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ABSTRACT. Regular graphs play an important role in design-
ing interconnection networks for multiprocessing systems; but
these regular graphs like hypercubes or star graphs cannot be
constructed with arbitrary number of nodes. The purpose -of
the present paper is to examine two families of almost regu-
lar maximally fault tolerant graphs (based on hypercubes and
star graphs respectively) that can be defined for an arbitrary
number of nodes.

1 Introduction

The underlying topology of any multiple processor system is, in general,
modeled as an undirected graph where the nodes denote the processing el-
ements and the arcs (edges) denote the bidirectional communication chan-
nels. Design features for an efficient interconnection topology include prop-
erties like low degree, regularity, small diameter, high connectivity, efficient
routing algorithms, high fault tolerance, low fault diameter etc. The small
diameter helps to keep the interprocessor communication delay low while
the low degree of nodes is necessary to limit the number of input-output
ports to some acceptable value. The other desirable feature of an inter-
connection network topology is high fault tolerance or resilience which is
normally measured in terms of vertex connectivity of the graph [Har72];
vertex connectivity of a symmetric graph is defined to be the minimum
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number of vertices that need be removed to make the remaining graph dis-
connected and obviously the graph is called maximally fault tolerant when
the vertex connectivity is equal to the minimum degree of a node in the
graph. Various authors [Pra85a), [Pra8sb), [AL82], [Sch91], [LJD93] have
investigated the problem of network design with a view to achieving these
goals. It has been observed that regular graphs in general and those with
strong algebraic structures play the most important role in network design
because of the ease of designing uniform routing algorithms as well as of
mapping parallel algorithms on the networks. Most popular among these
are the well known binary n-cubes or the hypercubes; they have been used
to design various commercial multiprocessor machines and they have been
extensively studied [Lei%0]. A binary hypercube graph H, is an undirected
graph of N (= 2") vertices, each representing a distinct n-bit binary num-
ber and two nodes are connected by an edge iff the Hamming distance
between the two nodes is 1. Figure 1 shows the hypercubes of dimensions
1, 2 and 3. We can easily observe the following:
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Figure 1: Hypercubes of Dimensions 1,2 and 3

e H, has nx 2"~! edges with a diameter of n, i.e. diameter is logarith-
mic in N and the number of edges is NF(N) where F(N) = O(log N).

e H, is n-regular with vertex connectivity n, i.e., Hn is maximally
fault tolerant.

e Fault diameter of H,, is 1+ the fault free diameter.

e H, can be defined only for integer values of n.

Recently, a new interconnection topology, called the star graphs has been
reported in the literature [AK87], [AK89], [SS92a], [DT91]. It is to be
noted that these star graphs are a class of Cayley graphs as are n-cubes
or the pancake graphs [AK89]. A Star Graph Sy,, an undirected Cayley
graph of dimension n with N = n! vertices, is defined to be symmetric
graph G = (V, E) where V is the set of n! vertices, each representing a
- distinct permutation of n elements and E is the set of symmetric edges
such that two permutations (nodes) are connected by an edge iff one can
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be reached from the other by interchanging its first symbol with any other
symbol. For example in S3, the node representing permutation ABC will
have edges to two other permutations (nodes) BAC and CBA. noted that
these star graphs are different from star graphs of [Har72]. These star
graphs seem to be very attractive alternatives to the n-cubes in terms of
almost all the desirable properties of an interconnection structure. It has
been shown that these star graphs can accommodate more processors with
less interconnection hardware and less communication delay (compared to
n-cubes). Figure 2 shows the star graphs of dimensions 3 and 4.
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Figure 2: Star Graphs of Dimensions 3 and 4

It can be easily shown that

e S, has n!(n—1)/2 links with a diameter of [3(n—1)/2] (i.e., NF(N)
where F(N) is sublogarithmic).

e S, is (n — 1)-regular with a vertex connectivity of (n — 1), i.e., Sn is
maximally fault tolerant.

e S, can be defined only for integer values of n.
e Fault diameter is [3(rn — 1)/2] + 1.

One significant drawback of both of these two topologies is that neither
of them is incrementally extensible (expandable). The number of nodes in
a hypercube must be some power of two and consequently this topology
cannot be defined for an arbitrary number of computing nodes. The prob-
lem with the star graphs is even more serious in that the number of nodes
in a star graph must be factorial of some integer. This incremental exten-
sibility is a very essential and desirable property in real life applications
of a topology in designing computer networks. People have tried over the
years to overcome this difficulty especially with the hypercubes. A few gen-
eralizations of the hypercube structures have also been proposed [Lei80],
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[Kat88], [SS88], [BA84], [Sen89] within the last ten years. But, most of the
proposed architectures are irregular and the irregularity increases with the
size of the graph; for example, in the most recent generalization of the hy-
percubes, called supercubes [Sen89], the difference between the maximum
and the minimum degree of a node can be as high as n and the degrees
of the nodes are distributed in the range (n,2n) for a supercube with N
nodes, 2" < N < 2™*!, There is only one such study on generalization of
star graphs [LB94].

Our purpose in the present paper is to examine two different incremen-
tally extensible network graphs that can be defined for an arbitrary number
of nodes: (1) Incrementally Extensible Hypercubes or the IEH graphs
[SS92a] and (2) Super Star Graphs [SS91]. The design philosophy basi-
cally involves appropriate interconnection of different sized hypercubes or
star graphs of smaller dimensions. More precisely, the proposed families of
graphs have the following properties:

o Adding a new node to an existing network is easy and simple; in most
cases no reorganization of existing edges is necessary.

e The network is optimally fault tolerant in the sense that the vertex
connectivity is equal to the minimum degree of a node in the graph.

o Number of edges is O(NF (N)) where F(N) is logarithmic or sublog-
arithmic.

e The diameter is logarithmic or sublogarithmic in the number of nodes.

o The graph is almost regular i.e., the difference between the maximum
and the minimum degree of a node is always < c (c is a constant
independent of the size of the graph; ¢ =1 for IEH graphs and ¢ = 2
for the super star graphs).

e Routing and Fault Tolerant Routing should be relatively easy to im-
plement.

2 Incrementally Extensible Hypercubes or IEH Graphs

A hypercube H,, is defined for N vertices only when N = 2". Our objective
is to design a new topology, called Incrementally Eztensible Hypercube or
IEH graphs, that can be defined for an arbitrary number of nodes. The
topology of our proposed graph consists of an interconnection of an appro-
priate number of hypercube subgraphs of different sizes. We need a new
type of connection besides the usual hypercube connections in a proper
hypercube. These edges are needed to connect two hypercubes of different
sizes and hence are called Inter~-Cube or IC edges. They are defined as
follows.
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Definition 2.1: Consider two hypercubes H; and H; and without any loss
of generality assume ¢ > j. Each node in H; has a i-bit and each node in
H; has a j-bit binary label. Each node bj—1b;j_2---bp in H; is connected to
i-j—1 i—-j—1
p—N— e,
(¢—7) different nodes in H;: 01---1bj_1bj_2--bo, 001 --1b;_1b;_o---by,
i—j—1 i—j—1 .

g N— =N
0101---1b;_1bj_2---bg,--+,01---10b;j_1bj—2 - - - bp. These nodes are called
the image of the node b;j_1bj_2---bp of Hj in H;.

Figure 3 shows the IC edges between Hs and Hp and between H3 and
Hj respectively.
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IC Edges baetween H3 and H2.
Figure 3: Example IC Edges
Remark: It is to be noted that for any given H; and Hj, ¢ > j, the image
sets of any two nodes of H; are mutually disjoint.

2.1 Construction o.f IEH Graphs

The basic philosophy in our design of the incrementally extensible hyper-
cube or IEH graphs is to express N as a sum of several powers of 2, i.e., to
write N as a binary number, build the smaller hypercubes, and then to add
appropriate additional IC edges to connect those smaller hypercubes. The
following algorithm builds the incrementable hypercube for any given N,
2" < N < 21, If N = 2" for some n, then we get the proper hypercube.

The Algorithm
Step 1: [Build the smaller hypercube subgraphs|
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Express N as a (n + 1) binary number as N =< ¢5,6n-1,""-,C0 >,
where ¢; € {0,1} and ¢, = 1 since N > 2". For each ¢;, ¢; # 0,
construct a hypercube H; with 2¢ nodes.

Step 2: [Label the nodes]
Note that each node has a (n + 1)-bit binary label. Each hypercube

—1

—lN—
H; is labeled as 11---10 — — ... —. Obviously each hypercube of di-
[ —

%
mension i (having 2° nodes) has i number of dashes and the individual
nodes of the hypercube can be obtained by filling the dashes with 0
or 1 in all possible ways. In other words, the binary representation of
each node in H; has the same prefix of n — i 1’s followed by a single -
zero.

Step 3: [Construct the incrementable hypercube in steps by providing the
exira edges] :
Find the minimum ¢ such that ¢; # 0. Set j = ¢ and G; = H;. Set

i=i+ 1
while i <n do
if ¢; # 0 then
e ifi—j=1 then n—j
each node z in G; with label 11..-1b;bj_1---bo is

n—j-1
o —
connected to the node 11---10bjbj_1 - --bo of H;

else n—j
. . ey,
each node z in G; with label 11...1b;bj_1---bo
is connected to ¢ — j different nodes of H; chosen
in the following way:
n—i i—j—1

N o —
1..-1011---1bbj_y---bo

n—i i—j—1
br N N
n—i i—-j—1

N pmm—
1.--1011---01bjbj_1---bo

n—i i-j—1

NN
1...1001---Tbbj_1---bo
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o Set j =1 and set G; to be the composite graph generated in the
previous steps. Note that G; has now Y3 _ cx2* nodes and the
binary label of each node in G; has a prefix of n — j 1's.

i=i41
Return G, as the desired incrementable hypercube graph of N ver-
tices.

We can easily observe the following characteristics of the above construction
algorithm.

e The resulting incrementable hypercube of N vertices, as designed by
the algorithm, is composed of different sized smaller hypercubes which
are connected by the IC edges as introduced in step 3.

o If N = 2" for some integer n, then the incrementable hypercube
for N vertices is the regular hypercube Hj, ie., the incrementable
hypercubes form a super class of the family of regular hypercubes.

¢ In step 3, for each i, G; represents an incrementable hypercube graph
of Y )0 ck2F vertices.

o In step 3, for each i, whenever JC connections are provided between a
proper hypercube H; and some smaller incrementable hypercube G;,
j < i, the degree of each node of H; is increased at most by 1. This
is evident from three facts: (1) H; is a hypercube of 2¢ nodes, (2)
the maximum number of nodes in the incrementable hypercube Gj is
25t1 _1, and (3) 2¢ > (i —j){27*! — 1} for any integer i and j, i > j.

e In step 3, for each i, the Hamming distance between an arbitrary
node of G; and any of its images in G; is either 1 or 2.

Example 1: Let N = 11. Then N can be expressed as a 4-bit binary
number 1011, i.e., c3=1,c2 =0, ¢; =1 and o = 1. In step 1 we build
H3, H, and Hj separstely. In step 2 we label all the nodes with 4-bit
binary numbers as shown in Figure 4. In step 3, IC edges are provided
from lower order hypercubes to the higher order ones progressively. Note
that the single node of Hp has a single IC edge to Hy; G has 3 nodes; each
node of G is connected to two different nodes of H3. The resulting IEH
graph G3(11) has 20 edges; also, among 11 nodes, 7 has a degree 4 and the
rest has a degree 3.

Example 2: Let N = 13. N can be expressed as a 4-bit binary number
1101. So we build Hj3, H> and Hy and label all the nodes with 4-bit binary
numbers in step 2 of the algorithm. And in step 3, IC edges are provided
from the lower order hypercubes to the higher order ones progressively.
Note that the single node in Hy has now two IC edges to Hs; G has 5
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nodes each of which is connected to a distinct node of Hs by an IC edge.
The resulting IEH graph G3(13) has 23 edges; 7 of them are IC edges.
Out of 13 nodes, 7 has a degree of 4 and the rest of the 6 nodes have each
a degree 3.

2.2 Properties of the IEH Graphs

We review different topological properties of the incrementable hypercubes
Gn(N), where N is the number of nodes in the graph and the subscript n
indicates the fact that 2* < N < 2"*! or that the component hypercube
subgraphs are of dimension n or smaller. We use £ and D to indicate the
vertex connectivity and diameter respectively of any graph. For example,
for any hypercube Hy, £§(Hy) = n and D(H,) = n. Details of the proofs
can be found in [SS92a).

Theorem 2.1. The vertex connectivity of an IEH graph G.(N) of N
nodes, 2" < N < 2"+1 s given by £(Gn(N)) = n.

Theorem 2.2. The diameter of G,(N) is equal to the diameter of the
next higher order hypercube Hyp+1, e.g. D(Gn(N)) =D(Hnt1) =n+1.

Theorem 2.3. Total number of edges in the IEH graph Go(N),2" < N <
27+l where N =< ¢y, ,co > in binary, is given by

n n—1
Y izl +) " a2i(n—i) = O(Nlog N)

i=1 =0

Theorem 2.4. The maximum degree of any node in the IEH graph G,(N),
M < N2 isn41.
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Figure 4: IEH Graph G3(11) of 11 Nodes
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Figure 5: IEH Graph G3(13) of 13 Nodes

Theorem 2.5. The number of vertices in G, (N) with the maximum degree
of n+1 is given by

n-1
z ci2i(n — 1)

i=0

Theorem 2.8. The incrementable hypercube graph Hn(N) is optimally
fault tolerant.

3 Super Star Graphs

In a given star graph Sy, we use Vx to denote the set of nodes (permuta-
tions) that end with the symbol X. Obviously, Vx is a star graph of order
n—1. Similarly, V,, denotes the set of nodes that end with a where a repre-
sents a sequence of symbols. V, is a star graph of dimension n — || if Vq is
a subgraph of S,,. For example Vyz denotes the set of nodes that end with
Y Z. Now we introduce several new concepts to facilitate the discussion of
our new topology in the next section.
Definition 3.1: Consider any two mutually disjoint subgraphs Vx and Vy
of a star graph S,. The nodes of Vx, that are directly connected to any
node of Vi, are called the gateway nodes of Vx with respect to Vy. We
denote this set of nodes by Gx,y. In general, either or both of X and Y
may be sequence of symbols instead of single symbols.

For example, in Sy, G4 5 = {BDCA,BCDA} and Gp 4 = {ADCB,
AC DB} (see Figure 2).
Definition 3.2: Any positive integer N, n! < N < (n + 1)}, can be
expressed in its mixed-radix form as < a@n,an-1,***,81 >, where

N =apn!+ap-1.(n =1+ ...+ a;.1!
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and0<aq;<ifori=1,---,n-1,and 0 <an <n.

For example, 85 =< 3,2,0,1 >, since 3.4!+2.3!4+0.2! +1.1! =72+ 1241 =
85. .

The topology of our proposed super star graph consists of an intercon-

nection of an appropriate number of star subgraphs of different sizes. We
need two types of new connections besides the usual star graph connections
in & complete star graph: (a) type I connections, induced by the definition
of star graphs, and (b) some additional edges, called type II connections.
We define the type I connection as follows:
Definition 8.3: Given m copies of S where m < k, we say that these
m copies are joined by type 1 connections when the gateway points of
each S (when viewed as a subgraph of S,,, n > k) are connected to their
counterparts in each of the other copies of Sj.

Figure 6 shows the type I connections among 3 copies of S3. Next we need
to define the group graphs or simply the groups.

Definition 3.4: When m copies of Si, m < k, are joined by type I con-
nections, the resulting graph is called a group GR;(m).

Figure 6 shows a GR3(3). If the m components of a GR;(m) are numbered
from 1 to m as GR{(m), 1 < £ < m, the first component or GR}(m) will be
called the leader L;(m) of the group GR;(m). Note that each component
GR{(m) of the group is a star graph of dimension i.

DBCA CDAB BDAC

DCBA CADS BADC

Figure 6: Type I Connections between Star Graphs

Next we need a scheme to number the vertices of a given star graph. It
is well known [Knu73] that all the n! permutations of n distinct symbols
can be uniquely numbered from 0 through n! — 1. We use this scheme to
number the vertices of any star graph S,. We also can extend this scheme
to number the vertices of a group GR;(m). A group GR;(m) has m.i!
vertices; the vertices of GR} are numbered from 0 to i! — 1, the vertices of
GR? are numbered from i! to 2i! — 1, and so on.

Definition 3.5: Given a subgraph V,, of S,,, where « is an arbitrary se-
quence of symbols, || < 7, the head node is the node in which all symbols
other than the fixed ones are in alphabetical ascending order.
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For example, the head node of Ve A, subgraph of Sz is the node BDFGCAE.

Definition 3.6: Given two star graphs Sy, and S,, m < n, Sy, and Sy, are
called to be joined by type II connections if each vertex of S, is connected
to n—m different nodes of S,, by direct edges. The subset of vertices of Sn
that are connected to the nodes of Sy, is called the type II image of Sy, on
S, and has a cardinality of (n — m)|Sm|.

Remark: This definition can be easily extended to two arbitrary m-
connected and n-connected graphs G and H respectively, provided |H| >
(n — m)|G|, where |H| and |G| denote the number of vertices in Hand G
respectively.

3.1 Construction of Super Star Graphs

In this section we use the concepts developed in the previous section to
design a Super Star graph for an arbitrary number N of given nodes. The
basic idea behind our design is to decompose N as a sum of several factorials
using mixed-radix representation (when N is not n! for some n), build the
smaller star graphs, and then to add appropriate type I and type II edges
to connect those smaller star graphs maintaining the desirable properties of
high vertex connectivity and low diameter. The following algorithm builds
the super star for any given N (we assume n! < N < (n + 1)!; otherwise
the we have original star graph).

The Algorithm

Step 1: [Build the smaller star subgraphs]
Compute the mixed radix representation of N =< cn,Cn-1,""*,€1 >
and construct c; copies of S; for all 4, 1 < i <n (note cn #0).
Step 2: [Label the nodes]
e Choose n+1 symbols to label the nodes (permutations). We use
n + 1 consecutive English letters starting with A.
e Fori=nto 1 do the following (fix the i-th symbol for the nodes):

- if ¢; # 0 then label each of the ¢; copies of S; as Vayp Where
B = symbol(n — i + 1)symbol(n — i + 2) - - - symbol(n), and ay,
1 < j < ¢, are chosen in alphabetic order from the set of symbols
that are yet to be allocated to the “symbol” array.

- Set symbol(i) to be equal to the next available English letter in
alphabetic order.

Step 3: [Provide type I connections among star subgraphs to form groups]
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.o For each 1, 1 < ¢ < n, join the ¢; components of S;’s by type I
connection as defined earlier to get the different groups GR;(note
that this does not connect the star subgraphs of different sizes).

e Each group GR; has ¢; number of components GRf, 1 < €< ¢
each of which is a star graph of dimension i. The vertices in GR;
are numbered from 0 to ¢;.¢! — 1 by using the vertex numbering
scheme as described before (the vertices of S} are numbered from
0 to i! — 1, those of S2? are numbered from i! to 2i! — 1 and so
on).

Step 4: [Construct the super star graph in steps by providing the type IT
connections]
Find the minimum 7 such that ¢; # 0 and then set j = i and set
Z; = GR; (Z; denotes the super star graph with Y7 _, c,! nodes).
whlle i<ndo
if ¢; 7 0 then

o Establish type II connections between Z; and GR;. Each node in
Zj is connected to ¢ — j different nodes of the leader L; of GR;.
This is easily done by using the node numberings in both the
graphs Z; and GR; (e.g., node “0” of Z; is connected to nodes
“0” through node “i-j-1” of L;, node “1” of Z; is connected to
nodes “i-j” through “2(i-j)-1” of L; and so on).

o Renumber the nodes of Z; by adding c;i! to each node number.

e Set j =1 and set Z; to be the composne graph generated in the
previous steps. Nobe that Z; has now Z =1 Ckk! nodes and they
are numbered from 0 to 3°7 ., cxk! — 1.

i=1t+1
Return Z,, as the desired super star graph of N vertices.

We can easily observe the following characteristics of the above design al-
gorithm.

o The resulting super star graph of N vertices, as designed by the al-
gorithm, is composed of different sized smaller star graphs which are
connected by type I and type II connections.

e If N = n! for some integer n, then the super star graph for N vertices
is the original star graph Sy, i.e., the super star graphs form a super
class for the family of star graphs.

e In step 4, for each i, Z; represents a super star graph of ch=1 ckk!
vertices.
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e In step 4, for each i, whenever type II connections are provided be-
tween a leader L; of a group GR; and some smaller super star Z;,
j < i, the degree of each node of L; is increased at most by 1. This is
evident from three facts: (1) a leader L is a star graph S; of i! nodes,
(2) the maximum number of nodes in the super star Z; is (j+1)! -1,
and (3) i! > (i — 5){(j + 1)! — 1} for any integer i and j, i > j.

Example 1: Let N = 19. Then N can be expressed as N =< 3,0,1 >
or ca =3, cg = 0 and ¢; = 1. Hence there are three groups: GR3, GRq
which is null since c; = 0 and GR;. GR3 has 3 components: GR} = V4
which is also the leader Lg of this group, GR} = Vg and GR3 = V¢. Each
of these components is a star graph of dimension 3. See Figure 7. The
vertices of GR3 are numbered from 0 to 3.3! — 1 = 17. The numberings are
shown in the figure in parenthesis. The group GR; has only one component
GR! = Vgap since symbol(3) = D and symbol(2) = A and obviously
GR! is a star graph of dimension 1 i.e., a single vertex CBAD. Typel
connections are provided in GR3 by joining all the gateway points to their
respective counterparts. Lastly, we need to provide the type II connections
between GR; and GR3 and that is done by joining the node 0 of GR; to
the nodes 0 and 1 of GR3.

Figure 7: Super Star Graph with N =19

Example 2: Let N = 23. Then N can be expressed as N =< 3,2,1 > or
c3 = 3, c3 = 2 abd ¢; = 1. Here there are 3 non-null groups. See Figure
8. There are 3 components of GR3 and they are numbered from 0 to 17
as before. symbol(3) = D and hence GR; has two components V4p and
Vep each of which is a star graph of dimension 2; they are numbered from
0 to 3. As before GR; is a single node (a star graph of dimension 1) and
since symbol(2) = C, this is labeled as the permutation BACD. Type I
connections are provided in each group. Then in step 4 of the algorithm we
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first provide type II connections to the nodes of GR; and GR3 by joining
node “0” of GR; to the node “0” of GR; and we get Z,. Nodes of Z,
are renumbered (actually the nodes of GR; need only be renumbered; the
node BACD is renumbered as 4). Next, GR3 and 2, are joined by type II
connections to get the desired super star graph (nodes “0” through “4” of
Z, are joined to the nodes “0” through “4” of GRj).

3.2 Properties of Super Star Graphs

We review different topological properties of the super star graphs Z,(N),
where N is the number of nodes in the graph and the subscript » indicates
the fact that n! < N < (n41)! or that the component star subgraphs are of
dimension n or smaller. We use £ and D to indicate the vertex connectivity
and diameter respectively of any graph. For example, for any star graph
Sn, £(Sn) =n —1.and D(S,) = |3(n — 1)/2]. See [SSI91] for details of the
proofs.

€331
ACRD

CABD(LI0)

apCON

Figure 8: Super Star Graph with N =23

Lemma 3.1. When m copies of S,, m < n, are connected by type I
connections to form a GR,,(m), §(GR,(m)) is given by n — 1.

Theorem 3.1. The vertex connectivity of a super star graph Z,(N) of N
nodes, n! < N < (n+1)!, is given by §(Z,(N)) =n—1.

Corollary. A super star graph of N vertices, where n! < N < (n+1)! has
the same vertex connectivity as a star graph S,, of n! vertices.

Lemma 3.2. For any pair of nodes u and v such that u € Vx and v € Vy
in a star graph S,,, there always exists an optimal path between u and v
that does not go through any nodes other than those belonging to Vx or
Vy.
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Theorem 3.2. The diameter of a group GR;(m) is equal to the diameter
of the next higher order star graph Si;1, e.g. D(GRy(m)) = D(Si11) =
13i/2). '

Theorem 3.3. The diameter of the super star graph Z,(N), n! < N <
(n +1)!, is given by D(Zn(N)) = |3n/2] +1.

Theorem 3.4. Total number of edges in a super star graph Zy,(N), n! <
N < (n+1)! and N =< ¢q,--+,€1 >, is given by

5 {qi!(iz— D, (cz‘) (i = 1)+ ciln— i)z'!} .

i=1

Theorem 3.5. The maximum degree of any node in a super star graph
Za(N)isn+1.

Theorem 3.6. The upper bound on the number of vertices in Zn(N) with
the maximum degree of n + 1 is given by

> G-De-D

i=1, c;#0

Theorem 3.7. For any super star graph Za(N), n! < N < (n+1)!, there
exists at least one node with degreen — 1.

Theorem 3.8. The super star graph Z,(N) is optimally fault tolerant.

4 Conclusion

We have reviewed two families of network graphs for an arbitrary number of
computing nodes. Additional nodes can be added to the networks with no
or minimal reorganization of the existing interconnection. The topologies
have logarithmic or sublogarithmic diameter and is optimally fault tolerant
in the sense that the vertex connectivity is equal to the minimum degree
of a node. The topology is almost regular, i.e., the difference between
maximum and minimum node degree is always < 1. It'd be interesting to
study shortest routing as well as fault tolerant routing algorithms for these
graphs. Computation of fault diameters for these graphs is also an open
problem.
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