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ABSTRACT. Let G be a finite graph with vertices £1,...,£&, and
let Sy,...,Sn be disjoint non-empty finite sets. We give a new
proof of a theorem characterizing the least possible number of

" components of a graph D such that V(D) = S1 U--. U S,
E(D) = E(G) and, when an edge ) joins vertices &, &; in G, it
is required to join some element of S; to some element of S; in
D (so that, informally, D arises from G by splitting each vertex
& into |S;| vertices).

1 Introduction

Definitions. The set of all positive integers will be denoted by N. The
first constituent z of an ordered pair (x,y) will be denoted by p((z,y)).
The symbol G will always denote a graph. In this paper, graphs may be
finite or infinite, and may have loops and multiple edges. If X C V(G)
then Ex or E§ denotes the set of those edges of G which are incident with
at least one element of X and G — X denotes the subgraph of G such that
V(G-X)=V(G)\X, E(G-X) = E(G)\ Ex. The number of components
of G is denoted by ¢(G). A G-set is a set Q of ordered pairs such that
p(0) € V(G) for every @ € Q and each vertex of G is the first constituent of
at least one element of Q. If  is a G-set then Q¢ denotes {0 € Q: p(8) = £}
for each £ € V(G) and QX denotes {8 € Q: p(0) € X} for each X C V(G).
If b: V(G) — N is a function, then b.X denotes Y. x b(§) for each finite
subset X of V(G) and a (G, b)-set is a G-set  such that |Q€| = b(€) for
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every £ € V(G). We define an Q-detachment of G (where § is a G-set) to
be a graph D such that V(D) = Q, E(D) = E(G) and, for each edge A of
G, the vertices joined by A in G are the first constituents of the vertices
joined by A in D. In particular, A is a loop of G iff it joins vertices of
D which have the same first constituent. A graph is a detachment of G
if it is an Q2-detachment of G for some G-set §2, and is a b-detachment of
G if it is an Q-detachment of G for some (G, b)-set . Thus, informally,
.a b-detachment of G is obtained from G by splitting each € € V(G) into
b(¢) vertices. (These definitions of “detachment” and “b-detachment” are
more restrictive than those in (1], [2] and (3] since they require vertices
of a detachment to be ordered pairs, but this makes no difference “up to
isomorphism”.)

This paper presents a proof of the following known theorem which is
more direct than previous proofs involving matroids [1, 2] or orientation of
some edges of G to produce a mixed graph [3].

Theorem. If G is finite and b: V(G) — N is a function then the minimum
of ¢(D) over all b-detachments D of G is equal to

xrgne.zca)(b.x +¢(G - X) - |Ex]). (1)

2 The new proof

Further Definitions. If L C E(G) then G — L denotes the subgraph of
G such that V(G - L) = V(G), E(G — L} = E(G)\ L. We write G —w
in place of G — {w} if w is a vertex or edge of G. If £ € V(G) then G[¢]
denotes the subgraph of G such that V(G[¢]) = {€}, E(G[£]) = 0. The set
of components of G is denoted by C(G). An edge X of G is a bridge if it
joins vertices which belong to distinct components of G — A. The valency
of a vertex incident with p loops and ¢ other edges is 2p+q. A pathis a
non-empty connected graph in which no vertex has valency greater than
2 and every edge is a bridge. A circuil is a non-empty finite connected
graph in which every vertex has valency 2. A £7-edge is an edge joining
(not necessarily distinct) vertices £,7. A path P is a £n-path if £,9 are
(not necessarily distinct) vertices of P and the addition of a £7-edge would
convert P into a circuit. A circuit in G is a subgraph of G which is a circuit,
and “path in G” and “€xn-path in G” are similarly defined. A subgraph §
of G and subset X of V(G) meet each other if V(S)N X # 0. A vertex
€ of G separates a subset X of V(G) if two or more components of G — £
meet X. If A is a £5-edge of G and ¢ € V(G) then G o A\( — ) will denote
the graph G’ such that V(G') = V(G), E(G') = E(G), G' - A =G -\
and A joins £ to ¢ in G’. In other words, G o A(7 — () is obtained from G
by “detaching one end of A from 7 and re-attaching it to {”. (The vertices
&, 1,¢ need not be distinct.)
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Let G be a graph, 2 be a G-set and D be an Q2-detachment of G. Then
S(D) will denote the set of all vertices £ of G such that 2§ meets at least
two components of D. If §&,9 € V(G), the statement £ *n will mean
that some element of Q¢ separates 29 in D. We define a D-sequence to
be a non-empty finite sequence &p,&1,...,& of distinct vertices of G such
that & € S(D) and & &4 for every non-negative integer { < r. In
particular, a sequence with just one term & is a D-sequence if & € S(D).
We define subsets R(D), R(D,r), R(D,< r) of V(G) by the rule that a
vertex of G belongs (i) to R(D) iff it is the last term of some D-sequence
(or, equivalently, iff it is a term of some D-sequence), (ii) to R(D,r) iff it
is the last term &, of some D-sequence &, £1,...,& With r + 1 terms and
is not the last term of any D-sequence with fewer than r + 1 terms, (iii) to
R(D, < r) iff it is the last term of some D-sequence with fewer than r + 1
terms. We shall say that D is a tight Q-detachment of G if ¢(D) is finite
and no Q-detachment of G has fewer components than D.

Lemma 1. If Q is a G-set and D is a tight Q-detachment of G then no
circuit in D meets QS(D).

Proof: If a circuit C in D met QS(D) then there would exist vertices
€ € S(D), 8 € V(C)NQE and, since £ € S(D), there would exist ¢ € Q€
such that 0, ¢ are in distinct components of D. We could then choose an
edge A of C incident with @ and D o A(@ — ¢) would be an 2-detachment
of G with fewer components than D, contradicting the tightness of D.

Lemma 2. Let Q be a G-set, D be an Q-detachment of G and D’ =
Do A0 — ¢), where 0,¢ are vertices in distinct components of D such
that p(0) = p(¢) and X is an edge of D incident with 0. Let &, 7 be vertices
of G such that n ¢ S(D) and £ ’n. Then D’ is an Q-detachment of G
and £ 7 0.

Proof: Since D is an Q-detachment of G and p(@) = p(¢), clearly D’ is an
Q-detachment of G. Let Dy, Dy be the (distinct) components of D which
include 8, ¢ respectively and o be the vertex joined to by A in D. Let Q
be the component of Dy — A which includes o and R be the graph obtained
from QU Dy by adding A as a o¢-edge. Then clearly R is a component of
D', \is a bridge of R and Q, D, are the components of R— . Since £ 1,
there exist p € Q€ and 1, x € S2n such that 1, x are in distinct components
of D—p. Therefore D—p contains no ¥ x-path, and so any vx-path in D’—p
must include A. Therefore the existence of such a path in D' — p would
require one of ¥, x to be in Q and the other in Dy, contradicting (since
Q C D) the hypothesis that i ¢ S(D). Therefore there is no ¥x-path in
D’ —p, and so £ /0.

Lemma 3. If Q is a G-set and D is a tight Q-detachment of G then no
circuit in D meets QR(D).
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Proof: Suppose that some circuit J in a tight Q-detachment D of G meets
QR(D). Then we can choose D, J, r so that J meets QR(D,r) and r is as
small as possible. By Lemma 1, J cannot meet QS(D) = QR(D, 0) and so
r > 1. Since J meets QR(D, r), it meets Q¢ for some £ € R(D,r). By the
definition of R(D, r), £ is the last term & of some D-sequence §o,§1,...,&r
and if i € {1,...,r} then £ ¢ R(D,r — i) and so &,&+1,...,&r is not a
D-sequence and consequently & ¢ S(D). Since & ;' there are vertices
0 € Q& and ¥, x € Q& such that ¥, x are in distinct components Dy, Dy
respectively of D — 0. Since & ¢ S(D) it follows that ¢, x are in the
same component Do (say) of D. Therefore 8§ € V(Do) and Dy, Dy are
components of Dy — 8. Since Dy is connected, it has an edge A joining
0 to a vertex o of D,. Since & € S(D), some component Dy # Do of
D includes a vertex ¢ € Q€. Let D' = Do A(@ — ¢). Since D is an
Q-detachment of G and p(0) = & = p(¢), clearly D’ is an Q-detachment of
G. By Lemma 1, no circuit in D can include the vertex 8 € Q& C QS(D)
and so X is a bridge of D. Therefore Do — A has two components, namely
D, and a component D such that § € V(Dg) and Dy € Dg. Clearly
C(D’) = (C(D)\ {Do, D1})U{Dj, H}, where H is the graph obtained from
D, U Dy by adding X as a o¢-edge. Therefore c(D’) = ¢(D), so that D is
tight, and %, x are in distinct components Dj, H of IV, so that & € S(D’).
Moreover, since & ' &iy1 for0<i<rand &,...,6 ¢ S(D) and 0, ¢ are
in distinct components Do, Dy of D it follows by Lemma 2 that & 77 &1
for 0 < i < r. Therefore &y, ...,& is a D'-sequence and so £ € R(D',<r).
Since no circuit in D includes 6, it follows that A ¢ E(J) and so J is a
circuit in D’; and J meets QR(D’, < r) since it meets Q€. Thus our choice
of D, J, r so as to minimize r is contradicted.

Proof of the Theorem: Let M denote the maximum in (1). Let Q be
a (G, b)-set and D be a tight Q-detachment of G. Then clearly c(D) is
minimized over all b-detachments D of G and so it suffices to prove that
(D)= M.

If S is a subgraph of G, let S be the subgraph of D such that V(QS) =
QV(S), E(QS) = E(S). If F is a subgraph of D, let p(F) be the subgraph
of G such that V(p(F)) = {p(6): 0 € V(F)}, E(p(F)) = E(F).

Let X be a subset of V(G). In (1), Ex means E§, which is equal to
EB,. Therefore D — Ex is the union of b.X + ¢(G — X)) disjoint non-
empty subgraphs D[d] (6 € 9X), QC (C € C(G — X)) and so ¢(D - Ex) 2
b.X +¢(G — X). Since removing an edge from a graph increases the number
of components by at most 1, it follows that ¢(D) > ¢(D — Ex) — |Ex| 2
b.X + ¢(G — X) — |Ex|. Since X was arbitrary, we infer that c(D) > M.

Let R(D) = R. Suppose that £ € V(G) \ R and Q¢ includes vertices ¥, x
which are in distinct components of D—§QR. Since S(D) C R(D), it follows
that £ ¢ S(D) and so 9, x are in the same component of D. Therefore D
contains a ¥x-path, which must include a vertex 6 € QR since ¥, x are in
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distinct components of D — QR. By Lemma 3, no circuit in D includes 0,
and so ¢, x are in distinct components of D —6. Therefore p(8) o & which,
since p(0) € R, implies that £ € R by the definition of R(D) = R. Since
this contradicts the assumption that £ € V(G) \ R, we conclude that Q¢
cannot meet two distinct components of D - QR if § € V(G)\ R. Therefore
the graphs p(F) (F € C(D — QR)) are disjoint subgraphs of G — R. Since
clearly these graphs are non-empty and connected and have union G — R,
they are the components of G — R and so

(G - R) = c(D — QR) = ¢(D — E25) ~ |R|.

Moreover ¢(D) = ¢(D — Efg) — |EERI because all elements of ESy, are
bridges of D by Lemma 3; and clearly = E§ and |QR| = b.R. There-
fore ¢(D) =b.R+¢(G — R) - |[E§| < M

3 Detachments of infinite graphs

What can one prove about infinite graphs on the lines of the above The-
orem? The methods of proof in [1], [2] and [3] seem difficult to extend to
infinite graphs, but the method used here seems more promising in this re-
spect. As an indication of initial progress, I state below two results hitherto
obtained by this method, deferring proofs to possible future papers.
Definitions. An infinite path P is one-way infinite if exactly one vertex of
P has valency 1 in P. If Q is a G-set, C is component of an Q-detachment of
G and 1 € V(G) then the statement £ ’n will mean that some element
of Q6N V(C) separates QN V(C) in C.

Proposition 1. If G is an infinite graph, Q is a G-set and P is a one-way
infinite path in a tight Q-detachment D of G then V(P)NQR(D) is finite.

Proposition 2. If G is an infinite graph, Q is a G-set and C is a com-
ponent of a tight Q-detachment D of G then there is no infinite sequence
€0, 1,2, .. of distinct vertices of G such that & € S(D) and &1 7 c &
for every i € N.
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