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ABSTRACT. A 2-connected graph is called Y — A (respectively
A -Y) reducible or simply a Y — A (respectively A —Y) graph
if it can be reduced to a single edge using a sequence of Y — A
(respectively A — Y, series and parallel reductions. This paper
addresses the problem of decomposing Y — A and A-Y graphs
in connection with a new method for decomposing 3-connected
graphs proposed recently by Coullard, Gardner, and Wagner.

1 Introduction

A 2-connected graph is called Y — A reducible (or simply a Y — A graph)
if it can be reduced to a single edge using a sequence of Y — A, series
and parallel reductions. The class of Y — A graphs is precisely the class
of (2-connected) partial 3-trees [1). A 2-connected graph is called A — Y
reducible (or a A — Y graph) if it can be reduced to a single edge using a
sequence of A — Y, series and parallel reductions. The Y —Aand A-Y
graphs possess a variety of structural and algorithmic properties and have
been studied extensively in the literature [1] [5] [7] [9] [10] [11].

This paper addresses the issue of decomposing Y — A and A — Y graphs
in connection with a method for decomposing 3-connected graphs proposed
recently by Coullard, Gardner, and Wagner [4]. (AY — A or A -Y graph
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is at most 3-connected.) In particular, a 3-connected Y — A graph is de-
composable into twirls, wheels and cubes. (A graph is called a twirl if it
is isomorphic to the graph K3 ,, for some n > 3. A graph having at least
four vertices is called a wheel if it is isomorphic to a connected loopless
graph G with a vertex v such that G\ {v} is a cycle every vertex of which
is adjacent to v. A graph isomorphic to K2 x C4 is called a cube.) The
converse is not true. A 3-connected graph having at least four vertices is
A =Y if and only if it is decomposable into wheels. Using techniques in this
paper, unique decompositions of Y — A and A —Y graphs can be obtained
if the graphs are minimally 3-connected. The minimally 3-connected A-Y
graphs include the well-known class of Halin graphs.

The results in this paper are motivated in part by a desire to identify
classes of graphs that decompose into well-structured classes of graphs.
(The twirls, wheels and cubes are examples of such classes.) Graph decom-
position techniques and well-structured classes of graphs related to these
decompositions have an extensive literature. Whitney and Tutte devised
decompositions for 1- and 2-connected graphs respectively [14] [12]. The
Coullard-Gardner-Wagner decomposition is the 3-connected equivalent of
the Tutte decomposition for 2-connected graphs. The well known series-
parallel graphs, those 2-connected graphs that can be reduced to a single
edge using series and parallel reductions, are precisely the graphs decom-
posable using the Tutte decomposition into polygons and bonds [13]. The
results in this paper can be viewed as a continuation of these efforts. As
mentioned, the 3-connected A — Y graphs are precisely those graphs de-
composable into wheels. Also, the Whitney and Tutte decompositions
lead to unique decompositions. Classes of graphs that decompose into
classes of well-structured graphs may admit polynomial-time algorithms
for problems that are NP-hard for graphs in general. A number of such
decomposition-based algorithms exist for the class of series-parallel graphs
[2] [3]. In the present context, Gardner has devised a polynomial-time al-
gorithm for a certain generalization of the minimum-weight cycle problem,
called the minimum-load cycle problem. The-algorithm runs on any class of
3-connected graphs whose members are decomposable into graphs on which
this problem has a polynomial-time solution [6]. The minimum-load cycle
problem is in general NP-complete, but can be solved in polynomial-time
on twirls, wheels and cubes. Consequently, Gardner’s algorithm can be
applied to the Y — A and A — Y graphs.

The remainder of this paper is organized as follows. In Section 2, the
necessary terminology from graph theory is presented as well as a terse
description of the Coullard-Gardner-Wagner decomposition. The main re-
sults are located in Sections 3. Section 4 presents characterizations of the
class of A —Y graphs in terms of the decomposition.
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2 Preliminaries
A general familiarity with graphs is assumed. For clarity, however, some
definitions and notation will now be established. Graphs are assumed to
be undirected with loops and parallel edges allowed. Let G := (V, E) be a
graph where V and E are the sets of vertices and edges of G respectively.
The sets of vertices and edges of G are also denoted by V(G) and E(G)
respectively. If H is a graph, then H C G denotes that H is a subgraph
of G. If ¢ # D C E (respectively ¢ # D C V), then G[D] denotes the
subgraph of G induced by D, and G \ D denotes the subgraph obtained
by deleting all the edges (respectively vertices) in D. If ¢ # D C E, let
A(G, D) := V(G[D]) n V(G|E - D]). In addition, if D C E, then G/D is
the graph obtained from G by contracting the edges in D. The graph G is
contractible to a graph H if G/D is isomorphic to H for some D C E.
Two nonloop edges of G are called parallel if they have the same ends.
A graph G’ is said to be obtained from G by a parallel reduction if G’ :=
G\ {f} where e and f are parallel edges of G. Two edges e and f of G are
said to be in series if G[{e, f}] is a path whose internal vertex has degree
two in G. A graph G’ is said to be obtained from G by a series reduction
if G’ .= G/{f}. If H C G is a cycle with three vertices, then H is called
a triangle (also “delta” or “A”) of G, and if H is induced by the edges
incident to a degree-three vertex of G, then H is called a triad (also “wye”
or “Y”) of G. Suppose {v1,v2,va} C V, and choose ¢,e;,€e2,e3 ¢ VU E.
Add t to G as a vertex and e; as an edge so that e; has ends ¢ and v;.
The resulting graph is said to be cbtained from G by a triad addition at
{v1,v2,v3}. If H is a triangle of G and G’ is obtained from G by a triad
addition at V' (H), then the graph G’\ E(H) is said to be obtained from G
by a A —Y reduction. Conversely, G is said to be obtained from G’\ E(H)
by a Y — A reduction. In Figure 2.1 below, the graph G’ is obtained from
G by a A —Y reduction, and G is obtained from G’ by a Y — A reduction.

A-Y
_—

Y-A

Figure 2.1

If k > 1, a partition {D1, D2} of E is called a k-separation of G if
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|Di| > k, i = 1,2, and |A(G, D)| < k. For n > 2, G is called n-connected
if it has no k-separation for k < n. If G is an n-connected graph with at
least n + 1 vertices and u,v € V, then G has at least n internally disjoint
(u,v)-paths [8]. The graph G is called minimally n-connected if for each
edge e of G, G\ {e} has a (n — 1)-separation.

Suppose G is 3-connected and {D;,Ds} is a 3-separation of G such
that neither G[D,] nor G[D] is a triad. Such a 3-separation is called
cyclic. Let A(G,D,) = {v1,v,v3}. Choose t,e;,e2,e3 ¢ VU E. For
i = 1,2, let H; be the graph obtained from G[D;] by a triad addition at
{v1,v2,v3} such that e; is an edge with ends ¢ and vj, 1 < j < 3. Let
S; C {e1, e2,e3} be the set of edges of H; incident to a degree-two vertex,
and let W; be the set of these degree-two vertices. If S; # ¢, let H} := H;/S;
where V(H{) = V(H;) — W;. Finally, a certain edge renaming procedure
is executed. Specifically, if e; is contracted in H;, then e; is renamed f
in H,, i’ # i, where f is the edge of H; incident to e; at a degree-two
vertex. (By 3-connectivity, an edge e; cannot be contracted in both H,
and Hj.) If G; is the graph obtained from Hj by this renaming procedure,
then {G1, G2} is called a simple decomposition of G. The edges in the set
E(G))N{ey, ez e3} = E(G2)N{ey, €2, €3} are called marker edges, and ¢ is
called the marker vertez. Let E3 be the set of edges incident to a degree-one
vertex in G[D;] or G[D3]. Let E; := D; — E3, i = 1,2. If {F1,F>} is a
partition of Es, note that {E; U Fy, E; U F3} is a 3-separation of G and
that any two such 3-separations give rise to the same simple decomposition
{G1,Gz2}. The triple { Ey, Ep; E3} is called the split associated with the 3-
separation {D;, D>}, and the decomposition {G;, G2} will be referred to as
the simple decomposition associated with either the 3-separation {D;, D2}
or the split { E,, Fa; E3}.

Figure 2.2
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In Figure 2.2, {G}, G2} is the simple decomposition of G associated with
the split { E;, Ez; E3} where E; = {b,c,d} and E3 = {a,e}. The edge f is
the (unique) marker edge.

The following result is a fundamental property of simple decompositions.

- Proposition 2.1 ([4, Lemmas 2.2 and 2.5]). If {G;,G3} is a sim-
ple decomposition of a 3-connected (respectively minimally 3-connected)
graph G, then both G and Gg are 3-connected (respectively minimally
3-connected) a

If G is a 3-connected graph, then a decomposition T of G is either {G}
or the set (IY — {H}) U {H,, Hy} where IV is a decomposition of G and
{H;,H,} is the simple decomposition of some H € I'". In the latter case,
(r' — {H}) U {H,, Hy} is called a simple refinement of I'. If T'y,...,Ti is
a sequence of decompositions of G where I'y;, is a simple refinement of I’y
assuming i + 1 < k, then Ty is called a refinement of I'y. If k > 1, then I'x
is a proper refinement of I'.

8 Decompositions of Y — A and A —Y Graphs

The purpose of this section is to show that a 3-connected Y —A (respectively
A —Y) graph G having at least four vertices has a decomposition that
is minimal with respect to the property that every member is a twirl, a
wheel or a cube (respectively wheel). If G is minimally 3-connected, this
decomposition is unique.

Agraph Gisa 3-treeif Gis a triangle or G is obtained from a 3-tree by
a triad addition at the set of vertices of a triangle of G. A partial 3-tree
is a subgraph of a 3-tree. As noted in Section 1, the class of 2-connected
Y —~ A graphs is precisely the class of 2-connected partial 3-trees. It will be
convenient to view Y — A graphs as partial 3-trees throughout the sequel.

The following result has been proved independently by a number of au-
thors.

Lemma 38.1. Suppose G is a partial 3-tree and H is a A — Y graph. If
G (respectively H) is contractible to a graph K, then K is also a partial
3-tree (respectively A — Y graph). (]

The first step in establishing that a 3-connected partial 3-tree G has the
type of decomposition mentioned above is to verify that the graphs in a
simple decomposition of G are also partial 3-trees.

Proposition 8.2. If {G,, G2} is the simple decomposition associated with
the split {E, E;; E3} of a 3-connected partial 3-tree G, then G, and G2
are also 3-connected partial 3-trees.

Proof: The graphs G; and G2 are 3-connected by Proposition 2.1. It will
be shown that G, is a partial 3-tree.
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Let A(G, E) := {u,v, w}. Suppose first that V(G[Ez]) — A(G, E;) # ¢.
Choose a vertex z € V(G|[E;]) — A(G, E;). By the 3-connectivity of G,
there exists internally disjoint (z, u)-, (z,v)- and (z, w)-paths. Choose three
such paths and denote them P,,, P,, and P, respectively. Being a subgraph
of a partial 3-tree, the graph G[E, UE(P,)UE(P,)UE(P,,)] is a partial 3-
tree. Finally, by contracting all but one of the edges of each of the paths P,,,
P, and P,,, it is seen that G[E, U E(P,)U E(P,)U E(P,,)] is contractible
to G, and so by Lemma 3.1, G, is a partial 3-tree.

Now suppose that V(G[E]) — A(G, E;) = ¢. In this case, G[E;] is a
triangle such that V(G[E;]) = A(G, E;). By definition, there exists a 3-
tree H such that G C H. Let H’ be the graph obtained from H by a triad
addition at A(G, E;). By definition, H' is a 3-tree. If D is the set of edges
of the added triad, then H’[E; U D] is a partial 3-tree. The proof is now
complete since H’[E,; U D] is isomorphic to G;. (]

The following result is a version of a result of Arnborg and Proskurowski
(1, Theorem 3,4].

Theorem 3.3.. If G is a 3-connected partial 3-tree having at least five
vertices, then G has a subgraph J that is isomorphic to one of the graphs
J, through J3 depicted in Figure 3.1 where A(G, E(J)) = {u, v, w} (say).

u u u
v w \4 w 14 w
Jl Jz J3
Figure 3.1

The following proposition is one of the main results of this section.

Proposition 3.4. If G is a 3-connected partial 3-tree having at least four
vertices, then G has a decomposition every member of which is isomorphic
to Ks'a, K4 or Ks x Cy4.

Proof: Since G has at least four vertices, G has at least six edges. The
proof will proceed by induction on |E(G)|. If G has exactly six edges,
then G is isomorphic to K4. Suppose then that the result holds for all
3-connected partial 3-trees having less than k edges, k > 7. Let G be a
3-connected partial 3-tree having k edges. In this case, G has at least five
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vertices. By Theorem 3.3, G has a subgraph J isomorphic to one of the
graphs depicted in Figure 3.1 where A(G, E(J)) = {u, v, w} (say).

Suppose first that J is isomorphic to J;. Let D be the set of edges of the
triangle of J. Since |V (G)| 2 5, { D, E(G)—D} is a cyclic 3-separation of G.
Let { Ey, E;; E3} be the split associated with this 3-separation. In this case,
|Es| 2 1. Therefore, if {G1,G32} is the associated simple decomposition of
G, G; is isomorphic to K4 and |E(G2)| < |E(G)| — 1. By Proposition
3.2, Gy is a 3-connected partial 3-tree, and so by induction, G2 has a
decomposition I' every member of which is isomorphic to Kg 3, K4 or Kz x
C4. Therefore, ' U {G, } is such a decomposition.

Now suppose that J is isomorphic to either J; or Js. In this case, let D
be the set of edges of J. Suppose {D, E(G)— D} is not a 3-separation of G.
Assume first that J is isomorphic to J2. Let s be the unique vertex of J that
is not a degree-two vertex of J or adjacent to one. It follows that G contains
a subgraph K that is isomorphic to J; where A(G, E(K)) = {u,w, 8} or
A(G, E(K)) = {u,v, s} since G\ J; consists of two edges joining u and
w, u and v, or v and w. If J is isomorphic to Js, it again follows that
G contains a subgraph K isomorphic to J, where A(G, E(K)) = {u,v,w}.
The result follows. Assume therefore that {D, E(G) — D} is a 3-separation.
Suppose this 3-separation is not cyclic. If J is isomorphic to J2, then G is
a cube. If, however, J is isomorphic to J3, then G is isomorphic to Kg .
Finally, if the 3-separation {D, E(G) — D} is cyclic and {G1, G2} is the
associated simple decomposition of G, then G, is isomorphic to either K33
or K3 x Cq4, and |E(G2)| < |E(G)|. The result now follows by induction. O

The next result concerns the decomposition of a 3-connected A—Y graph.

Proposition 3.5. If G is a 3-connected A —Y graph having at least four
vertices, then G has a decomposition every member of which is isomorphic
to K4. l

Proof: For convenience, if H is a graph, let d(H) := Z{dy(v)|v € V(H)
and dy(v) > 4} where di(v) denotes the degree of v in H. Suppose the
proposition is false, and let G* be a counterexample with d(G*) 4 [V(G*)|
a minimum.

Since G* is a A — Y graph, there exists a sequence of A — Y, series and
parallel reductions that can be used to reduce G* to a single edge. Since
G* is 3-connected and has at least four vertices, the first reduction in this
sequence must be a A — Y reduction. Let D denote the set of edges of the
triangle involved in this reduction. If the 3-separation {D, E(G*) — D} is
not cyclic, then G* is isomorphic to Ky, a contradiction. Otherwise, let
{E\, E,; E3} be the split associated with {D, E(G*)— D}, and let {G}, G3}
be the simple decomposition associated with this split. If G* is the graph
obtained from G* by the A — Y reduction involving the edges in D, then
G3 is isomorphic to a graph that can be obtained from G* by contracting
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at most three edges of G*. By Lemma 3.1, G} is a A — Y graph.

Note first that G3 has at least four vertices. In addition, observe that
d(G}) < d(G*). If d(G§) = d(G*), then |Es| = 3, and so [V(G3)| =
[V(G*)] — 2. Assume now that d(G3) < d(G*). Note that |[V(G3)| <
[V(G*)| + 1. If [V(G3)| = [V(G*)| + 1, then E3 = ¢, and so d(G3) <
d(G*)—3. In each case, it follows that d(G3)+|V(G3)| < d(G*)+|V(G*)|.
By induction, G} has a decomposition I' every member of which is isomor-
phic to K4. Consequently, every member of I' U {G1}, a decomposition of
G*, is isomorphic to K,, a contradiction. O

Two decompositions I' and IV of a 3-connected graph G are called equiv-
alent if I’ can be obtained from I'" by replacing some of the marker edges
and vertices of members of I' by marker edges and vertices of members of
I'’. A decomposition I' is unigue with respect to a property « if I" satisfies
= and any other decomposition that satisfies 7 is equivalent to I'. Finally,
I' is minimal with respect to = if I' satisfies # but no decomposition having
I as a proper refinement satisfies .

The remainder of this section is devoted to showing that every 3-connected
partial 3-tree (respectively A —Y) graph with at least four vertices has a
decomposition minimal with respect to the property that every member is
a twirl, a wheel or a cube (respectively wheel). If the graph is minimally
3-connected, this decomposition is unique. The proof involves a certain
notion of graph composition defined below.

Two members of a decomposition I" of a 3-connected graph are called
adjacent if they share a marker vertex. (Note that exactly two graphs in I
share the same marker vertex.) The following two observations are easily
made for adjacent G;, Go € I' that share a marker vertex ¢:

(i.) the set S of edges of G, incident to ¢ is equal to the set of edges of
G that are incident to ¢, and

(ii.) if e is an edge of G, with ends v and ¢ where v € (V(G;)NV(Gy)) -
{t}, then e is an edge of G2 with ends v and ¢.

(Any edge satisfying (ii.) is a marker edge. Note however that a marker
edge may haveendsu and t in G; and ends v and ¢ in G2, u # v.) Given G,
and G; as above, define a graph G, called the composition of G; and Ga,
as follows. Let E(G) := (E(G1)UE(G3)) — {e € E(G1)N E(Gz)|e has the

"same ends in both G; and G}, and let V(G) := (V(G;) UV(G2)) — {t}.
If e € (E(G1) U E(G2)) — S, then e has the same ends in G as it does
in G; or Gz. Finally, if e has ends u and ¢ in G; and ends v and ¢ in
Gg, u # v, then e has ends u and v in G. Note that the graph G is the
unique graph having {G,, G;} as a simple decomposition. The next result
follows from the above observations and constructions although the proof
is somewhat technical and is therefore omitted. It is sufficient to say that
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enough information is associated with each member of a decomposition I'
of G to uniquely reconstruct G from I.

Proposition 3.6 ([6, Lemma 5.2.1]). If T is a decomposition of a
3-connected graph H, G, and G2 are adjacent members of T, and G
is the composition of G, and Ga, then (I' — {G1,G2}) U {G} is also a
decomposition of H.

The proof of the following lemma is straightforward.

Lemma 8.7. If G is a twirl (respectively wheel) and {G;, G2} is a sim-
ple decomposition of G, then G, and Gz are both twirls (respectively
wheels). (m]

The following theorem is the main result of this section.

Theorem 3.8. If G is a 3-connected partial 3-tree (respectively A =Y
graph) with at least four vertices, then G has a decomposition minimal
with respect to the property that every member is a twirl, a wheel or a
cube (respectively wheel). (m]

Proof: Suppose G is a partial 3-tree. (The proof is similar if Gisa A-Y
graph.) By Proposition 3.4, G has a decomposition I" every member of
which is a twirl, a wheel or a cube. Suppose there exists adjacent graphs
K, and K> in I’ such that K; and K3 are either both twirls or both wheels.
If K is the composition of K; and K2 and K is a twirl or a wheel, replace
I with (I' - {K,,K,}) U {K}. By Proposition 3.6, (I' - {K;,Kz2}) U {K}
is a decomposition of G. Continue this process until there is no pair of
adjacent twirls or adjacent wheels whose composition is a twirl or a wheel
respectively. Let I’ be the resulting decomposition of G.

Suppose that I' is not minimal with respect to the property that every
member is a twirl, a wheel or a cube. Therefore, there exists a decomposi-
tion I'” of G such that I is a proper refinement of I'” and every member
of I'” is a twirl, a wheel or a cube. Since a cube has no splits, by Lemma
3.7, it may be assumed that I is a simple refinement of I/, In this case,
I’ = (I'" — {K}) U {K;,K2} where K € I'” and {K,,K} is a simple de-
composition of K. Now K is either a twirl or a wheel, and so K; and K>
are either adjacent twirls or adjacent wheels respectively, a contradiction,
since K is the composition of K; and K2 and I’ has, by construction, no
adjacent twirls or adjacent wheels whose composition is a twirl or wheel
respectively. a

If the graph G in the statement of Theorem 3.8 is minimally 3-connected,
then the decomposition I'V is unique. That is, if I’ is a decomposition
minimal with respect to the property that every member of I is a twirl, a
wheel or a cube, then I" and IV are equivalent. The uniqueness is implied
by the following result of Coullard, Gardner, and Wagner [4, Theorem 1.1].
A 3-connected graph is called eyclically 4-connected if it has no splits.
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Theorem 3.9. A minimally 3-connected graph G having at least four
vertices has a unique decomposition I' minimal with respect to the property
that every member of T is a twirl, a wheel or a cyclically 4-connected
graph. a

For a minimally 3-connected partial 3-tree or A — Y graph G, let I'Y
be the decomposition of G guaranteed to exist by Theorem 3.8. If ' is
any decomposition of G that is minimal with respect to the property that
every member of I' is a twirl, a wheel or a cube, then it is minimal with
respect to the property that every member is a twirl, a wheel or a cycli-
cally 4-connected graph. Therefore, IV and I' are equivalent. Without the
assumption that G is minimally 3-connected, the decomposition I'' need
not be unique. For example, the graph in Figure 3.2 below is a partial
3-tree, but it has two nonequivalent minimal decompositions the members
of which are wheels.

Figure 3.2

4 More on A —Y Graphs

It was shown in the last section that every 3-connected A —Y graph with
at least four vertices is decomposable into wheels. Conversely, suppose a
3-connected graph G has a decomposition I' every member of which is a
wheel. Since a wheel is clearly decomposable into graphs isomorphic to K4,
without loss of generality, assume every member of I' is isomorphic to Kj.
IfIl| = 1, G is a A-Y graph. Otherwise, choose K € T, and choose K’ € T
adjacent to K. If K” is the composition of K and K’, then as noted in the
previous section, IV = (I' — {K,K'}) U {K"} is a decomposition of G, and
{K,K'} is a simple decomposition of K”. Clearly, K can be obtained from
K” by a A —Y reduction followed by a (possibly null) sequence of series
reductions. Now (if necessary) repeat the above process with IV playing
the role of I" and K” playing the role of K. Continuing in this manner,
the graph K can be obtained from G by a sequence of A —Y and series
reductions. Therefore, G is a A — Y graph. The following result has been
proved.
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Theorem 4.1. A 3-connected graph having at least four vertices is A —Y
if and only if it is decomposable into wheels. a

The above discussion suggests that the decomposition might lead to a
constructive characterization of the class of A — Y graphs. This character-
ization is an alternative to the one described by Politof [10]. The details
follow.

Let G; and G2 be 3-connected graphs having triads T; and T5 re-
spectively. For ¢ = 1,2, suppose {e;, f;,g;} are the edges in T;, and
let v;, z;, v, and z be vertices of G; such that e; has ends z; and
vj, fi has ends y; and v;, and g; has ends 2 and v;. Choose e, f,9 ¢
V(G1) UV(G3) U E(G;) U E(G2). Define a graph G, called a graft of
G, and Gy, as follows. Let E(G) := (E(G,) — {e1, fi,q:1}) U (E(Gg) —
{e2, f2,92}) U {e, f,g} and V(G) := (V(G1) - {1}) U (V(G32) - {w2}). If
he (E(Gl) —{61, fl,gl})U(E(Gz)"{ez» S, 92})1 then h has the same ends
in G as it does in G, or Gy. Finally, let e, f, and g have ends z; and Zz3,
1 and y2, and z; and z; respectively. The edges e, f, and g are called graft
edges. Let D C {e, f, g}, and suppose the graph G/D is 3-connected. Any
graph obtained from G/D (after renaming edges in {e, f, g} — D if neces-
sary) is said to be obtained from G, and G; by a grufi-contract operation.
In Figure 4.1, G is a graft of G, and G. The final graph is obtained from
G by contracting edges e and f.

Z

1
x

N v 1 V |
1 81 1 21
A '—~ S
3 o £
"‘\( "\(

Figure 4.1

Proposition 4.2 ([6, Propositions 2.3.1 and 2.3.2]. If G and H are
3-connected graphs, then

(i.) a graft of G and H.is 3-connected, and
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(ii.) if e € E3 for some split {Ey, E2; E3} of G and e is not an edge of a
triangle of G, then G/{e} is 3-connected.

O

The point of (ji.) is to identify when a graft edge can be contracted to
maintain 3-connectivity.

Suppose G is a A —Y graph, and let H be a wheel. Let K be obtained
from G and H by a graft-contract operation. If T is the triad of H in-
volved in the construction of K and {Gi, G2} is the simple decomposition
associated with the 3-separation { E(H) — E(T), E(G) — (E(H) — E(T))},
then G, is isomorphic to H and G is isomorphic to G. Consequently, K
isa A —Y graph.

Paraphrasing the discussion prior to Theorem 4.1, let I be a decomposi-
tion of G every member of which is a wheel. If |['| > 1, choose K € T', and
choose K’ € T adjacent to K. Since any composition K” can be obtained
from K and K’ by a graft-contract operation, G can be obtained from K
(say) by a sequence of such operations. The next result follows.

Theorem 4.3. A 3-connected graph G is A — Y if and only if either
(i) G is a wheel or (ii.) there exists sequences Gi,Gy,...,Gx and
Hy,Ha,...,Hi_1, k > 2, such that G = {G}, each H; is a wheel, and
for 2 < i < k, G; is obtained from G;_; and H;_; by a graft-contract
operation. O

5 Concluding Remarks

As shown in Proposition 3.4, every 3-connected partial 3-tree having at least
four vertices is decomposable into twirls, wheels and cubes. The converse in
not true. For example, the graphs K 2 2 and K depicted in Figure 5.1 are
not partial 3-trees [11] but are decomposable into wheels and twirls. Con-
sequently, the class of graphs decomposable into twirls, wheels and cubes
contains the 3-connected partial 3-trees as a proper subclass. Obtaining a
good characterization of this class of graphs is a subject for future research.

K222 Ks
Figure 5.1
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Finally, Coullard, Gardner and Wagner showed that any 3-connected
graph has a unique minimal decomposition with respect to the property
that each of its members satisfies a certain technical condition on its splits
[4]. A characterization of the graphs satisfying this condition has not yet
been obtained. In this paper, this decomposition has been determined for
minimally 3-connected Y — A and A — Y graphs. Describing the unique
decomposition mentioned above for Y —A and A-Y graphs is an interesting
topic for future research. Such a description for the class of 3-connected
partial 3-trees would have to include a class of graphs having the graph in
Figure 3.2 as a member.
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