be a linear code in GF(2)* with generating array G whose k rows are a basis
for C; C has length n and dimension k. A naive approach to code generation would
mvolve counting in GF(2)", using the binary digits of each integer as the coefficients
of the rows of G in the linear combination that is a codeword. Such a method is
inefficient, requiring an average of k operations to produce a single codeword. An
optimal algorithm to produce a code is one that has the minimum change property:
every codeword, except the first, can be produced by adding a single basis vector to
the previous codeword generated. Gray codes (4] provide such an algorithm. We
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define the binary reflected Gray code of length k recursively with : interpreted as
"followed by":
R()=0:1
R &)=0R(k-1): 1 R'(k-1)
where O R(k-1) represents a 0 prefixed to each codeword of R(k-1)
and R’(k-1) is the reflection of R(k-1), i.e., the codewords of
R(k-1) listed in reverse order
In this paper, the term "binary Gray code” will refer exclusively to the binary
" reflected Gray code; also, to avoid confusion with the linear codewords being
generated, we will refer to a Gray codeword, b, as a Gray "bit-sequence.” Code C =
{b* G: b € R(k) }; each Gray bit-sequence "selects" rows of G to be combined, i.e.,
if b[i] is non-zero, Gfi] is a summand of the codeword, ¢, being produced. Algorithm
1 generates codewords in this way:

Algorithm 1 - Binary linear code generation using binary Gray code
forj=1tokdo /¥ initialize the bit-sequence */
bj] <0
c+0 /* ¢ is initially the all zero codeword */
forj=1to2t*1do
i1

while j mod 2'=0 do

iei+l
¢+ c+Gli] /* alter the codeword */
b[i] « (b[i] + 1) mod 2 /* alter the bit-sequence */

To generate the next linear codeword in the sequence, however, the position, i, of
the bit of the Gray bit-sequence that should be complemented is needed, not the Gray
bit-sequence itself. This transition sequence may be generated by maintaining a
simple stack of integers [2]. The inner loop of algorithm 1 and all references to b are
thus eliminated. In Algorithm 2, the stack is stored in array Stack, indexed [0...k] with
the stack top at Stack[0]; t stores successive values in the transition sequence:

Algorithm 2 - Binary linear code generation using Gray code transition sequence
forj=0tokdo

Stack[j] «j+1 /* initialize the stack */
c—0 t«0
whilet < kdo
t + Stack[0] /* the next value in the transition sequence */
c+c+G[t]
Stack[0] «+ 1 /* these 3 statements “pop” the stack */

Stack[t-1] « Stack[t]
Stack[t] «t+1
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Each loop iteration produces a single codeword. If each row of G, a sequence of
bits, is considered to be a single integer or a sequence of integers, a codeword requires
a minimum of three arithmetic operations. In this case, for codes with k=10,
Algorithm 2 reduces the number of operations of Algorithm 1 by a factor of
approximately 2.7. To store the weight distribution of the code in array W, where
W[i] is the number of codewords of Hamming weight i, append the following two
lines to the body of the while loop of Algorithm 2:

i+ weightofc '
WI[i] « W[i] +1

Weight determination of a single codeword is speedily accomplished if each row
of G is considered a sequence of integers and a bit counting instruction is available
[11]. If such a function is not available, table look-up is most efficient where, for a
suitably large h, a table indexed [0...2" - 1] stores the number of bits in the binary
representation of the index and n/h entries are summed to produce the weight of the
codeword.

3. Optimizations

3.1 Utilizing computer architecture

Linear code C can be partitioned into cosets x + C’, where C’ and H' are
subspacesof C,x € H', C=C’ @ H' and C' n H' =0 (the all zero vector). Thus, the
generation of C can be divided into subtasks of equal size, each the generation of a
distinct coset x + C’. Since each coset may be generated by the same instruction
sequence, a single processor with array processing capabilities or a multi-processor
system processing a single instruction stream are appropriate for linear code
generation.

3.1.1 Single processor with vectorization

For large n, a vector processor can greatly speed code generation without radical
alteration of the algorithm. Assume that the code to be generated is binary and that the
vector length of the single processor is v = 2* and memory banks are allocated in
column-major order (as in FORTRAN). If C has dimension k and generating array G,
let subcodes H' and C’ have dimensions h and k- h respectively. Form array H
indexed [1...v] containing all codewords of H', each H[i] for 1 < i < v a distinct
linear combination of the last h rows of G. Code C’ has as its basis the first k- h rows
of G. As Algorithm 4 executes, a single element in the register ongmally containing
H will contain all codewords in a single coset x + C'.

Weight determination is accomplished by use of v weight arrays, W;, 1 si<v. In
the initial for loop, as well as the inner for loop, the weight of H[i] is recorded in W,,
After the entire code is generated, the W, are coalesced into a single weight table.

Alternatively, v copies of the stack may be maintained and the while loop may be
nested in a vectorized for loop, although this approach has proven to be less efficient.
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Algorithm 3 - Binary code generation utilizing vector length v = 2"
fori=0tokdo /* initialize the stack */
Stack[i] «i+1
fori=1tovdo /* take all linear combinations of last h rows of G */
.determine H[i)
te1 '
whilet s k- hdo
fori=1tovdo /* vectorize */
H[i] « H[i] + G[t]
Stack[0] « 1
Stack(t- 1] + Stack(t]
Stackft] «t+1
t « Stack[0]

3.1.2 The use of multiprocessors

If SPMD (Same Program Multiple Data) operations are supported by the system,
an algorithm similar to Algorithm 3 allows each of p available processors to generate
1/p of the code. If p=2", each processor is seeded with a distinct linear combination
of hrows of G and G is truncated by the removal of those rows. Then each processor
executes the same instruction, adding the same entry from the truncated generating
array which has been broadcast to all processors. Theoretically, execution time is
reduced by a factor on the order of p.

Algorithm 4 -Binary code generation utilizing p = 2" processors
forj=1topdo
determine Seed,  /* a linear combination of last h rows of G */

send Seed, to processor j
send G’ to processor j /* G’ is G minus the last h rows */
At each processor j:
fori=0tokdo /* initialize the stack */
Stack[i] «<i+1

i+1

whilei < k-hdo
Seed; + Seed,+ GTi)
Stack[0] « 1
Stack[i- 1] « Stack[i]
Stack[i] «i+1
i « Stack[0]

As with vectorization, weights of successive Seed, are determined and stored in p
weight arrays that finally are coalesced into a single weight table.
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3.2 Based on the structure of G

3.2.1 If G is systematic

If generating array G is in systematic form, i.e., G = [ I| G” ], the identity
submatrix, I, can be ignored and shortened codewords of length n-k generated. The
weight of each must be incremented by the number of rows that appeared in the linear
combination used to produce the shortened codeword. This requires the generation
of the Gray bit-sequence representing the linear combination and the determination of
its weight. If Algorithm 2 or 3 is used, at least 3 additional operations are required:
maintain the Gray bit-sequence, determine its weight, add that weight to the weight of
the shortened codeword. If, when G and G” are represented as arrays of integers, G”
has fewer columns than G, this method can improve performance.

3.2.2 If G has circulant structure

If the each row, except the first, of the generating array, G, is a cyclic shift by a
constant number of places of the preceding row, G has circulant structure, and every
linear combination of rows of G is a cyclic shift of some linear combination that
includes the first row. Since such shifts have the same Hamming weight, we generate
those codewords that result from linear combinations that include the first row.
Entries on the weight table are incremented by the number of shifted versions of the
generated codewords that exist.

All cyclic codes have a generating array with circulant structure: let the generator
polynomial g(x), a factor of x*- 1, be the first row of G. Each successive row is x
times the preceding row. Quasi-cyclic codes also have generators of this type [8].

For binary codes, a Gray bit-sequence b, 1 < i < 2% represents a linear
combination of rows of G summed to produce one codeword (as in 2.1). Letb; =
1100...0 indicate the sum of rows 1 and 2 of the generating array. The number of
trailing zeros z; in b; indicates the additional number of codewords that are "shifted"
versions of this codeword. The sequence z is decreasing: z = k-1 and z is
decremented by 1 only when a new highest number in the transition sequence t; is
attained. Fork=4:

t 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
b: 1000 1100 0100 0110 1110 1010 0010 0011 1011 1111 OI11 0101 1101 1001 0001
z 3 2 2 1 1 1 1 0 0 0 0 0 0 0 0

For Algorithm 5, the rows of generating array G are renumbered [0...k-1] and h,
the highest value thus far produced in the transition sequence, is maintained. Then the
number of "shifted" versions of the current codeword in the code plus one (for the
codeword itself) is represented as s (s =z + 1) and is used to increment the weight
table.
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Algorithm § - Binary linear code generation utilizing shifting

forj=0tokdo /* initialize the stack */
Stack[jl +j+ 1
¢+ G[0]
h+ 0 /*initialize the highest value in the transition sequence */
s+k /* the number of cyclic shifts of ¢ */
a + weight of ¢
Wia] « W[a] +s /* record the weight */
t<0
while t <k do
t « Stack[0]
Ift>h /* a new highest transition value */
het
s+s-1
¢+ c+Glt]
a + weight of ¢
W[a] +~ W[a] +s /* increment the weight table */
Stack[0] « 1 /* pop the stack */
Stack[t- 1] « Stack]t]
Stack[t] «t+1

3.2.3 Reduction of the overhead of stack maintenance

Algorithms 2, 3, and 5 may be altered slightly to generate multiple codewords per
loop iteration, thus reducing the number of iterations of the code-producing loop and
the overall number of operations required for stack maintenance. To generate q'
codewords per iteration, select i of the original basis vectors; let G contain the
remaining vectors and be indexed [1...k-i). Each codeword generated in the loop is
incremented by all linear combinations of the i selected basis vectors. For a binary
code, the number of operations performed in the while loop is reduced to (2 + 2'(2*"
- 1). The optimal value of i depends upon the capabilities of the available compiler
and hardware.

3.3. Avoiding generation of the entire code

If the entire weight table is not needed, probabilistic approaches permit the
determination of minimum weight with a high degree of certainty [6], but here we limit
discussion to methods that involve the actual generation of a portion of the code.

3.3.1 If G has circulant structure

If G has the structure described in 3.2.2, representatives of each weight class can
be determined by use of Algorithm S with all references to s and h removed and Wt[a]
+ 1 replacing Wt[a] +s. We will refer to this variation as Algerithm 5A.
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3.3.2 Determination of minimum weight
If the (n,k) binary code to be generated is cyclic, it has been shown [10] that to
show that a code has minimum distance d, we need only examine those codewords
whose first k bits have weight w” satisfying
w <[dp-17 wherep=|nk |
If generating array G is placed in systematic form, these codewords may be
generated by taking linear combinations that correspond to Gray bit-sequences with
w’ or fewer 1's. An algorithm has been proposed to generate the desired subsequence
of Gray bit-sequences [12]. This algorithm does not vectorize, but does lend itself to
parallel processing. For sufficiently large w'/k ratios, this method may be effectively
used to accept or eliminate codes that are candidates for having the best minimum
distance for any code of like length and dimension.

4. Empirical results

4.1 The array processing platform

The Cray Y-MP C90-16/512 supercomputer, at the Pittsburgh Supercomputing
Center, has 16 vector processors. Each processor has 8 vector registers, each
consisting of 64 8-byte scalar registers grouped together, and 4 functional units
dedicated to vector processing. With a clock cycle of 4 nanoseconds, a processor can
do, by use of chaining, a vectorized add and multiply in one clock cycle. C90
programs listed below ran on a single processor. v

4.2 The MPMD platform

The Cray T3D-256 at the Pittsburgh Supercomputing Center is a scalable parallel
supercomputer with 256 DEC Alpha processing elements with a peak aggregate speed
of 38.4 Gflops and a total memory of 4 GBytes. The T3D's topology is that of a three-
dimensional torus and the memory, 16MB per processor, is logically shared but
physically distributed. The PSC T3D is attached to the C90 through which jobs are
submitted. At the time of this research the T3D at was in pre-production status.

4.3 The generating programs
Binary code generators to evaluate the algorithms above were constructed in

FORTRANT77 for execution on the C90 and the T3D. Programs reported below had

the following characteristics:

1. All data structures, including the generating array contained integers, treated as
sequences of 64 bits. (Integers are by default 64 bits on both the C90 and T3D.)
The metrics for the code as well as the generating array were pre-built and fetched
from a data file.

2. Selection of rows of the generating array was made by use of Algorithm 2, a stack
that produces the transition sequence.

3. Addition of rows was accomplished by use of exclusive or (IEOR), a predefined,
bit manipulation function available on all Cray systems.
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4. Weight of codewords was determined by use of Popent, a predefined Cray function
that returns the number of ones in the internal representation of its single argument.
(Table look-up for weights was abandoned as it was found to increase execution
time by roughly a factor of two.)

5. All programs executed on the C90 were compiled on the C90 with requests for
aggressive optimization and for bringing inline of small routines. Vectorization,
when used, was implicit, i.e., no compiler directives were used. The codeword
producing loop was judged to have successfully vectorized only after examination
of the listing (.1) file showing loop markings that resulted from compilation with the
command cft77 -e m filename.

6. Programs executed on the T3D utilized Parallel Virtual Machine (PVM) routines
for communication among processors. The generating array was input to a single
processor (PEO), which readied the data for use, then broadcast the data to 63
additional PEs. The number of processing units was chosen to be equal to the
vector stride of the C90 to allow easier comparison of test results from the two
platforms. Each PE calculated a coset of equal size and determined a weight table
for that portion of the code, sent the result to PEO which added all weight tables to
produce and print the final result.

Ten programs were constructed and tested:

Program A: Implementation of Algorithm 2.
The while loop, dependent upon values in a stack, does not vectorize. Intended for
execution on the C90. ‘

Program B: Implementation of Algorithm 3 with vector length 64.
Intended for execution on the C90.

Program C: Implementation of Algorithm 3 with vector length 64 and minimization
of stack operations (as in 3.2.3).
Intended for execution on the C90. Program B was altered to generate 8 codewords
per iteration of the inner for loop. It was empirically determined that the code was
optimal at 8 codewords per iteration.

Program D: Implementation of Algorithm 4 with 64 processors.
Intended for execution on the T3D. Processing element 0 (PEO) functioned as the
master and distributed the generating array and an initial codeword to PE1 through
PE63. Then each processor, PEO-PE63, generated 1/64th of the code, sent back
a weight distribution array which PEO coalesced into one weight table and reported.

Program E: Implementation of Algorithm S with vector length 64.
Intended for execution on the C90. Algorithm 5 was altered (in a manor similar to
the alteration of Algorithm 2 to produce Algorithm 4) to include a vectorizable for
loop within the while loop that references a predetermined array, H, consisting of
all codewords of a dimension 6 subcode.

Program F: Implementation of Algorithm 5 with vector length 64 and minimization
of stack operations.
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Intended for execution on the C90. Program E was altered to generate 8
codewords per iteration of the inner for loop.
Program G: Implementation of Algorithm 5 with 64 processors.
Intended for execution on the T3D with a methodology similar to Program D.
Program H: Implementation of Algorithm SA with vector length 64.
Intended for execution on the C90. Algorithm SA was altered in a manner similar
to that used for Algorithm 5 (above) to allow vectorization.
Program I: Implementation of Algorithm SA with vector length 64 and minimization
of stack operations.
Intended for execution on the C90. Program H was altered to generate 8
codewords per iteration of the inner for loop.
Program J: Implementation of Algorithm SA with 64 processors.
Intended for execution on the T3D with a methodology similar to Program D.

Note that Programs H, I, and J do not generate the entire weight table, but guarantee
that a codeword of every possible weight is produced.

4.4 The test set

Five linear codes (n,k) were used for testing: (55,10), (55,20), (63,31), (105,24),
and (111,36). For lengths 55 and 63, he bit-length of an integer on the C90 and the
T3D, the generating array was of one dimension. For lengths 105 and 111, two-
dimensional generating arrays were used.

S. Timing and Results

All runs were submitted in batch mode with the code and data sets fetched from
mass storage. No significant operations involved floating point numbers, so the
megaflop rate was not an appropriate metric for comparing results. Rather the run-
time for each code is compared. In Table 1, execution time for a program run on the
C90 represents the user CPU seconds reported by the job accounting utility (ja) for the
execution of the program with the given data set. For jobs submitted to the T3D, ja
does not provide appropriate statistics since its report of the execution time in the
massively parallel environment includes time used for system requests initiated by the
T3D such as disk I/O. For the T3D, a Cray-supplied function, secondr, was called at
the beginning and end of each program. The difference in clock times so reported are
displayed in Table 1. Program A was not used to generate the dimension 36 code, as
the estimated execution time was in excess of 7 CPU hours. Figure 1 displays the
CPU times for generation of codewords of the (111,36) code. Programs that utilize
only the vectorization of the C90 are displayed as C90 1, while C90 2 indicates those
programs that utilize vectorization and attempted to minimize stack operations.
Results from programs run on the T3D are also displayed.

In each case, execution time includes the time required for input of the generating
array, creation of any auxiliary arrays, generation of code words, determination of
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weight tables, coalescing the weight tables to a single table, and the output of the
result.

Table 1 - Execution time in CPU seconds for codes of varying length and

dimension (n,k)

Prog. Plat. (55,10) (55,20) (63,31) (105,24) (111,36)
A C90 .0014 .3643 747.8 6.845 —
B C90 .0018 0354 71.63 7054 2846
C C90 .0018 .0245 47.24 .5236 2172
D T3D 0663 0863 13.10 .1833 528.7
E C90 0022 .0198 35.40 3202 1274
F C90 .0022 .0137 23.44 .1186 1088
G T3D 0805 .0887 7.1635 1424 359.0
H C90 .0022 .0118 25.12 2708 1268
1 C90 0022 0051 5.120 1276 504.2
J =ED . .1805 .1035 6.961 .1276 266.1

Fig. 1 - Generation of (111,36) Code
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6. Discussion

The author had previously generated sevéral of these codes on single processors.
On a Decstation 3100, the generating time for the dimension 31 code exceeded 10
CPU hours. On a VAX 6800, the dimension 20 code required approximately 5 CPU
hours. As expected, the C90 performed much more efficiently. Vectorization on the
C90 (Program B) reduced these times by 90%. Minimizing the stack operations, by
generating eight codewords/loop iteration, in Program C, further dramatically reduced
the time. Many linear codes have a generating array with circulant structure allowing
the improved performance of Programs E and F. If only weight class representatives
are needed, Program I shows the best performance. It is worthy of note that the use
of a two-dimensional generating array does not always double the generation time for
a code of like dimension but a generating array of one dimension, as would be
expected. For example, the (111,36) code contains 32 times the number of codewords
as the (63,31) code, yet Program F generates the larger code in 1088 seconds instead
of the expected 1500 seconds.

For all codes of dimension 24 or greater, the massive parallelization of the T3D
dramatically reduced the time needed to generate an entire code. Apparently, the
overhead of PVM calls adversely effected run-times for smaller codes. Since such
calls are a one-time expense, generation of larger codes, i.e., of codes with dimension
greater than 36, should show a time savings of at least 80%. We note that in order to
allow direct comparison of vectorization on the C90 with parallelization on the T3D,
only 64 of the available 512 processors of the T3D were utilized. Were all processors
used, a cyclic (128,40) code would be expected to be generated by Program G in
approximately 0.2 CPU hours. A representative of each weight class of this code
could be generated by Program J, using 512 processors, in less than 9 CPU minutes.

7. Conclusion

The use of massive parallelization promises to allow the examination of large codes
that have hitherto been impossible to examine [14]. The author intends to further test
massively parallel methodologies for code generation in the T3D environment,
including the minimization of stack operations, and to use successful methods to
further investigate a class of quasi-cyclic linear codes [13].

Author's Address: Loyola College, Comp. Sc. Dept., 4501 N. Charles St.,
Baltimore, MD 21210. E-mail: RES@Iloyola.edu
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APPENDIX: Non-binary codes

For non-binary linear codes, a generalized Gray code [3] can be used to produce
codewords. Let F = GF(q) = {0, 1, . . ., q- 1}; for simplicity, let the word "bit" refer
to any element of F. Let R(i) to be a sequence of i bit strings and let jR(i) represent the
elements of R(i) with j affixed to each as a leading symbol. With : interpreted as
"followed by", a recursive definition of a generalized Gray code of length k, R(k), is
stated:

R(1)=0:1:2:...:g-1
R&=0R®m-1): 1R (n-1):2R (n-1):...:(g-DR*'(n-1)
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where R (n-1) is produced by cyclically shifting by i positions to the right
(with wrap-around) the order of the listing of bit-sequences in R(n-1)

As in the binary case, the transition sequence [15] is of interest. We generalize
algorithm 2 in two steps. First, we generate the Gray Bit-sequences, b, by using a
stack of integers and two auxiliary arrays: Used, where Used[i] indicates the number
of field elements that have been used in position i since a change in position i+1, and
Next, where Next[i] indicates the next field element that should be used at position i
inb. The stack is popped only if the maximum number of alterations, q- 1, (stored in
Used) have been made to the position under consideration, t; at each iteration all j, 1
< j <t are pushed onto the stack.

Algorithm 2* - Stack-based generation of q-ary Gray code
forj=1tokdo /* initialize data structures */
Stack[j-1] «
Used[j] < 0
Next[j] < 1
max «+ q-1
b0 t«<0
whilet < kdo
t « Stack[0]
b[t] « Next[t] /* replacethis line to generate the code */
Used[t] « Used[t]+1 ‘
Next[t] < Next[t] mod q+1
If Used[t] = max /* pop top element */
Stack(t- 1] < Stack[t] -
Stack[t] « t+1
Used[t] < 0
elseift> 1 /* push all j<t*/
Stack[t-1] «t
Stack[0] « 1

For linear code generation, elements of F may be represented by m = [log,q] bits;
an element of F" can be represented by a sequence of [mn/b] or more integers where
b is the number of bits used to store a single integer. The elements of GF(q) can be
mapped to m-length bit vectors in a variety of ways, dependent upon the choice of
generating polynomial for GF(q). If q is a power of 2, addition can be accomplished
by use of the exclusive OR; otherwise addition is accomplished by table look-up.

To alter Algorithm 2* to generate a non-binary linear code, an augmented
generating array G with k rows and q columns is used. If the original generating array,
G, is a one-dimensional array of k integers, g[il, 1 < i < k, G is embedded in G’ as
column 1. Interior elements, g[i,j], 1 < i <k, 1 <j <q, must satisfy g[ij] =j-g[i,1]-
G-1)>gli,1] and g[i,q) = -(q-1)-g[i,1], where - indicates scalar multiplication in
GF(q). With | indicating concatenation of matrices, G’ is :
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G' =[ G| 2:G-G|3-G-2:G|...|(q-1)G-(g-2)G |-(q-1)G ]

Once G’ is created, the linear code may be generated by Algorithm 2*, replacing
the assignment b{t] + Next[t] with ¢ + ¢ + G[tNext[t]], with addition accomplished
- by either exclusive OR or table look-up.

The Hamming weight of a codeword can be found by either table look-up or by
counting the number of non-zero field elements in the vector. Since, each non-zero
codeword may be multiplied by any non-zero element of F to produce another
codeword of identical Hamming weight, the entire code need not be generated to
determine the weight table. It is sufficient to generate those codewords whose leading
non-zero bit is a certain element of F. To generate those codewords whose leading
non-zero is a "1", we alter Algorithm 2* slightly but maintain the minimum change
property. Algorithm 3* "pops" the stack immediately after the position on the stack's
top, i at Stack([0], has first been altered. It produces 1/(q-1) of the entire code. Entries
in the weight table for non-zero weights are multiplied by (q-1) to produce the final
table.

Algorithm 3* - Generating 1/(q-1) Non-Binary Linear Codewords
forj=1tokdo
Stack[j - 1] «j
Used[j] <0
Next[j] < 1
Disturbed[j] « false
max+q-1 -
c-0 t+0 /* initialize the codeword */
whilet < kdo :
t + Stack[0]
¢ + ¢ + G[t,Next[t]]
If not Disturbed]t]
Disturbed[t]« true
Used[t] < q- 1 /* to force a pop */
else
Used[t] < Used[t] + 1
Next[t] + Next[t] mod q + 1
If Used[t] = max /* pop top element */
Stack[t-1] < Stackl[t]
Stack[t] < t+1
Used([t} — 0
elseif t>1 /*pushallj<t*/
Stack[t1] « Stack[0]
Stack[0] < 1
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