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ABSTRACT. Let G be a finite strongly connected mixed graph
(i.e. a graph with both undirected and directed edges, in which
each vertex can be reached from every other vertex if directed
edges can only be traversed in their direction of orientation).
We establish a necessary and sufficient condition for it to be
possible to transform some undirected edges of G into directed
edges so that each vertex becomes the head of a prescribed num-
ber of newly directed edges and G remains strongly connected.
A special case of this result yields a new proof (not requiring
matroid techniques) of a necessary and sufficient condition for
it to be possible to split each vertex of a finite connected graph
into a prescribed number of vertices whilst preserving connect-
edness.

1 Introduction

A “p-detachment” of a graph G is, informally, a graph D obtained from G
by splitting each vertex £ into a specified number b(£) of vertices: D has the
same edges as G and an edge joining vertices £ and 7 of G becomes an edge
of D joining one of the vertices into which £ splits to one of the vertices into
which 7 splits. In [4] and [5], matroids were used in two different proofs
of Theorem 2 below, which asserts a necessary and sufficient condition for
G to have a connected b-detachment, when G is finite. Efforts (hitherto
unsuccessful) to extend Theorem 2 to infinite graphs have stimulated a
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search for new proofs in the finite case. This in turn led to the discovery
of a theorem (Theorem 1) about mixed graphs, i.e. graphs in which some
edges are directed and some are undirected. Specifically, suppose that a
finite mixed graph G is strongly connected, i.e. such that any vertex can
be reached from any other if directed edges must be treated as “one-way
streets”. Is it possible to orient (i.e. convert to directed edges) some of the
undirected edges of G in such a way that each vertex £ becomes the head of
a specified number b(¢) of newly oriented edges and strong connectedness
is preserved? Theorem 1 gives a necessary and sufficient condition for this
to be possible. Although a weaker result would suffice for a new proof
of Theorem 2, Theorem 1 seems interesting in its own right, and might
conceivably be helpful in extending Theorem 2 to infinite graphs: it is
therefore proved in Section 3. In Section 4, we use a corollary of Theorem
1 to give a new proof of Theorem 2, not involving matroids, and we sketch
two variants of this argument which avoid the need to prove Theorem 1 in
full generality. Finally, we show that Theorem 2 implies an apparently more
general result, characterizing the smallest possible number of components
of a b-detachment of G even when this number is not 1.

When writing this paper, I had forgotten that [1] and [2] contain some-
what similar ideas and results. These do not concern mixed graphs, but
Corollary 1a of the present paper is equivalent to Theorem 7 of [1]. The
interesting survey paper [3] also mentions many relevant results, including
some concerning mixed graphs. Moreover, its author has drawn my atten-
tion to a fairly easy argument whereby from Theorem 3.7 of [3] one can
deduce a necessary and sufficient condition for the existence of a way of
orienting some undirected edges of a strongly connected finite mixed graph
so that each vertex £ becomes the head of exactly b(¢) newly oriented
edges and strong connectedness is preserved. However, this necessary and
sufficient condition and the one in Theorem 1 below do not seem to be ob-
viously identical. Therefore the approach described here may retain some
independent interest.

Although this work was prompted largely by thinking about infinite
graphs, the results in this paper concern finite graphs only. It will therefore
~ henceforward be understood that all graphs, digraphs and mixed graphs
considered here are finite.

2 Basic Definitions

The set of non-negative integers and the set of positive integers will be
denoted by Z+ and N respectively. If Sisa finiteset, X C Sand f: § =2

is a function then f.X denotes }__c » f(z).
A mized graph is a (finite) graph G in which E(G) is the union of two
disjoint sets U(G), A(G) whose elements are called undirected and directed
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edges respectively. An edge X joins two (not necessarily distinct) vertices
which are regarded as constituting an unordered pair if ) is undirected and
an ordered pair (A¢, AR) if ) is directed, in which case At is the tail of A and
Ah is its head. It is intuitively helpful to think of an undirected edge as a
two-way street and-of a directed edge ) as a one-way street along which we
may only travel from At to Ah. We place no restriction (except finiteness)
on the number of undirected or directed edges which may join the same
pair of vertices. We call G an undirected graph if A(G) = 0 and a digraph
if U(G) = 0. Both of these are regarded as special types of mixed graphs,
and thus the term “mixed” allows but does not require the presence of both
undirected and directed edges.

A subgraph of a mixed graph G is a mixed graph H such that V(H) C
V(G), U(H) C U(G), A(H) C A(G), each edge of H joins the same
vertices in H as in G and each directed edge of H has the same tail and
the same head in H as in G. Two subgraphs H, K of G are edge-disjoint if
E(H)NE(K)=0.

Let G be a mixed graph and X,Y denote subsets of V(G) and L denote
" a subset of E(G). Then X denotes V(G)\ X, XOY denotes the set of
those undirected edges of G which join an element of X to an element
of Y, XpY denotes {A € A(G): At € X,M\h € Y} and XVY denotes
(XOY)uXpY)u(YpX). Welet E(X)=XVV(G),U(X)=X0OV(G),
e(X) = |E(X)|, w(X) = |U(X)|. Elements of (X > X)U (XOX) are
ezits of X and elements of (X b X) U (X OX) are entries of X. Ezits and
enlries of a subgraph H of G are exits and entries of V(H), respectively.
We define G[X], G — L to be the subgraphs of G such that V(G[X]) =
X, E(G|X]) = XvX, V(G- L) = V(G), E(G-L) = E(G)\ L; and
G — X means G[X]. Furthermore, G(L) denotes the smallest subgraph of
G whose set of edges is L, i.e. E(G(L)) = L and V(G(L})) is the set of
those vertices of G which are incident with at least one element of L. If
€,n € V(G) and X € E(G), the expressions G — {A}, U({¢}), {€}D{n},
{€} v {n}, {€}v{n}, {€}O X, X > {£} may be written without braces as
G - ), U(€), €07 ete. For every subset X of V(G), G[X] is an induced
subgraph of G. We say that G is connected if XV X is non-empty for every
non-empty proper subset X of V(G). We say that G is strongly connected
or, for brevity, strong if every non-empty proper subset of V(G) has at least
one exit or, equivalently, if every non-empty proper subset of V(G) has at
least one exit and at least one entry. If G is non-empty (i.e. if V(G) #
@), its maximal connected subgraphs and maximal strong subgraphs will
be called components and dicomponents of G, respectively. Clearly these
are all induced subgraphs of G. (We adopt the term “dicomponent” in
preference to “strong component” because a dicomponent is not necessarily
a component.) The empty graph is considered as having no components
or dicomponents. An initial dicomponent of G is one which.has no entries.
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We let C(G) denote the set of components of G and write ¢(G) = |C(G)I.
We note that

o(G - L) < ¢(G) + |L| if L € E(G), 1)

because removing an edge increases the number of components of a mixed
graph by at most 1. Taking L = E(G) in (1) gives

IV(G)] < |E(G)] +¢(G). )

If £, € V(G), a &n-dipath in G is a connected subgraph P of G such that
£,n € V(P) and each edge A of P is an exit of a component of P — A
which includes £ and does not include 7, i.e. a path P from £ to 7 in the
usual graph-theoretic sense, such that each edge of P is either undirected or
directed and “pointing in the direction from £ to 5 along P”. A subgraph of
G is an X1-dipath if it is a &n-dipath for some € € X, and is an XY-dipath
if it is a £n-dipath for some € € X and some n € Y. We say that g is
accessible from £ in G if there exists a £7-dipath in G or, equivalently, if
every set X such that £ € X C V(G)\ {1} has at least one exit.

When two or more mixed graphs G, H etc. are under consideration,
we shall use subscripts, hyphens or additional words when necessary to
indicate the mixed graph in which words or symbols are interpreted, e.g.
My, XOgxY “H-exit”, “accessible in -H” etc. However, when one of the
mixed graphs under consideration is denoted by the symbol G, all words
and symbols which require interpretation in some mixed graph will refer
to G unless the contrary is explicitly indicated. For example, in these
circumstances X, X OY, At and “exit of X” will mean V(G)\ X, XOgY,
Mc and “exit of X in G” respectively, unless otherwise specified.

3 Strong Orientations of Mixed Graphs

We shall say that a mixed graph H is an orientation of a mixed graph G
if V(H) = V(G), E(H) = E(G), U(H) C U(G), each edge of G joins the
same vertices in H as in G and each directed edge of G has the same tail
and the same head in H as in G. In these circumstances, we say that H
is obtained from G by orienting the edges in U(G) N A(H) and that G
is obtained from H by de-orienting these edges. Thus an orientation of a
mixed graph G is another mixed graph obtained from G by turning some
(or all or none) of its undirected edges into directed edges. Ifb: V(G) —Z+

is a function and H is an orientation of G and each vertex £ of G is the
head, in H, of exactly b(£) elements of U(G) N A(H) then we shall call H
a b-orientation of G: thus each vertex £ becomes the head of b(£) newly
directed edges when G is transformed into a b-orientation of G.

Lemma 1. If G is a mixed graph and b is a function from V(G) into Z;
and u(X) > b.X for every subset X of V(G) then G has a b-orientation.
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Proof: Let &,&2,...,& (where 3 = b.V(G)) be a sequence of vertices of
G such that each vertex £ of G appears b(£) times in the sequence. If I C
{1,2,...,8} and X = {&: i € I} then |, U(&)] = u(X) 2 b.X > |I].
Therefore the sets U(§,), ..., U(&,) have distinct representatives Ay, ..., A,
respectively and so G has a b-orientation H such that U(G) N A(H) =
{M,-.-5 A} and Aihy =& fori=1,...,s.

Lemma 2. Every non-empty mixed graph has at least one initial dicom-
ponent.

Proof: Let G be a non-empty mixed graph. Choose a vertex a of G which
is accessible from as few vertices as possible. Then the set X of all vertices
from which « is accessible has no entry. Moreover, if £ € X, then £ is
accessible from a because otherwise the set of all vertices from which £ is
accessible would be a subset of X \ {a}, contradicting the definition of a.
Hence G[X] is an initial dicomponent of G.

Definition. If G is a mixed graph and X C V(G), then S(G, X) denotes
the set of all induced subgraphs S of G — X such that

XovE)ov(Es)=V(iS)pVv(S)=0

(i.e. all entries of S belong to X O V(S)).

Lemma 8. Let G be a mixed graph, X be a subset of V(G) and C be a
subgraph of G. Then the following statements are equivalent:

(S1) C is non-empty and strong and C € S(G, X).
(S2) C is an initial dicomponent of G — X and Xv>V(C) = 0.

Proof: If C satisfies (S2) then it is a non-empty strong induced subgraph
of G — X. Moreover X b V(C) = 0 by (S2) and

XUV V(C)=X0V(C)OV(C) =0

since C is an initial dicomponent of G — X and so C € §(G, X). Therefore
(S1) is true.

Conversely, suppose that C satisfies (S1). Since C € S(G, X), it has no
entries in G — X and is therefore an initial dicomponent of G—X. Moreover
XpV(C)CV(C)p V(C)=0since C € S(G, X), and so (S2) is true.
Definition. If G is a mixed graph and X C V(G), then C(G,X) de-
notes the set of all subgraphs C of G which satisfy (S1), or equivalently
(by Lemma 3) the set of all subgraphs C of G which satisfy (S2). The
reader should keep in mind both versions of this definition. We write
¢(G, X) = |C(G, X)| and f(G,b, X) = u(X)=b.X —c(G, X) for any function
b: V(G) —*Z+.
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Lemma 4. If G is a mixed graph and X C V(G) then every non-empty
member of S(G, X) contains a member of C(G, X).

Proof: This follows from Lemma 2 and the fact that every initial dicom-
ponent of a member of S(G, X) satisfies (S1) and so belongs to C(G, X).

Theorem 1. Let G be a mixed graph and b be a function from V(G)
into Z,. Then G has a strong b-orientation iff G is strong and u(X) >

b.X + ¢(G, X) for every non-empty subset X of V(G).

Proof: Suppose first that G has a strong b-orientation H. Then it is easily
seen that G is itself strong. Let X be a non-empty subset of V(G). Let
C € C(G, X). Since H is strong, V(C) has an entry A¢ in H. Since Ac
must be an entry of C in G and C € 8(G, X), it follows that A¢ € U(X),
but clearly A¢ ¢ V(G) by X. Hence U(X) has at least ¢(G, X) elements
which do not belong to V(G)>y X. Moreover b.X elements of U(X) belong
to V(G)by X since H is a b-orientation of G, and so u(X) 2 b.X +¢(G, X).

To prove that, conversely, if this inequality holds for every non-empty
X C V(G) and G is strong then G has a strong b-orientation, we make
the following definitions. A couple is an ordered pair (G,b) such that G
is a mixed graph and b is a function from V(G) into Z+. A couple (G, b)

is good if u(X) > b.X + (G, X) for every non-empty subset X of V(G).
A couple (G, b) is perverse if it is good and G is strong but has no strong
b-orientation. A couple (F, a) precedes a couple (G, b) if either (i) [V(F)|+
|E(F)| < V(G| + |E(G)| or (ii) |V(F)| + |E(F)| = [V(G)| + |E(G)| and
a.V(F) > b.V(G). A couple (G,b) is minimally perverse if it is perverse
and no perverse couple precedes (G,b). If there exists a perverse couple
then clearly there exists a minimally perverse couple and so it suffices to
prove that the latter cannot exist. Therefore, during the remainder of the
proof of Theorem 1 (i.e. the remainder of Section 3), we assume that
(G, b) is a minimally perverse couple. When this assumption has led to a
contradiction, Theorem 1 will be proved.

Lemma 5. G is non-empty.

Proof: If G was empty, then G would trivially be a b-orientation of itself,
contradicting the hypothesis that (G, b) is perverse.

Lemma 6. If a € V(G) and ) € avVa then A € U(G) and b(a) = 0.

Proof: Suppose that A € A(G) or b(a) > 0. Let a: V(G) —Z, be the

function such that a(€) = b(€) for every € € V(G) \ {a}, a(a) = b(a)
if A is directed and a(a) = b(a) — 1 if A is undirected. It is easily seen
that f(G — A,a,X) = f(G,b,X) for every X C V(G), and so (G — A, a) is
good since (G, b) is good. Moreover G — X is strong since G is strong, and
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(G — )\, a) is not perverse since it precedes (G,b). Therefore G — A has a
strong a-orientation, which becomes a strong b-orientation of G when A is
replaced as a directed loop; and this contradicts the perversity of (G, b).

We shall say that a subset X of V(G) is critical if f(G,b,X) = 0.
Lemma 7. Every vertex of G belongs to a critical subset of V(G).

Proof: Suppose that a vertex a of G belongs to no critical subset of V(G).
Then, since (G, b) is good, f(G,b, X) > 0 for every non-empty X C V(G)
and f(G,b,X) > 1 whenever a € X C V(G). Therefore f(G,a,X) > 0 for
every non-empty X C V(G), where a(§) = b(£) for every £ € V(G) \ {a}
and a(a) = b(a) + 1. Therefore (G, a) is good. However, (G, a) cannot be
perverse since it precedes (G,b). Therefore G has a strong a-orientation
H. In H, a is the head of a(a) = b(a) + 1 elements of U(G) N A(H), and
de-orienting one of these edges converts H into a strong b-orientation of G,
contradicting the perversity of (G, b).

Lemma 8. If w € V(G) and V(G)bw = 0 and b(w) = 0 then {w} is a
maximal critical subset of V(G).

Proof: By Lemma 7, w belongs to some maximal critical subset X of V(G).
Let

¢'={CeC(G,X): wOV(C) # 0},
P=|J{v(0):CeC'},Y =X\ {w}.

Clearly C(G,X)\C’' CC(G,Y) and |C’| £ |wO P|. Therefore

Since X UV(C)OV(C) = V(C)p> V(C) = 0 for every C € C’ and V(G) p
w = 0, it follows that G[{w} U P] € S(G,Y) if wOXU P = 0. Moreover
G[{w}U P} is strong since each member of C’ is strong and w O V(C) # @ for
each C € C’. Therefore G[{w}U P] € C(G,Y)\C(G,X) if wOXUP =0.
Moreover |wOP| < |wOX| and if wOXUP # 0 then wOP| < wOX|.
From these remarks and (3) it follows that ¢(G, X) < ¢(G,Y) + [wDX]|.
Moreover b.X = b.Y since b(w) = 0; and u(X) > u(Y) + |wVX]|. Therefore
f(G,b,X) > f(G,b,Y), which implies that Y = § because (G, b) is good
and X is critical. Therefore {w} = X, which is a maximal critical subset
of V(G).

Lemma 9. If X is a non-empty subset of V(G) and C € C(G, X) then
Xav(c)#0.

Proof: Since G is strong, V(C) has at least one entry in G. Since C €
S8(G, X), any such entry must belong to XOV(C).
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Definitions. If X is a non-empty subset of V(G), then Gx will denote a
mixed graph obtained from G by contracting its subgraph G[X] to a vertex

. More precisely, let X be an object which is not a vertex or edge of
G and let ¢: V(G) - XU {X} be the function such that #(€) = & for
every £ € X and ¢(¢) = X for - every £ € X. Then V(Gx) = X U {X},
E(Gx)= E(X) and for all £ € X, n € V(G) we have

§07C E0Gxé(n), §on C &vgy ¢(n),
> € C ¢(n) bay &

We also define a function bx: V(Gx) —Z by letting bx(€) = b(£) for
every £ € X and bx(X) =0.

Lemma 10. If X is a non-empty subset of V(G) then Gx is strong and
(Gx,bx) is good.

Proof: Let F denote Gx and ¢: V(G) — V(F) be the function defined
above. If Z is a non-empty proper subset of V(F) then, since G is strong,
¢~1(Z) has at least one exit in G and therefore Z has at least one exit in
F. Hence F is strong.

Nowlet X € Y C V(F), Y' =Y \ {X} and let C'(F,Y") be the set of
those members of C(F,Y’) which do not include X. If C € C(F,Y) then
either C € C'(F,Y’) or X0 zV(C) # 0: therefore

o(FY) S IC'(FY')| +IXTp(V(F)\Y)I. (4)

Moreover, it is easily seen that C’(F,Y’) C C(G,Y’) and that if X is a
vertex of some C € C(F,Y") then G[¢~1(V(C))] belongs to S(G,Y’) and so
contains by Lemma 4 a member of C(G,Y"). Therefore ¢(G,Y’) > ¢(F,Y")
and consequently

f(Fbx,Y') > f(G,b,Y"). (5)
To prove that (F,bx) is good it suffices to show that

(i) f(F)bX1{X}) > 0:
(i) if X €Y C V(F) and Y # {X} then f(F,bx,Y) > f(F,bx,Y’) > 0.

Taking ¥ = {X } in (4) establishes (i) if we observe that bx(X) = 0,
ur({X}) = |X O p(V(F)\ {X})| and that C(F,0) = {F} since F is strong
and consequently C’(F,®) = 0. To prove (ii), suppose that Xevc V(F)
and Y # {X}. Then bx.Y = bx.Y' (since bx(X) = 0) and |C’(F,Y")| <
o(F,Y") and up(Y) = up(Y’)+|X O p(V(F)\Y)|. From these observations
and (4), it follows that f(F,bx,Y) > f(F,bx,Y’), which is non-negative
by (5) and the goodness of (G, b).
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Lemma 11. If X is a maximal critical subset of V(G) and C € C(G, X)
then V(C) = {w} for some vertex w such that b(w) =0 and V(G)bw = 0.

Proof: Since f(G,5,0) < 0 by Lemmas 2 and 5, X is non-empty. Let
W = V(C) and let a denote the restriction of b to W. Suppose that
0#Z CW. Then

b.(XUZ)=bX+0a.2. (6)
Since C € S(G, X) it follows that
uw(X U Z) = u(X) + uc(2). )

From the version of the definition of C(G, X) involving (S1), we see that
€, x)\{chuc(c, 2) cC(G,X U Z) and therefore

oG, X U Z) > ¢(C, X) +¢(C, Z) - 1. @)
By (6), (7) and (8),
f(G,b,XUZ) < f(G,b,X)+ f(C,a,2) +1.

But f(G,b,X U Z) > 1 and f(G,b,X) = 0 because (G,b) is good, X is
critical and (by the maximality of X) X U Z is not critical. Therefore
f(C,a,Z) 2 0. This proves that (C,a) is good. Moreover (C,a) precedes
(G, b) since X # 0. Therefore (C, a) is not perverse and so C has a strong
a-orientation C’.

Suppose that |W| > 2. Then (Gw,bw) also precedes (G,b) and so is
not perverse. Therefore, by Lemma 10, Gy has a strong b,-orientation
J. Clearly G has a b-orientation H such that C’ is a subgraph of H and
Hw = J. To prove that H is strong, we must show that an arbitrary non-
empty proper subset Y of V(G) has at least one exit in H. If Y and Y
both meet V(C) then Y NV(C) is a non-empty proper subset of V(C) and
so has an exit in C’ since C’ is strong, and therefore Y has an exit in H.
If Y, Y do not both meet V(C) then one of them is a non-empty proper
subset of V(Gw) and therefore has both an entry and an exit in J since
J is strong, and therefore once again Y has an exit in H. Hence H is a
strong b-orientation of G, contradicting the perversity of (G,b). We infer
that |W| < 2 and so V(C) = W = {w} for some vertex w.

Clearly C(G, X)\{C} C C(G, XU{w}) and so ¢(G, XU{w}) > (G, X)-1.
Since V(C) = {w} and C € §(G, X), Lemma 6 gives u(X U {w}) = u(X) if
b(w) > 0. Moreover b.(X U{w}) = b.X +b(w). Therefore f(G,b, XU{w}) <
f(G,b, X) + 1 — b(w) if b(w) > 0. Hence b(w) = 0 since (G, b) is good and
X is critical and (by the maximality of X) X U {w} is not critical. Finally,
V(G)bw = B since V(C) = {w} and C € §(G, X) and wow = 0 by Lemma
6. Lemma 11 is thus proved.

41



Since (G, b) is good, u(X) —b.X > f(G,b,X) > 0 when 0 # X C V(G),
and obviously u(0) = b.0 = 0. Therefore

u(X) > b.X for every X C V(G). (9)

We shall call a subset X of V(G) crucial if u(X) = b.X.
Lemma 12. Every maximal critical subset of V(G) is crucial.

Proof: Suppose that a maximal critical subset X of V(G) is not crucial.
Since X is critical but not crucial, b.X + ¢(G, X) = u(X) # b.X and so we
can choose some C € C(G, X). By Lemma 11, V(C) = {w} for some vertex
w such that b(w) = 0 and V(G) bw = 0. By Lemma 8, {w} is a maximal
critical subset of V(G). Since X is not crucial and therefore non-empty,
there exists by Lemma 9 an edge A € XOV(C) = wOX. Moreover
wOV(D) # @ for every D € C(G, {w}) by Lemma 9, and lwOV(G)| =
(G, {w}) since {w} is critical and b(w) = 0. Therefore every element of
wOV(G) joins w to a vertex of a member of C(G, {w}) and so A joins w
to a vertex wp of some Dy € C(G, {w}). We observe that wp € X since
) € wOX. Since {w} is a maximal critical subset of V(G), it follows by
Lemma 11 that V(Do) = {wo} and b(wo) = 0 and V(G)bwp = . Therefore
{wo} is a maximal critical subset of V(G) by Lemma 8, and so X = {wo}
because X is critical and wo € X. Since C € 8(G, X) and Do € S(G, {w})
it follows that

V(C)OXUV(C) = V(Do) D{w} U V(Do) =9,

ie. {w,wo}O(V(G)\ {w,wo}) = 0. Since in addition V(G)bw = V(G) >
wo = 0, it follows that {w,wo} has no entries in G and so {w,wo} = V(G)
because G is'strong. Since b(w) = b(wp) = 0 it follows that G is a strong
b-orientation of itself, which contradicts the perversity of (G,b) and thus
proves Lemma 12. ,

Let Y, Z be crucial subsets of V(G). Then uw(Y) =b.Y, u(Z) = b.Z and
clearly U(YNZ) CU(Y)NU(Z) and U(YUZ) = U(Y)UU(Z): these facts
and (9) give

b.Y+b.Z =u(Y)+u(Z) 2u(Y NZ)+u(Y U Z)
2b(YNZ)+b(YUZ)=bY +b.2

From this and (9) it follows that u(Y N Z) = b.(Y N Z) and uw(Y U Z) =
b.(Y U Z). Therefore the union (and intersection) of any two crucial sets
is crucial and hence by induction the union of any finite number of crucial
sets is crucial. Since V(G) is by Lemmas 7 and 12 the union of finitely
many crucial sets, it is crucial, i.e. JU(G)| = b.V(G). By (9) and Lemma
1, G has a b-orientation H, which is a digraph since [U (@) =b.V(G). To
prove that H is strong, consider a non-empty proper subset X of V(G).
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By Lemma 2, G — X has an initial dicomponent C. If C ¢ C(G, X) then
@ # XpV(C) C Xy V(C) and so X has an H-exit. If C € C(G, X)
then u(X) > b.X since (G, b) is good and so, since H is a digraph and the
H-heads of exactly b.X elements of U(X) belong to X, X once again has
an H-exit. Hence every non-empty proper subset of V(G) has an H-exit,
and so H is a strong b-orientation of G. This contradicts the perversity of
(G, b) and thus completes the proof of Theorem 1.

4 Connected Detachments of Graphs

Definitions. Let G be an undirected graph and b: V(G) — N be a func-
tion. If D is an undirected graph and E(D) = E(G), a b-coalescence of D
onto G is a function p from V(D) onto V(G) such that |[p~1({£})| = b(£) for
every £ € V(G) and p~!({£})Vpp~ ({n}) = £V for all £,9 € V(G). An
undirected graph D is a b-detachment of G if E(D) = E(G) and there ex-
ists a b-coalescence of D onto G. Informally, this means that D is obtained
. from G by splitting each vertex £ into b(£) vertices, namely the elements of
p~1({€}), where p is a b-coalescence of D onto G.

In [4] and [5], matroids were used to establish a necessary and sufficient
condition for G to have a connected b-detachment. We shall now deduce
this result, without using matroids, from the following corollary (equlvalent
to Theorem 7 of [1]) of Theorem 1.

Corollary 1a. Let G be an undirected graph, o € V(G) and b be a
function from V(G) into Z+. Then G has a b-orientation in which every

vertex is accessible from « iff
eX)2bX+¢(G-X)- {a} nX] (10)
for every subset X of V(G). ‘

Proof: Let M be a mixed graph obtained from G by adding, for each
€ € V(G)\ {a}, a directed edge with tail £ and head a. Then M is
strong iff G is connected, i.e. iff (10) holds when X = 0. Moreover, if
0 # X C V(G) then up(X) = e(X) and ¢(M, X) = ¢(C — X) — [{a} N X]
because C(M, X) is the set of those components of G — X which do not
include a. Therefore up(X) > b.X + c(M, X) for every non-empty subset
X of V(M) = V(G) iff (10) holds for every such X. Hence, by Theorem 1,
M has a strong b-orientation iff (10) holds for every X C V(G), and clearly
G has a b-orientation in which every vertex is accessible from « iff M has
a strong b-orientation.

Sketch of Alternative Proof (not requiring Theorem 1). If G has
a b-orientation H in which every vertex is accessible from a and X C
V(G) then, for every component C of G — X which does not include a,
E(X)\ (V(G)by X) must include an H-entry of C, and so (10) holds. Now
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assume (10) for every X C V(G). Then, by Lemma ], G has a b-orientation
H, which we may choose so as to maximize the cardinality of the set A of
vertices accessible from « in H. Suppose that A # V(G). Let L = AQ 4 A.
Let ¢, ¢2 be the vertices joined by an edge A € L. If H — ) contains an
a¢"-d1path P and an A¢}_;-dipath Q with no common edge then G has a
b-orientation H’, agreeing with H on all edges outside {\}UE(Q), such that
all vertices in V(P)UV(Q) are accessible from a in H'(E(P)U E(Q)U{A})
and consequently all vertices in AUV(Q) are accessible from « in H’. This
contradicts the choice of H. Therefore P, Q cannot exist and so there
do not exist two edge-disjoint pr-dipaths in the mixed graph J obtained
from H — X by adding new vertices p, o, 7 and new directed edges v(p, a),
v(p,0), v(#),7), ¥(#3,7) and (0, ) for every £ € A, where each ¥(n,C)
has tail  and head {. Therefore, by the appropriate variant of Menger’s
Theorem, V(J) has a subset Z} such that p € Z3, 7 ¢ Z; and Z; has at
most one exit in J. If Zy = Z} N V(G) then, bearing in mind that ‘/’1»
¢2 are accessible from « in H, 1t follows that A C Z,, at least one of ¢},
#3 belongs to Z and either (i) a € Z, and Z) has no exit in H or (n)
a € Zy and Z) has exactly one exit o) in H. Then the set of exits in H
of Z=\yer Zris {mr: A € L'} for some L’ C L such that wy # m,, when
A peL’and)\aép (If L=0, take Z =V(G), L’ =0.] For A € L' let m),
join 4» € Z to 8 € Z and let Ay be the set of vertices accessible in H — Z
from 6x. Let Aq be the set of vertices accessible in H — Z from a (so that

Ax=0ifa€ Z). Then Z = AqUJ ¢ Arsince ZC A IfYyeZand H
contains an ({a}U Z)y-dipath R and a Z-dipath S then ¢ € Z» and S is
a ZyZ-dipath for some A € L, so that (i) is false for this A and (ii) gives
E(R)n E(S) # 0. This implies that the sets Ag (6 € L' U {a}) must be
disjoint, and their disjointness together with their definitions implies that
no edge can join vertices in distinct sets Ag (8 € L' U {a}). If A € L' then
(i) is false for X and so, since 8, € Z C A, (ii) implies that 4, € A. Hence
no H-exit of Z is in AvVZ, and consequently AVZ = 0 because Z C A and
A by its definition can have no H-exit. Therefore AN Z is the union of
disjoint non-empty sets 4, Ay (A € L’) and (if @ € Z) A, with no edge
joining vertices in distinct sets in this list, and so

(G-(An2) 2 ||+ {a}nANZ| +1. (11)

Since A has no H-exits, an edge A € E(A N Z) must be a directed edge
of the b-orientation H of G whose head is in AN Z or an H-exit of Z or
an element of A0 yA = L and in this last case A is again an H-exit of
Z since ¢} or ¢} belongs to Z,. Since Z has |L'| H-exits, it follows that
e(AN Z) < b.(ANZ)+ |L'|, contradicting (10) and (11).

Definitions. A connected mixed graph T is an a-arborescence (where
a € V(T)) if every edge X of T is an exit of the component of T — A which
includes a. Informally, this means that T is a tree and every edge of T' is
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either undirected or directed and “pointing in the direction away from «
in T”. An a-subarborescence of a mixed graph G (where a € V(Q)) is a
subgraph of G which is an a-arborescence.

Theorem 2. Let G be an undirected graph and b be a function from V(G)
into N. Then G has a connected b-detachment iff

e(X)2bX +c(G-X)-1 (12)

for every subset X of V(G).

Proof: Suppose that G has a connected b-detachment D. Then there exists
a b-coalescence p of D onto G. If X C V(G), then |p~!(X)| = b.X since
[p~2({€})] = b(€) for each £ € X. Therefore V(D) can be partitioned into
b.X + ¢(G — X) non-empty sets {8} (8 € p~}(X)), "1 (V(C)) (C € C(CG -
X)) such that all edges of D joining two vertices belonging to distinct sets
in this partition belong to E(X). Therefore ¢(D — E(X)) > b.X +¢(G - X)
and so, by (1), bX 4+ (G- X) —e(X) <c(D) L 1.

Now assume (12) for every X C V(G). Unless V(G) = @ (when the
required b-detachment exists trivially), we can choose a vertex a € V(G).
By (12) and Corollary la, G has a b,-orientation J in which every vertex is
accessible from a, where b, (€) = b(€) for every € € V(G)\ {a} and by(a) =
b(a) — 1. Let T be a maximal a-rooted subarborescence of J. If V(T) was
not V(G) then, since every vertex is accessible from « in J, V(T') would
have a J-exit A and TUJ({A}) would be a larger a-rooted subarborescence
of J than T. Therefore V(T) = V(G). Since each £ € V(G) is the head of
ba(€) directed edges of J, of which at most one is in T if £ # a and none
isin T if £ = o, A(J) \ E(T) has a subset S such that each £ € V(G) is
the J-head of exactly b(£) — 1 edges in S. Let ¢ be a bijection of S onto a
set 9’ disjoint from V(G) U E(G). Then G clearly has a b-detachment D
such that V(D) = V(G)U S’, G — S is a subgraph of D and, in D, each
edge A € S joins At; to ¢()\). Moreover D is connected since the spanning
tree of G corresponding to T is a subgraph of D and each element of S’ is
D-adjacent to a vertex in V(G) = V(T).
Sketch of Alternative Proof (not requiring Theorem 1 or Corol-
lary 1a). If X C V(G) let g(X) = e(X) — ¢(G — X). Assume (12) for
every X C V(G). Let m: V(G) — N be a function such that m(§) > b(¢)
for every £ € V(G) and g(X) > m.X — 1 for every X C V(G) and, subject
to these requirements, m.V(G) is as large as possible. Then, by Lemma 1,
G has an mq-orientation J, where « is an arbitrarily chosen vertex of G
and mq(§) = m(§) for every € € V(G) \ {a} and my(a) = m(a) — 1. Call
a set X critical if g(X) = m.X — 1. Since m.V(G) has been maximized,
every vertex of G must belong to a critical subset of V(G).

Let Y, Z be subsets of V(G) and let H = G —-Y, K =C - 2Z, M =
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(Y \ Z)V(Z\Y). Then
e(Y UZ) +e(Y N Z) + M| = e(Y) + &(2). (13)

Form a bipartite graph T with ¢(H) + ¢(K) vertices pc (C € C(H)), op
(D € C(K)) and c(H N K) edges Ar (F € C(H N K)), where Ar joins the
vertices pg, op such that F C C N D. Then ¢(H U K) = ¢(T') and so, by
(2) applied to T',

(H NK)+ c(HUK) > c(H) +c(K). 4)

Furthermore c(HU K) = ¢((GC — (Y N 2)) - M) < (G — (Y N Z)) +|M| by
(1), and HNK = G — (Y UZ). From these observations and (13) and (14),
it follows that g(Y N Z) + g(Y U Z) < g(Y) + g(Z). Using this fact and
an argument like the one following the end of the proof of Lemma 12, we
see that the union of any two critical subsets of V(G) is critical and hence
(recalling that every vertex belongs to a critical set) that V(G) is critical,
i.e. |E(G)| = mq.V(G). Therefore J is a digraph. The set A of all vertices
accessible in J from a has no J-exits and so My € A for every A € E(A).
Therefore e(A) = ma.A = m.A —1 < g(A) and so A = V(G), ie. all
vertices of G are J-accessible from a. Since each £ € V(G) is the head of
ma(€) > ba(€) (directed) edges of J, the argument can now be completed
as before.

In [4] and [5], a somewhat more general result than Theorem 2 was proved
by matroid methods. However, this more general result can be deduced
from Theorem 2 (without using matroids), as we now show.

Corollary 2a. Let G be an undirected graph and b be a function from
V(G) into N. Then the minimum of ¢(D) over all b-detachments D of G
is equal to the maximum of b.X + ¢(G — X) — (X)) over all subsets X of

V(G).

Proof: Let M be the above maximum. If D is a b-detachment of G, the
first paragraph of the proof of Theorem 2 shows that b.X + ¢(G — X) —
e(X) < (D) for every X C V(G), and hence ¢(D) > M. Let n = [V(G)|,
q = bV(G)+n+1 and H be an undirected graph obtained from G by
adding a new vertex w and for each £ € V(G) adding ¢ edges joining w
to €& Define b': V(H) — N by letting b'(€§) = b(£) for £ € V(G) and
b(w)=qn+1-M. If X C V(G) then

en(X)=e(X)+q|X|2bX =b.X =b.X+c(H-X)-1
since H — X is connected, and
en(XU{w) =e(X)+qgn2bX+c(G-X)—M+gqn
=b.(XUu{w}))+c(H-(XU{w})-1
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Therefore, by Theorem 2, H has a connected b’-detachment D’. If pis a
b’-coalescence of D’ onto H then Dy = D’ — p~1({w}) is a b-detachment of
G and, by (1) applied to D, :

(Do) = (D' - (WY V(G))) - b'(w)
< o(D') + WwYHV(G)| - b'(w) = M.
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