Heuristics for Minimizing Total Flow Time
with Error Constraint*

Joseph Y-T. Leung, Tommy W. Tam and C.S. Wong

Department of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115

ABSTRACT. We consider the problem of minimizing total flow
time for the imprecise computation model introduced by Lin
et al. Leung et al. have shown that the problem of finding
a minimum total flow time schedule subject to the constraint
that the total error is no more than a given threshold K is
NP-hard, even for a single processor. In this paper we give
a fast heuristic for a set of tasks with a large deadline. We
show that the heuristic produces schedules with total flow time
no more than 3/2 times the optimum solution. Examples are
given showing that the ratio can asymptotically approach 3/2
for a single processor and 5/4 for multiprocessors. A second
heuristic is given for a single processor and a set of tasks with -
different deadlines. It is shown that the worst-case performance
bound of the heuristic is 2 and the bound is tight.

1. Introduction

In relation to the study of real-time systems Lin et al. [5-7] introduced
the imprecise computation model in which a task is regarded as logically
composed of two subtasks, mandatory and optional. It is required that
each task completes its mandatory part, while its optional part can be left
unfinished. If a task has its optional part unfinished, it incurs an error equal
to the execution time of the unfinished portion. The rationale behind the
imprecise computation model is to trade off the accuracy of computation
for meeting the deadlines of real-time tasks. The imprecise computation

*Research supported in part by the ONR grant N00014-87-K-0833 and in part by a
grant from Texas Instruments, Inc.

JCMCC 19 (1995), pp. 273-295

model differs from the classical model in one important aspect. In the
classical model a task must receive a processing time equal to its execution
time, while in the imprecise computation model it can receive any amount
no less than the execution time of its mandatory part and no more than
the sum of the execution times of its mandatory and optional parts. Thus,
there is an added consideration in scheduling a task, namely, deciding how
much processing time should be given to a task.

The Concord System is being developed at the University of Illinois to
support imprecise computations [5]. Scheduling algorithms have been pro-
posed to minimize the total error for periodic tasks [2,7]. Recently, Shih et
al. [10] studied the problem of preemptively scheduling a set of n tasks with
rational ready times, deadlines and processing times on a multiprocessor
system so as to minimize the total error. An O(n?logn)-time algorithm
is given to solve this problem. More recently, Shih et al. [9] gave a faster
algorithm for a single processor. Chong and Zhao [1] gave queuing results
on task scheduling to optimally trade off between the average response time
and the result quality on a uniprocessor system. Leung et al. [4] have stud-
ied the problem of minimizing total flow time subject to the constraint that
the total error is no more than a given threshold K. They showed that the
problem is NP-hard for a set of tasks with identical ready times and a large
deadline, even for a single processor [4]. For a single processor, they gave
pseudo-polynomial time and polynomial time algorithms for various special
cases of the problem [4]. ‘

In this paper we continue the work of [4] to study the problem of mini-
mizing total flow time subject to the constraint that the total error is no
more than a given threshold K. Motivated by the computational complex-
ity of the problem, we propose and analyze the worst-case performance
of heuristics in this paper. Two heuristics with worst-case running time
of O(nlogn) are given. The first one is for multiprocessors and a set of
tasks with identical ready times and a large deadline. It is shown that the
heuristic produces schedules with total flow time no more than 3/2 times
the optimum value. Examples are given showing that the ratio can asymp-
totically approach 3/2 for a single processor and 5/4 for multiprocessors.
For small number of processors (less than six), there are examples achieving
ratios larger than 5/4 but less than 3/2. The second heuristic is for a single
processor and a set of tasks with identical ready times and different dead-
lines. It is shown that the worst-case performance bound of the heuristic
is 2 and the bound is tight.

A task system TS = ({T}, {d(T3)}, {m(T3)}, {o(T:)}) with a set of n
independent tasks is to be scheduled on p > 1 identical processors. For
each task T3, d(T;), m(T;) and o(T;) denote its deadline, execution times of
its mandatory and optional parts, respectively. Throughout this paper we
assume that all parameters are integers and all tasks are ready at time 0. We

274

use e(T;) to denote the total execution time of T;; i.e., e(T;) = m(Ti)+o(Ty).
A schedule is an assignment of tasks to the processors such that: (1) no
processor is assigned more than one task at a time and (2) no task is
assigned to more than one processor at a time. A schedule is said to be
preemptive (nonpreemptive) if the execution of tasks are (not) allowed to
be interrupted. A feasible schedule is one that satisfies the constraints: (1)
no task is assigned later than its deadline and (2) each task T; is assigned
at least m(T;) but not more than e(T;) units of time by its deadline. A task
system TS is said to be feasible on p > 1 processors if there is a feasible
schedule for TS on p processors.

If S is a feasible schedule for TS, we use a(S, T;) to denote the amount of
time T is executed in S, and f(S, T;) denotes its finishing time. The symbol
(8, T;) denotes the amount of time the optional part of T; is executed in S;
ie., 0(S,T;) = a(S,T;) — m(T;). The ervor generated by T; in S, denoted
by &(S,T:), is defined to be &(S,T:) = o(Ti) — o(S,T:). The total error
of S, denoted by ERR(S), is defined to be ERR(S) = Y_i_; &(S,T3), and
the total flow time of S, denoted by MFT(S), is defined to be MFT(S) =
S, f(S, T:). Given a task system TS, p > 1 identical processors and an
error threshold K, our goal is to find a feasible preemptive (nonpreemptive)
schedule S such that ERR(S) < K and MFT(S) is minimized. Such a
schedule will be called an optimal schedule in this paper.

As noted above, the problem of finding optimal schedules appears to
be quite difficult, even when severe constraints are put on the tasks and
the number of processors. This motivated our study of fast heuristics in
this paper. In the next section we give an O(nlogn)-time algorithm for
a set of tasks with a large deadline to be scheduled on p > 1 identical
processors. (Note that this special case can be solved by the SPT rule in the
classical model [3]. Moreover, McNaughton [8] has shown that preemption
cannot reduce the total flow time. Thus, an optimal preemptive schedule
has the same total flow time as an optimal nonpreemptive schedule.) We
show that the algorithm generates schedules with total flow time no more
than 3/2 times the optimum value. Examples are given showing that the
ratio can asymptotically approach 3/2 for a single processor and 5/4 for
multiprocessors. In Section 3 we give an O(nlogn)-time algorithm for a
set of tasks with different deadlines to be scheduled on a single processor.
(Note that this special case can be solved by Smith’s rule in the classical
model [11]. Furthermore, preemption cannot reduce the total flow time.)
We show that the worst-case performance bound of the algorithm is 2 and
the bound is tight. Finally, we draw some conclusions in the last section.

Throughout this paper we assume that the error threshold K is less
than the total execution time of the optional parts of the tasks; i.e., K <
Sr ,o(Ti). Otherwise, we can simply discard the optional part of each
task and the problem will be reduced to the one in the classical model,

275

which can be solved in polynomial time as noted above.

2. Tasks with A Large Deadline

In this section we study the case where a set of tasks with a large deadline
is to be scheduled on p > 1 identical processors. For simplicity, we shall
denote a task system TS by TS = ({T;}, {m(T3)}, {o(T:)}) in this section.
In the classical model this special case can be solved by the SPT rule [3].
The SPT rule assumes that the number of tasks n is an integral multiple of
p, say n = lp for some integer {; if not, we can add enough zero-execution-
time tasks to make it so. The tasks are sorted in nondecreasing order of
execution times, with the first p tasks being the rank-1 tasks, the next p
tasks being the rank-2 tasks and so on. The rank-1 tasks are scheduled
first, one task per processor. The rank-2 tasks are scheduled as soon as
the rank-1 tasks are finished, again one task per processor. This process is
repeated until all tasks have been scheduled. It is easy to see that the SPT
rule can be implemented to run in O(nlogn) time.- The reader is referred
to [3] for a discussion of the SPT rule.

Our algorithm, to be called Algorithm A, consists of two steps. In the
first step, it uses a special rule (defined later) to determine the processing
time received by each task. In the second step, the tasks are scheduled
by the SPT rule as in the classical model. The processing time received
by each task is determined as follows. First, a list of tasks is formed in
nondecreasing order of total execution times; i.e., T; appearing before Tj
in the list implies that e(T;) < e(T;). We then scan the list, successively
discarding the optional part of the tasks until the error threshold K is
reached. (Note that there is an optimal schedule such that the total error
is exactly K, as shown in [4].) A formal description of Algorithm A is given
below. .

Algorithm A:

Input: A task system TS = ({T;}, {m(T:)}, {o(Ti)}), an error threshold K
and p > 1 identical processors.

Qutput: A schedule S, with ERR(S,) = K.

Method:

1. Sort the tasks in nondecreasing order of their total execution times.
Let L = (Th,,Th,,--.,Th,) be the list of tasks such that e(Ty,) <
e(Th,,,) foreach 1 <i<n.

2. Construct a classical task system TS’ = ({T}}, {e(T})}) with n tasks
as follows. Let k be the smallest index such that 5! o(T},) <

K < Y% o(Th,). Let e(T!) = m(Th,) for each 1 < i < k, e(T}) =
m(Th,) + (K — X8} o(Th,)) and e(TY) = e(Th,) for each k <i < n.

276

3. Use the SPT rule to construct a schedule S, for TS'. O

Figure 1 shows an example task system to be scheduled on three identical
processors. The schedule produced by Algorithm A is shown in Figure 1(a)
and an optimal schedule is shown in Figure 1(b). It is easy to see that
Algorithm A can be implemented to run in O(nlogn) time.

p=3 K =4X+1
T Ty T, Ty T Ts Ts
m(T;) 1 X X X 1 1
o(T}) 1 X X X 2X 2X
0 1 X
T, Ta
T,
T3

MFT(S,) = 8X+

Figure 1(2). The Schedule 5,.

0 Tl 1 . 2X<\\\\\“\\\\\§
Ts T \\’ -

Ts T DN

MFT(S,) = 6X+6

Figure 1(b). The Schedule 5,.
Figure 1. Exa.mple Task System Illustrating Algorit‘hm A.

We note that the ordering in the first step of Algorithm A must be
properly chosen to ensure a reasonably good performance bound. A poor
choice can lead to a schedule with total flow time arbitrarily large compared
to the optimum value. For example, suppose that the tasks are sorted
in nondecreasing order of the mandatory execution times. The new rule

21

will give an unbounded performance ratio as the following example shows.
Consider the task system TS = ({T;}, {m(T;)}, {o(T;)}) with the following
n tasks to be scheduled on a single processor: (T},0,7X) and (T},1, X)
for 2 < i < n, where X is an arbitrary large integer. We choose K to be
(n —1)X. Let S and S, be the schedules obtained by the new rule and
an optimal algorithm, respectively. Clearly, we have a(S,T}) = X and
a(S,T;) = 1+ X for 2 < i < n. The tasks are scheduled in S in the
order T1, Ty, ..., Ty, with MFT(S) = n(n + 1)X/2 + n(n — 1)/2. However,
-in So we have a(S,,T)) = nX and o(S,,Ti) = 1 for 2 < i < n. The
tasks are scheduled in S, in the order T3,Ts,...,T,, T1, with MFT(S,) =
nX + (n% + n — 2)/2. Clearly, MFT(S)/MFT(S,) approaches infinity as n
and X approach infinity.

Before we prove the worst-case performance bound for Algorithm A, we
will give example task systems achieving the largest performance ratios for
various values of p; they are summarized in Theorem 2.1. In the following S,
and S, denote the schedules obtained for a given task system by Algorithm
A and an optimal algorithm, respectively.

Theorem 2.1. For p = 1,2,3,4 and 5, there are task systems such that
MFT(S,)/MFT(S,) can asymptotically approach 3/2, 4/3, 4/3, 9/7 and
13/10, respectively. For p larger than 5 and even, there are task systems
such that MFT(S,)/MFT(S,) can asymptotically approach 5/4.

Proof: For p = 1, consider the task system TS = ({T:}, {m(T3)}, {o(T})})
with the following 2 tasks: (T3, X, X) and (T3, 1,2X), where X is an arbi-
trary large integer. Let K be 2X. Algorithm A discards all of the optional
part of T and X units of 7. An optimal algorithm discards all of the op-
tional part of 75. Clearly, we have MFT(S,)/MFT(S,) = (3X+1)/(2X+2).
Thus, MFT(S,)/MFT(S,) — 3/2 as X — oo.

For p = 2, consider the task system TS with the following 4 tasks:
(T1,1,1), (T2, X, X), (T3,X,X) and (T4,1,2X). Let K = 3X +1. Al-
gorithm A discards all of the optional parts of T} to T3 and X units
of Ty. An optimal algorithm discards all of the optional parts of T}, T,
and T;. We have MFT(S,)/MFT(S,) = (4X + 3)/(3X + 4). Thus,
MFT(S,)/MFT(S,) — 4/3 as X — oo.

For p = 3, consider the task system TS shown in Figure 1. It is clear
that MFT(S,)/MFT(S,) — 4/3 as X — oo.

For p = 4, consider the task system TS with the following 8 tasks:
(Ti,1,1) for i = 1 and 2, (T;, X, X) for 3 < i < 6, and (T, 1,2X) for
i="7and 8 Let K =5X +2. Algorithm A discards all of the optional
parts of 77 to Tg and X units of T7. An optimal algorithm discards all of
the optional parts of T} to T3 and T to T3. We have MFT(S,)/MFT(S,) =
(9X +6)/(7X + 8). Thus, MFT(S,)/MFT(S,) — 9/7 as X — oo.

For p = 5, consider the task system with the following 10 tasks: (T},1,1)

278

fori=1and 2, (T;,X,X) for 3<¢ <7 and (T;,1,2X) for 8 < i < 10. Let
K = 6X +2. Algorithm A discards all of the optional parts of T} to T7 and
X units of Ts. An optimal algorithm discards all of the optional parts of T}
to T, and Tj to Tyo. We have MFT(S,)/MFT(S,) = (13X +7)/(10X +10).
Thus, MFT(S,)/MFT(S,) — 13/10 as X — oo.

For p > 5 and even, consider the task system with the following 2p tasks:
(Ti,1,1) for 1 < i < p/2, (Ti, X, X) for p/2 < i < 3p/2, and (T}, 1,2X) for
3p/2 < i < 2p. Let K = pX +p/2. Algorithm A discards all of the optional
parts of Ty to Ts,/2. An optimal algorithm discards all of the optional
parts of T} to Tp/p and Ty 24 to T2p. We have MFT(S,)/MFT(S,) =
(50X + 3p)/(4pX + 4p). Thus, MFT(S,)/MFT(S,) — 5/4 as X — oo.

We note that all of the above examples can be generalized to have an
arbitrarily large number of tasks. a

Before we prove the worst-case performance bound, we need to introduce
some notations and definitions. Let TS = ({73}, {m(T})}, {o(T:)}) be a set
of n independent tasks to be scheduled on p > 1 identical processors. We
assume that n = Ip for some positive integer I; otherwise, we can add enough
zero-execution-time tasks to make it so. Let Ty, , Ty,, ..., Ty, be an ordering
of the tasks in TS such that m(Ty,) < m(Ty,,,) foreach1 <i<n-—1 and
let Th,,Th,, .- -»Th, be an ordering such that e(Th;) < (Th,,,) for each
1<i<n-—1. LetS, and S, be an optimal schedule and the schedule
produced by Algorithm A, respectively, for TS on p processors. Note that
Algorithm A differs from an optimal algorithm only in the amounts of
processing time assigned to the tasks, as they both schedule tasks by the
SPT rule. Since both Algorithm A and an optimal algorithm schedule
tasks by the SPT rule, S, and S, must have the following three properties:
(1) it is & nonpreemptive schedule, (2) there are exactly tasks scheduled
on each processor and (3) the processing time of any task scheduled in
the ith position (from the beginning) on any processor is no larger than
the processing time of any task scheduled in the jth position (from the
beginning) on any processor, where 1 <i <j <l

Let Tz_,),,; and Ty _,, ., be the tasks scheduled in the ith position
(from the beginning) on the jth processor in S, and S,, respectively, where
1<i<land1<j<p. Let pi(S) = {Tz(.-_n,,.'.pTz(‘_l),.,.,'---,Tze,,}
and pi(So) = {Tyu_1ypr1r Tv—yptar+ +» Ty, } be the rank-i tasks in S, and
S,, respectively, 1 < i < I. We define [];(S;) and [];(S,) to be the total
processing time of all the tasks in p;(S,) and p;(S,), respectively. That
is, [1s(Sa) = Z’?:l o(Sa, Tz, p-u) and [[;(S,) = 2’3:1 a(SO’Ty((—l)p-]—j)'
The symbols $;15,) and ®;(S.) denote the total finishing times of all the
tasks in p;(Sa) and p;(So), respectively. That is, :(Sa) = Xi-; f(Sa,

Tes—spss) A04 B(S0) = T8 £(So, Ty, Clearly, MFT(Sa) = Ty
®,(S,) and ®:(Sa) = T, [1,(Sa). Similarly, MFT(S,) = t 8:(S0)

279

and &;(S,) = 2‘-1 .(S,). Finally, let k be the index obtained in Step
(2) of Algorithm A and k be such that (k- 1)p+ 1< k < xp.

In the remainder of this section we will show that the worst-case perfor-
mance bound of Algorithm A is 3/2. The next five lemmas are instrumental
in proving the result.

Lemma 2.1. ¥i_, &:(S,) < 3, 8:(S,)-
Proof: By the nature of Algorithm A, we have p;(S,) = {Th“_

1)p+1)?

“Th_ypsar -+ -+ Thy, } for each s +1 < i < 1. Furthermore, a(S,, T;) = e(T5)
for each Tj € p.(S,), k+1< i< Thus, we have
I;(S,) > (S,) foreach k +1 <i < L. (2.1)

Since ¥, [Ti(Sa) = Tiny e(Ti) — K = Ti_; [1:(So), we have &(S,) =
®,(S,). Furthermore, for each xk < i < 1 -1, ®;(S,) = E}=1 [1;(S.) =

et I15(8a) = T5cis 1;(Sa) and 84(S,) = T5; [1;(S0) = Tjey TT;(S0)
E;_, i+1]'L(S,,) Thus, we have from (2.1), ®;(S,;) < ®;(S,) for each
K <1 <! —1. The lemma follows immediately. O

Lemma 2.2. If k —1 < /2, then MFT(S,) < (3/2)/MFT(S,).

Proof: Let us consider the tasks scheduled on the jth processor in S,,

1 < 7 < p. Since a(Sa,T,j) < oS5, Tzpy;) < -0 < (S0, T _yyy;) <

a(Sa,Tz(._,) ;) S oS, Tryy l)H’) and x — 1 < 1/2, we have f(S,,
Taiiypes) S (1/2)f(Sas Trg_zy5p,45) for each 1 < i < x — 1. Therefore, we
ave

x—1 r—1
D Bi(Sa) < (1/2)) Br-144(Sa)
i=1 i=1

) {
<(1/2) Zé,-(sa).

Now, we have

MFT(S,) = Z ®:(Sa) + E ®:(Sa)

i=x

<(3/2) Z@.-(sa)
i=x

{
< (3/2)) i(S.) (by Lemma 2.1)
i=K
< (3/2)MFT(S,). O

280

As a result of Lemma 2.2, we can concentrate on the case x —1 > 1/2.
In the next three lemmas, we assume that x —1 > 1/2.

Lemma 2.8. Y22 8,(S,) < T o2 B4(So).

Proof: There are at least (x —1)p tasks without any optional part in the set

Pl(Sa) U p2(Sa) u.--u Pn(sa)- The set {Tg((_“+1)p+1ng([..,‘.{q)p.,.gl .. gzp}
contains (x — 1)p tasks with the largest mandatory parts. Therefore we

have for each 1 <i< x—1, [[;(Sa) < X0 m(Tyy_ . ipe)» a0d hence,
®;(S,) < 2,:1[2 vt M(Tg ippia))- We also have for each 1 < i <

H (SO) 2 Eu=l m(TD(s-x)m)s and hence QO(SO) 2 E_‘Fl[z u=]1 m(TQ(j—‘l)pl-u)]‘
From the above properties, we have

x—1 x—1 [[} p
SRTCIND v SECI)|
i=l—nt2 i=l-r+2 | 5=1 =1

x—1

2 Z i z:m(Ty(i—x)wu)]]

i=l-K+2 j=l—n+2

2ni:l_2 [i Zm (Tg(l n+5)y+u)]}

i=1 J=
2x—1—-2
> Z Qt’ (Sa)~
i=1
a

Lemma 2.4. (I — & + 1)®251-2(Sa) < E,_l K2 (I>,(S)+ Zi_n[(l -
i) [1s(Sa)]-

Proof: By definition, we have ®;(S,) = 2;=1 [1;(S,) for each 1 <i < 1.

Therefore, we have
i
D:(So) 2 Y Ti(So) foreach I—x+2<i<l. (2.2)
' j=l—-x+2

From the proof of Lemma 2.3, we have for each 1 < 1 < 25 -1 - 2,
[hi—r414(50) 2 38y M(Tgu_sirpsu) 2 [1i(Sa)- Therefore, we have

H[_,H.].H(So) > H;(S,,) for each 1 < 1 < 2k —-1-2. (2.3)
Since Algorithm A uses the SPT rule to schedule tasks, we have
IIj(S.) > My(S,) foreach 1 <i<2x—-1-2and s <j<I-1. (24)

281

Using (2.2), (2.3) and (2.4), we obtain

Z 8:(S0) + Z[u —)L(Sa)]
i=l—-x+2
x--1 i
> 3 X H,-(So)+2[(t—i)ni(sn)1 (by (2:2))

i=l—n+2 j=l-nt2

2x-1-2
): [(26 — 1 — 1 — i xp144(S0)] + Z[a —)1(Sa)]
2n—l—2

Z [k —1— 1 - HIL(S.)] + Z[(z — K+ 1= i)llgn—t—1— (sa)],
(by (2.3) and (24))
where']'[i(S.,) =0fori<0.

3
X X: e Xoaetcg | Kromi-t
N Ny e Kooty | Noemt=e
<
~
N
N
[~
U: ~ |
~ —
N\ .)
<
(3]
: X Niewtez
Xy X ... Xoei=s
X Xy Nyant=z | Krami-g
N

Figure 2(a). The Matrix U.

Shown in Figure 2(a) is a square matrix U with dimension 2« — [— 2.
All rows of U contain X;, Xa,..., and Xox—i—2, where X; = [];(S,) for

each 1 < j < 2x —l — 2. From Figure 2(a), we see that the sum of the

entries in the lower triangle of U (including the diagonal elements) is ex-
actly S *~2[(2x — 1 — 1 — i) [[;(Sa)] Shown in Figure 2(b) is a square
matrix V with dimension [—«x. All rows of V contain X3x—21—1, X3x—21, - -
and Xax—i-2, where X; = [[;(S.) if j 21 and X; =0if j < 0. Hom
Figure 2(b), we see that the sum of the entries in the upper triangle of V' (in-

cluding the diagonal elements) is exactly Y= F[(1—x+1—1) [Tox—s_1-:(Sa))-

282

We claim that 2%, 2[(2x — 1 — 1 —) [T(Sa)] + S5l —m + 1 -
) anoso1i(Sa)] 2 (1= o+ 1) 2T T1(S)-

X =m(S,) if i>1
=0 if i<o0

Nyamatay Naaeot

Koy | Naee U Seeier | Xoores

Nucster | Noa-n

Yoz o Neeaten Viaui-s

1€

]

*,

o!

4 ol
ol

'
s
L2
ol | l—xt1

[]
*

.l
ol

Figure 2(c). TheCase l ~x > 2k —[- 2.

283

;‘x“: R
)
‘ .
)
' S
ot
! i
! o,
) "
' 1
: °
| 0| [—k+1
1 o!
1 1
' 'Y
i 1
] e,
' o!
' |
:]
')
[]

2k—{—2
Figure 2(d). The Case l —x <2k -1 - 2.

There are two cases to consider, depending on whether I —x > 2k —1—2
or not. Suppose l—x > 2x—1—2. Shown in Figure 2(c) is the upper triangle
of V (the dotted triangle) put on top of the lower triangle of U (the solid
triangle). The sum of the entries in the (I — x4 1) by (2x — I — 2) rectangle

enclosed in dash lines is exactly ({ — x +1) 22"_' -2 [1:(Sa). Clearly, we

have Y3 ' ~2[(2r—1=1—4) [T(Sa)l+ ZiZ7 (0= w+1-) Tlpns-1-4(Sa)] 2
(1 —x+1) T2 "2 T1;(Sa). On the other hand, if I — & < 25 — | ~ 2, then
consider Figure 2(d) where the upper triangle of V' (the dotted triangle)
is put on top of the lower triangle of U (the solid triangle). The sum of
the entrries in the (I — k + 1) by (2x — I — 2) rectangle enclosed in dashed
lines is exactly (l-x+1) 22"_‘ -2 I1;(Sa). Clearly, E?f_l"z[(% -l-1-

i) TT(Sa)]+ St 10 —w+1 =) Tan-1-1-4(Sa)] 2 (I=w+1) ZiZ7 7 TL(Sa)-

Thus, we have

x—1 -1

Y (S + 3 [0 - I(Sa)]
f={—nx+2 i=x

25—1 2

Z [(2K -l-1- "')H (Sa)] + Z [(l —k+1—9)axi- l—a(sa)]
=1 .
2x—1-2

>(U-k+1) Y Ti(S.)

i=1

= (l - K+ 1)<I>2,¢_,_2(S,,).

Lemma 2.5. 050, @:(Sa) < (1/2) i y2 Bi(So).

284

Proof: We have

1
}E: QH(S;)
i=l—x+2
x—1 i
= Y B(So)+ Y 8ilSo)
i=l—x+2 i=K

x—1 { .
> Y ®i(S)+)_ ®i(Sa) (by Lemma 2.1)

i=l-x+2 t=x
x—1 {
= Y &(So)+(1— s+ 1)®u-1(Sa) + Y _[(14+1 -)T1(Sa)]
i=l—x+2

i=x

x—1 I—x+1
= E D,(S,)+(l-x+1) [‘I’zn-t-z(sa) + 2 H2x—l—2+i(sa)]

i=l-n+2 =1

13
+3 (- i+ D)(Sa)

l—x+1
> 20— £+ 1)®oet2(Sa) + (U — K +1) Y Man1-244(5a)

i=1
l

+ Y _Ti(S,) (by Lemma 2.4)
=K
Since Hj(.S'.,) > [1;(Sa) foreach 1 <i < x —1and x < j <1, we have

{

S ®:i(S,)

i=l—x+2
l—x+1
> 21— 5+ 1)Bae—t-2(Sa) + (= +1) Y Toey24:(Sa)
i=1
I—x+1
+ Y Maxt-24i(Ss)
i=1
t—r+1
=21 -k +1)®2x—1-2(Sa) + (1 — 5+ 2) E Max—1-2+i(Sa)-
i=1

285

{—~r+1

X Xa Niex Niss
Xy Xo Xiex 4\’l—g¢-|
X, Xz Xi—e R
~
~
N
N\
N
W]
3
k4
4
X X; Y, B vt
Men
Xl -\".‘ 4\"-‘ '\-I-x‘l
v

Xj=mox_1-245(Sa), 1<j<l—-K+1
Figure 3. Illustrating the Proof of Lemma 2.5.

Shown in Figure 3isa (I —x+2) by ({ — x + 1) array W. All rows
of W contain X1, Xa,...,Xi—x+1, where X; = []aet_2,(Sa), 1 £ 3 <
! — x+1. Clearly, the sum of the entries in the array W is exactly
A=+ T o is +i(Sa)- The sum of the entries enclosed in the
solid triangle in Figure 3 is exactly '°+l(l -Kk+2-1)]"[%_,,_2 +i(Sa)-
Since X; > X; whenever j > i, the sum of all the entries in the ar-
ray W must be at least twice that in the solid triangle. Thus, we have

(I-x+2) EI-KH H2n—l 2+.(So) >2Zl ‘+1(l—"+2) [Man—i- 2+,(S,)

286

and hence

1
> a(S)
i=l—-x42
I—-x+1

> 21— £+ 1)®ax-1-2(Sa) +2 Y (1~ K+ 2 =)lIzni-244(Sa)
' i=1

x—1
=2 E o, (Sc)'
=2k —1—-1
a
Using the above lemmas, we can prove the main result in this section.

Theorem 2.2. For any task system TS = ({T:}, {m(Ti)}, {o(T3)}) to be
scheduled on p > 1 identical processors, we have MFT(S,) < (3/2)MFT(S,).

Proof: If k — 1 < 1/2, the theorem follows immediately from Lemma 2.2.
Thus, we may assume that x — 1 > /2. We have

MFT(S,)
2x—1-2

= Z ®;(S.) + Z ®:(Sa) + Zét(sﬂ)

i=2x—1-1 \

Z 8:(S,) + (1/2) Z <I>;(S.,)+Z<I>.(So

i=l—x+2 i=l—-x+2
(by Lemmas 2.3, 2.5, and 2.1)

] {
= Y ®(S)+(1/2) Y ®i(S.)

i=l-x+2 i=l-x+2

[}
=(3/2) Y, ®(S.)

i=l—x+2
< (3/2)MFT(S.).

I/\

3. Tasks with Different Deadlines

In this section we assume that a set of tasks with different deadlines is to
be scheduled on a single processor. As noted in Section 1, this special case
can be solved by Smith’s rule in the classical model [11]. Our proposed
heuristic, Algorithm B, employs Smith’s.rule to schedule tasks. Smith’s

287

rule assumes that the task system TS = ({T;}, {d(T3)}, {e(T:)}) satisfies the
property that SL = Y_7' | e(T;) = max?_,{d(T3)}; if SL < max{d(T;)}, we
can reduce those deadlines larger than SL to simply SL. Smith’s rule works
as follows: Schedule the tasks backwards, starting at the latest deadline.
At each decision point, schedule last the largest task (in terms of execution
time) from among those that can be scheduled last. Using a heap, Smith’s
rule can be implemented to run in O(nlogn) time. Note that the schedule
obtained by Smith’s rule has length exactly SL and it is a nonpreemptive
schedule.

For the imprecise computation model, the special case studied in this
section has been shown to be NP-hard [4]. Moreover, it has been shown
in [4] that there is always an optimal schedule S for a task system TS =
{13}, {d(T3)}, {m(T3)}, {o(T:)}) with the following properties: S is a nonpre-
emptive schedule with no idle time, ERR(S) = K, and there is an index
! such that the first [— 1 tasks scheduled in S have no optional part,
the last n — I tasks scheduled in S have full optional parts, and the ith
task has some (possibly all) optional part. Thus, S must have length
SL/ = 2?:1 e(T,-) -K

In this section we give a heuristic, to be called Algorithm B, for this
special case. We show that the worst-case performance bound of Algorithm
B is 2 and the bound is tight. Asin Algorithm A, Algorithm B also operates
in two steps. In the first step, it uses a special rule (to be defined later) to
determine the processing time assigned to each task. In the second step, the
tasks are scheduled by Smith’s rule. The processing time assigned to each
task is determined as follows. We attempt to schedule the tasks by Smith’s
rule, starting at time SL’. The first few tasks scheduled by Smith’s rule
(these tasks must appear at the end of the schedule) are assigned processing
times equal to their total execution times. This process is repeated until
we reach a point where exactly (3_;_, o(Ti) — K) units of optional parts
have been assigned. The unscheduled tasks are all given processing times
equal to the execution times of their mandatory parts only. Shown below
is a formal description of Algorithm B.

Algorithm B:

Input: A task system TS = ({T3}, {d(T:)}, {m(T3)}, {o(T3)}), an error thresh-
old K and a single processor.

Output: A schedule S, with ERR(S;) = K
Method:

Lte—Yl,e(Ti)—K. 8 — X", 0(T;) — K. TS’ — an empty task
system in the classical model. ! «+ 1.

2. T« {T; | T; € TS and d(T}) > t}.
3. If ' = @, then go to Step (9).

288

. Let T; be the task in I" such that 7; has the largest total execution

time among all tasks in I'. (An arbitrary tie-breaking rule can be
used to break ties.) A «— min{6, o(T;)}.

5. Construct a task T} with d(T}) « d(T;) and e(T}) — m(T) + A.
6. TS' « TS' U {T}}.
7.0-6-A. t—t—-(m(T;)+A4). TS — TS — {T3}.
8. l —~1+1. Go to step (2).
9. Use Smith’s rule to construct a schedule S, for TS'. O
K =10
T; T, V T, T3 Ty Ts Ts
d(T3) 10 10 16 16 27 7
m(T) 2 4 6 1 4 3
o(T:) 2 2 1 7 1 4
T; T, T2 T3 Ty Ts Ts
ATy 10 10 16 16 27 27
af$y, T;) 2 4 8 3 5 7
Figure (a). Processing Times Assigned to the Tasks by Algorithm B
0 2 5 9 15 20
T, Ty Ta T3 Ts Ts \
MO

Figure 4(b). The Schedule S;.

Figure 4. Example Task System Illustrating Algorithm B.

289

Figure 4 shows an example task system to be scheduled on a single pro-
cessor. The processing time assigned to each task is shown in Figure 4(a)
and the schedule obtained by Algorithm B is shown in Figure 4(b). Using
a heap, Algorithm B can be implemented to run in O(nlogn) time.

For a given task system, let S, and S, denote the schedules obtained by
Algorithm B and an optimal algorithm, respectively. The next theorem
shows that there are example task systems such that the performance ratio
can approach 2 asymptotically.

Theorem 8.1. There are task systems such that MFT(S,)/ MFT(S,) ap-
proaches 2 asymptotically.

Proof: Consider the task system TS = ({T;}, {d(T:)}, {m(T:)}, {o(T3)})
with the following 2m + 1 tasks, where m > 2; (T;,Y + (m®* + 1)X +
m(1-6,1,mX) foreach1 <i <m, (T, Y + (m* + 1)X +m(1 - 6), X - §,
(m—1)X +6) for each m+1 < i < 2m, and (Tom+1, Y + X +m(1 -6),Y,0),
where § > 2, X > mé and Y is a number much larger than X. Let
K =(m?-1)X +mé.

Let S be a feasible schedule for TS. If Ty 41 is scheduled ith from the last
in S, then MFT(S) = iY +Cs, where Cs is a quantity involving X,m and
6 only. Now, if Y is a number much larger than Cs, then MFT(S) = iY.
Moreover, in order for Tom+1 to meet its deadline, we must have i > m+1.

Y+X+m(1-9) (m—1)X—m : (m2—m+1)X+m
|+ j< | '

T2m+l Tm+| - LR Tv_)m Tl T2

Figure 5(a). The Schedule S;.
Y+X+m(1-9) m2X

Tl o Tm T2m+l Tm+l PR Tm

Figure 5(b). The Schedule S,.
Figure 5. Worst-Case Example of Algorithm B.

Figﬁres 5(a) and 5(b) depict the schedules Sy and S,, respectively. As

shown in Figure 5(a), the set {T1,T%,...,Tn} is scheduled last in Sp, with
a(Ss, T1) = 1+ X and (S, Ti) = 1+ mX for each 2 < i < m. The

290

set {Trn+1,Tm+2y- .., Tom} is scheduled next, with a(S,,T;) = X — § for
each m+1 < i < 2m. Finally, To;,+; is scheduled in the first position
with a(Sp, Tom+1) = Y. Since T4 is scheduled (2m + 1)th from the last
in S, we have MFT(S;,) =~ (2m + 1)Y. As shown in Figure 5(b), the set
{Tm+1,Tm+2, .-, Tom} is scheduled last in S,, with a(S,,T;) = mX for
each m + 1 < i < 2m. Ty is scheduled next with a(S,, Tom+1) =Y.
Finally, the set {T,T5,...,T,,} is scheduled with a(S,,T,,) =14+ X —mé
and a(S,,T;) = 1 for each 1 < i < m — 1. Since Top+1 is scheduled
(m + 1)th from the last in S,, we have MFT(S,) ~ (m + 1)Y. Thus,
MFT(S,)/MFT(S,) approaches 2 as Y and m approach infinity. O

Before we show that the worst-case performance bound of Algorithm B
is 2, we need to introduce the following notations. Let T%,,Tx,,..., T, be
the order of the tasks scheduled in S, such that T, is the ith task (from
the beginning) scheduled in S;. Similarly, let Ty, ,Ty,, ..., Ty, be the order
of the tasks scheduled in S,. Let there be k tasks scheduled in S; with
their optional parts completely or partially deleted. Clearly, these k tasks
must be the first k tasks scheduled in S; i.e., they are T,, Tz, ..., Tz,
" (Note that it is possible that one of the first k¥ — 1 tasks has its optional
part partially deleted while the kth task has its optional part completely
deleted. See Figure 4 for example. In this case the task with its optional
part partially deleted must have deadline no earlier than that of the kth
task.) Moreover, for each k + 1 < i < n, we have a(Sy, Tz,) = &(Tx,).
Without loss of generality, we may assume that the tasks are scheduled in
S, by Smith’s rule. Furthermore, by the result in [4], we may assume that
S, satisfies the properties: S, is a nonpreemptive schedule with no idle
time, ERR(S,) = K, and there is an index ! such that the first [— 1 tasks
scheduled in S, have no optional part, the last n —1I tasks have full optional
parts, and the Ith task has some (possibly all) optional part. In Lemma
3.2, we will show that f(Sy,Tz,) < f(So,Ty,) for each k < i < n. The next
lemma is instrumental in proving this result.

Lemma 3.1. Suppose there is an index i, k < i < n, such that f(S,, T:,)
f(So,Ty;), and let u be the largest such index. Let T,,,T,,...,Tc,, be
the z tasks that are in the set (Tx,,,,Tz.,s,...,Tz,} but not in the set
{Tyuirs Tyusar -+ Ty } @and let Ty, ,Ta,, ..., Ty, be the z tasks that are in
the set {Ty, ., Tyusar---, Ty, } but not in the set {Tz, .\, Tz, \0---, Tz, }-
If f(Sp, Te,) < f(Sb, Te;,,) and f(So,Ta,) < f(So,Ta,,,) foreach1 <i < z,
then we have a(S,,Ty,) < a(Ss, Te,) foreach1 < i < 2.

Proof: Observe that f(Sy, Tz,) < f(S,,Ty,) for each u < i < n and
F(Se, Tz,) > f(So,Ty.). We prove the lemma by contradiction. Assume
there is an index i, 1 < i < 2, such that a(S,, T4,) > a(Ss, T¢;), and let v
be the largest such index. Let T,, be the pth task in S, i.e., T, = T, and
let T4, be the gth task in S,, i.e., Ty, = T,,,. Clearly, we have u+1 < p,

291

g < n. We consider two cases, depending on whether p < g or not.

Case I p<qg.

Since f(So,Ty,) 2 f(SeyTz,) = f(Sb,Tz,), the deadline of Ty, is no
earlier than f(Ss,Tz,). But Ty, is not scheduled in S), at time f (Ss, Tz,)
or after. By the nature of Algorithm B, every task scheduled in S, in
the time interval [f(Ss, Tz,), f(Sb, Tz,)] must have total execution time at
least that of Ty, . Thus, we have a(S;, Tz,) = e(Tz,) 2 e(Ty,) 2 o(Ss, Ty,)s
and hence, a(S,,Ty,) < a(Ss,Te,). This contradicts our assumption that
a(So, Ta,) > (S, T..).

Case II: p > q.

Since f(So,Ty,) = f(Sb:Tz,), the deadline of Ty, is no earlier than
f(Sb, Tz,). Using the same argument as in Case I, we can show that every
task scheduled in S, in the time interval [f(Sy, Tz,), f(Sb, Tz,)] must have
total execution time at least that of T;,. To continue with the proof, we
need to define the following notations. Let ¢; = f(Ss, T:,) and let X; be
the set of tasks completely executed in the time intervals [f(Ss, Tz,), t1] in
Sp. For i > 1, ¢; is defined to be the largest deadline of all the tasks in X;_,
and X; is defined to be the set of tasks completely executed in the time
intervals [f(Sy, Tz,), t:] in Sp. Let j > 1 be the smallest index such that
X; = Xj—1. By the nature of Algorithm B, it is easy to see that every task
in X; must have total execution time at least that of Ty,,. Let T:, € X;; be
the task that finishes last in S,, among all tasks in X;. Clearly, we have
F(SuTe) < 5.

We now consider two separate cases, depending on whether w > p or
not. If w > p, then we have T, in the set X;. Thus, we have a(Sy, T:,) =
e(Tz,) > e(Ty,) > «(S,, Ty,), and hence a(S,, Ta,) < a(Sp, T.,). This con-
tradicts our assumption that a(S,,Ty,) > a(Ss, Tec,). On the other hand, if
w < p, then we consider the two sets of tasks P = {Tz, 1, Tzyyas-- -2 Tza}
and Q = {Tyu,1sTyusar-+-» Ty }- Among the n —w tasks in P, there are
z — v + 1 tasks that are in the set {T%,,,, Tz, 2., Tz, } but not in the
set {Tyus1s Tyusar--+» Tyn), namely, T, Te 5 ..., T,,. On the other hand,
there are z — v tasks in Q that are in the set {T;,,,, Tz, ,s).--, Tz, } but
not in the set {Ty,,.,Tyusar---» Tya}, namely, Ta .\, Ta, ;... Ta,. By
the pigeonhole principle, there must be a task 7' € Q that is not in the set
P. The task 7" must be in the set {Tz,,,, Tzyy2s---,Tx, }. Furthermore,
d(T") 2 f(So,Tyusr) = f(Se: Tz,,y,) > t;- But this contradicts the defini-
tions of t; and X; as given above. In both cases we obtain a contradiction.
Hence the lemma is proved. O

Lemma 3.2. For each k < i < n, we have f(So,Ty;) = f(Ss, Tz,)-

Proof: If the lemma were not true, then there would be an index i, k < i <
n, such that f(S,,Ty,) < f(Se, Tz;). Let u be the largest such index. Let

292

TeysTesy - - -, T, be the z tasks that are in the set {Tz,,,, Tzyi2y---2Tz0}
but not in the set {Ty,,,,, Tyuyq:- -2 Ty, }, and let Ty, , Ty, . .., Ty, be the 2
tasks that are in the set {Ty,,,, Tyu,a)---, Ty, } but not in the set {T,,,,
T:. vas- .»Tz.}. By Lemma 3.1, we have a(S,,Ty4;) < a(Sh, Te,) for each

1< < z. Thus, we have Y _, ., a(So, Ty,) < Yoy (S, Tz‘) Since
S, and S, have the same schedule length, we have f(S,,Ty.) = f(Ss, T,“)
contradicting our assumption that it is not.

The last lemma implies that the total finishing time of the last n — k+1
tasks in Sp is no larger than MFT(S,). If we can show that the total
finishing time of the first k — 1 tasks in S}, is also no larger than MFT(S,),
then we immediately have MFT(S;) < 2MFT(S,). The next lemma shows
this result.

Lemma 3.3. 5! £(Sy, Tz;) < MFT(S,).
Proof: If T, Ts,, ..., and Ty,_, are scheduled in S, with their manda-

tory parts only, then it is clear that E‘_l f(Se,Tz;) < Z¢—1 f(So,Tz,) <
MFT(S,). Thus, we may assume that there is a task Tr;, 1 <j < k-1,
such that a(Ss, T:,) > m(Tz,.). From the discussions given prior to Lemma
3.1, we know that T, is scheduled in S, with its mandatory part only
and the deadline of T, is no earlier than f(S,,T;,). F\n’thermore we

have a(S;,, T:;) < a(Sb,T,k) = m(Tz,). Thus, we have Z !f (86, Tz,) <
I £(Sor Ti) + Z._, +1f(S0,Tz,;) < MFT(S,). The lemma follows im-
medlately O

Using Lemmas 3.2 and 3.3, we can prove the main result in this section.

Theorem 3.2. For any task system TS = ({T;}, {d(T3)}, {m(T3)}, {o(T3)})
to be scheduled on a single processor, we have MFT(S,) < 2MFT(S,).

Proof: We have

MFT(Ss) = Z £(S0 Te) + Z f(Sb, T:.)

i=1 i=k

< MFT(S,) + Z f(So,Ty,) (by Lemmas 3.3 and 3.2)
i=k

< MFT(S,) + MFT(S,)

= 2MFT(S,).

4. Conclusions

In this paper we have given two heuristics for minimizing total flow time
for the imprecise computation model. Algorithm A given in Section 2 is

293

for a set of tasks with a large deadline to be scheduled on p > 1 identical
processors. It was shown that the worst-case performance bound of Al-
gorithm A is 3/2. Furthermore, we showed that there are example task
systems achieving a ratio of 3/2 for a single processor and 5/4 for multi-
processors. It is still an open question whether 3/2 is the best bound for
multiprocessors as well.

Algorithm B given in Section 3 is for a set of tasks with different dead-
lines to be scheduled on a single processor. We showed that the worst-case
performance bound of Algorithm B is 2 and the bound is tight. Observe
that Algorithm B can produce schedules violating the last condition stated
at the beginning of Section 3: there is an index I such that the first { — 1
tasks scheduled have no optional part, the last n — ! tasks scheduled have
full optional parts, and the lth task has some (possibly all) optional part.
See Figure 4 for example. We can always modify Algorithm B so that the
final schedule produced satisfies this condition. The modified algorithm
performs at least as well as Algorithm B in all cases, and better in some
cases. However, the modified algorithm has the same worst-case perfor-
mance bound as Algorithm B, as the results in Section 3 indicate.

In this paper we have assumed that all tasks have identical ready times.
We have also considered the situation where tasks can have arbitrary ready
times. Unfortunately, we were not able to come up with a heuristic with
a reasonably good worst-case performance bound. For future research, we
think it is worthwhile to investigate this issue.

Acknowledgment

We wish to thank Wei-Kuan Shih for suggesting Algorithm A to us and
providing us with some valuable ideas.

References

(1) EK.P. Chong and W. Zhao, Performance Evaluation of Scheduling
Algorithms for Dynamic Imprecise Soft Real-Time Computer Systems,
Australian Computer Science Communications 11 (1989), 329-340.

[2] J-Y. Chung and J.W.S. Liu, Algorithms for Scheduling Periodic Jobs
to Minimize Average Error, Proc. of the 9th IEEE Real-Time Systems
Symposium, December 1988, 142-151.

(3] E.G. Coffman, Jr. and P.J. Denning, Operating Systems Theory, Pren-
tice Hall, New Jersey, 1973.

[4] J. Y-T. Leung, T.W. Tam, C.S. Wong and G.H. Young, Minimizing
Mean Flow Time with Error Constraint, Proc. of the 10th IEEE Real-
Time Systems Symposium, December 1989, 1-11.

294

[51 K-J. Lin, S. Natarajan and J.W.S. Liu, Concord: A Distributed Sys-
tem Making Use of Imprecise Results, Proc. of IEEE COMPSAC ’87,
October 1987.

[6] K-J. Lin, S. Natarajan and J.W.S. Liu, Imprecise Results: Utilizing
Partial Computations in Real-Time Systems, Proc. of the 8th IEEE
Real-Time Systems Symposium, December 1987, 210-217.

[7] J.W.S. Liu, K-J. Lin. and S. Natarajan, Scheduling Real-Time, Peri-
odic Jobs Using Imprecise Results, Proc. of the 8th IEEE Real-Time
Systems Symposium, December 1987, 252-260.

[8] R. McNaughton, Scheduling with Deadlines and Loss Functions, Man-
agement Science 6 (1959), 1-12.

[9] W-K. Shih, J.W.S. Liu and J-Y. Chung, Algorithms for Scheduling Im-
precise Computations with Timing Constraints, SIAM J. Compuling
20 (1991), 537-552.

[10] W-K. Shih, J.W.S. Liu, J-Y. Chung and D.W. Gillies, Scheduling Tasks
with Ready Times and Deadlines to Minimize Average Error, ACM
Operating Systems Review, July 1989.

[11] W.E. Smith, Various Optimizers for Single-Stage Production, Naval
Research Logistics Quarterly 3 (1956), 59-66.

295

