A Direct Proof of a Theorem on Detachments of Finite Graphs

C.St.J.A. Nash-Williams*
Department of Mathematics
University of Reading
Whiteknights, P.O. Box 220
Reading RG6 6AF, England

ABSTRACT. Let G be a finite graph with vertices ξ_1, \ldots, ξ_n and let S_1, \ldots, S_n be disjoint non-empty finite sets. We give a new proof of a theorem characterizing the least possible number of components of a graph D such that $V(D) = S_1 \cup \cdots \cup S_n$, E(D) = E(G) and, when an edge λ joins vertices ξ_i, ξ_j in G, it is required to join some element of S_i to some element of S_j in D (so that, informally, D arises from G by splitting each vertex ξ_i into $|S_i|$ vertices).

1 Introduction

^{*}Some of this research was carried out during the author's tenure of a Visiting Professorship at West Virginia University, which is gratefully acknowledged.

every $\xi \in V(G)$. We define an Ω -detachment of G (where Ω is a G-set) to be a graph D such that $V(D) = \Omega$, E(D) = E(G) and, for each edge λ of G, the vertices joined by λ in G are the first constituents of the vertices joined by λ in G. In particular, λ is a loop of G iff it joins vertices of G which have the same first constituent. A graph is a detachment of G if it is an G-detachment of G for some G-set G, and is a G-detachment of G if it is an G-detachment of G for some G-set G. Thus, informally, a G-detachment of G is obtained from G by splitting each G in the set of G is obtained from G by splitting each G in the set of G is detachment and "G-detachment" are more restrictive than those in [1], [2] and [3] since they require vertices of a detachment to be ordered pairs, but this makes no difference "up to isomorphism".)

This paper presents a proof of the following known theorem which is more direct than previous proofs involving matroids [1, 2] or orientation of some edges of G to produce a mixed graph [3].

Theorem. If G is finite and b: $V(G) \to \mathbb{N}$ is a function then the minimum of c(D) over all b-detachments D of G is equal to

$$\max_{X\subseteq V(G)}(b.X+c(G-X)-|E_X|). \tag{1}$$

2 The new proof

Further Definitions. If $L \subseteq E(G)$ then G - L denotes the subgraph of G such that $V(G-L)=V(G), E(G-L)=E(G)\setminus L$. We write $G-\omega$ in place of $G - \{\omega\}$ if ω is a vertex or edge of G. If $\xi \in V(G)$ then $G[\xi]$ denotes the subgraph of G such that $V(G[\xi]) = \{\xi\}, E(G[\xi]) = \emptyset$. The set of components of G is denoted by C(G). An edge λ of G is a bridge if it joins vertices which belong to distinct components of $G - \lambda$. The valency of a vertex incident with p loops and q other edges is 2p + q. A path is a non-empty connected graph in which no vertex has valency greater than 2 and every edge is a bridge. A circuit is a non-empty finite connected graph in which every vertex has valency 2. A $\xi \eta$ -edge is an edge joining (not necessarily distinct) vertices ξ, η . A path P is a $\xi \eta$ -path if ξ, η are (not necessarily distinct) vertices of P and the addition of a εn -edge would convert P into a circuit. A circuit in G is a subgraph of G which is a circuit, and "path in G" and " $\xi\eta$ -path in G" are similarly defined. A subgraph S of G and subset X of V(G) meet each other if $V(S) \cap X \neq \emptyset$. A vertex ξ of G separates a subset X of V(G) if two or more components of $G - \xi$ meet X. If λ is a $\xi\eta$ -edge of G and $\zeta \in V(G)$ then $G \circ \lambda(\eta \to \zeta)$ will denote the graph G' such that V(G') = V(G), E(G') = E(G), $G' - \lambda = G - \lambda$ and λ joins ξ to ζ in G'. In other words, $G \circ \lambda(\eta \to \zeta)$ is obtained from Gby "detaching one end of λ from η and re-attaching it to ζ ". (The vertices ξ, η, ζ need not be distinct.)

Let G be a graph, Ω be a G-set and D be an Ω -detachment of G. Then S(D) will denote the set of all vertices ξ of G such that $\Omega \xi$ meets at least two components of D. If $\xi, \eta \in V(G)$, the statement $\xi \xrightarrow{D} \eta$ will mean that some element of $\Omega \xi$ separates $\Omega \eta$ in D. We define a D-sequence to be a non-empty finite sequence $\xi_0, \xi_1, \ldots, \xi_r$ of distinct vertices of G such that $\xi_0 \in S(D)$ and $\xi_i \xrightarrow{D} \xi_{i+1}$ for every non-negative integer i < r. In particular, a sequence with just one term ξ_0 is a D-sequence if $\xi_0 \in S(D)$. We define subsets R(D), R(D,r), R(D,< r) of V(G) by the rule that a vertex of G belongs (i) to R(D) iff it is the last term of some D-sequence (or, equivalently, iff it is a term of some D-sequence), (ii) to R(D,r) iff it is the last term ξ_r of some D-sequence with fewer than r+1 terms and is not the last term of any D-sequence with fewer than r+1 terms, (iii) to R(D, < r) iff it is the last term of some D-sequence with fewer than r+1 terms. We shall say that D is a tight Ω -detachment of G if G is finite and no G-detachment of G has fewer components than G.

Lemma 1. If Ω is a G-set and D is a tight Ω -detachment of G then no circuit in D meets $\Omega S(D)$.

Proof: If a circuit C in D met $\Omega S(D)$ then there would exist vertices $\xi \in S(D)$, $\theta \in V(C) \cap \Omega \xi$ and, since $\xi \in S(D)$, there would exist $\phi \in \Omega \xi$ such that θ, ϕ are in distinct components of D. We could then choose an edge λ of C incident with θ and $D \circ \lambda(\theta \to \phi)$ would be an Ω -detachment of G with fewer components than D, contradicting the tightness of D.

Lemma 2. Let Ω be a G-set, D be an Ω -detachment of G and $D' = D \circ \lambda(\theta \to \phi)$, where θ, ϕ are vertices in distinct components of D such that $p(\theta) = p(\phi)$ and λ is an edge of D incident with θ . Let ξ, η be vertices of G such that $\eta \notin S(D)$ and $\xi \xrightarrow{D} \eta$. Then D' is an Ω -detachment of G and $\xi \xrightarrow{D'} \eta$.

Proof: Since D is an Ω -detachment of G and $p(\theta) = p(\phi)$, clearly D' is an Ω -detachment of G. Let D_{θ} , D_{ϕ} be the (distinct) components of D which include θ , ϕ respectively and σ be the vertex joined to θ by λ in D. Let Q be the component of $D_{\theta} - \lambda$ which includes σ and R be the graph obtained from $Q \cup D_{\phi}$ by adding λ as a $\sigma \phi$ -edge. Then clearly R is a component of D', λ is a bridge of R and Q, D_{ϕ} are the components of $R - \lambda$. Since $\xi \xrightarrow{D} \eta$, there exist $\rho \in \Omega \xi$ and $\psi, \chi \in \Omega \eta$ such that ψ, χ are in distinct components of $D - \rho$. Therefore $D - \rho$ contains no $\psi \chi$ -path, and so any $\psi \chi$ -path in $D' - \rho$ must include λ . Therefore the existence of such a path in $D' - \rho$ would require one of ψ, χ to be in Q and the other in D_{ϕ} , contradicting (since $Q \subseteq D_{\theta}$) the hypothesis that $\eta \notin S(D)$. Therefore there is no $\psi \chi$ -path in $D' - \rho$, and so $\xi \xrightarrow{D} \eta$.

Lemma 3. If Ω is a G-set and D is a tight Ω -detachment of G then no circuit in D meets $\Omega R(D)$.

Proof: Suppose that some circuit J in a tight Ω -detachment D of G meets $\Omega R(D)$. Then we can choose D, J, r so that J meets $\Omega R(D,r)$ and r is as small as possible. By Lemma 1, J cannot meet $\Omega S(D) = \Omega R(D,0)$ and so $r \geq 1$. Since J meets $\Omega R(D,r)$, it meets $\Omega \xi$ for some $\xi \in R(D,r)$. By the definition of R(D,r), ξ is the last term ξ_r of some D-sequence ξ_0,ξ_1,\ldots,ξ_r and if $i \in \{1, ..., r\}$ then $\xi \notin R(D, r - i)$ and so $\xi_i, \xi_{i+1}, ..., \xi_r$ is not a D-sequence and consequently $\xi_i \notin S(D)$. Since $\xi_0 \xrightarrow{D} \xi_1$ there are vertices $\theta \in \Omega \xi_0$ and $\psi, \chi \in \Omega \xi_1$ such that ψ, χ are in distinct components D_{ψ}, D_{χ} respectively of $D-\theta$. Since $\xi_1 \notin S(D)$ it follows that ψ, χ are in the same component D_0 (say) of D. Therefore $\theta \in V(D_0)$ and D_{ψ}, D_{χ} are components of $D_0 - \theta$. Since D_0 is connected, it has an edge λ joining θ to a vertex σ of D_{χ} . Since $\xi_0 \in S(D)$, some component $D_1 \neq D_0$ of D includes a vertex $\phi \in \Omega \xi_0$. Let $D' = D \circ \lambda(\theta \to \phi)$. Since D is an Ω -detachment of G and $p(\theta) = \xi_0 = p(\phi)$, clearly D' is an Ω -detachment of G. By Lemma 1, no circuit in D can include the vertex $\theta \in \Omega \xi_0 \subseteq \Omega S(D)$ and so λ is a bridge of D. Therefore $D_0 - \lambda$ has two components, namely D_{χ} and a component D'_0 such that $\theta \in V(D'_0)$ and $D_{\psi} \subseteq D'_0$. Clearly $\mathcal{C}(D') = (\mathcal{C}(D) \setminus \{D_0, D_1\}) \cup \{D'_0, H\}$, where H is the graph obtained from $D_{\chi} \cup D_1$ by adding λ as a $\sigma \phi$ -edge. Therefore c(D') = c(D), so that D' is tight, and ψ, χ are in distinct components D'_0 , H of D', so that $\xi_1 \in S(D')$. Moreover, since $\xi_i \xrightarrow{D} \xi_{i+1}$ for $0 \le i < r$ and $\xi_1, \dots, \xi_r \notin S(D)$ and θ, ϕ are in distinct components D_0, D_1 of D it follows by Lemma 2 that $\xi_i \xrightarrow{D'} \xi_{i+1}$ for $0 \le i < r$. Therefore ξ_1, \ldots, ξ_r is a D'-sequence and so $\xi \in R(\overline{D'}, < r)$. Since no circuit in D includes θ , it follows that $\lambda \notin E(J)$ and so J is a circuit in D'; and J meets $\Omega R(D', < r)$ since it meets $\Omega \xi$. Thus our choice of D, J, r so as to minimize r is contradicted.

Proof of the Theorem: Let M denote the maximum in (1). Let Ω be a (G,b)-set and D be a tight Ω -detachment of G. Then clearly c(D) is minimized over all b-detachments D of G and so it suffices to prove that c(D) = M.

If S is a subgraph of G, let ΩS be the subgraph of D such that $V(\Omega S) = \Omega V(S)$, $E(\Omega S) = E(S)$. If F is a subgraph of D, let p(F) be the subgraph of G such that $V(p(F)) = \{p(\theta) \colon \theta \in V(F)\}$, E(p(F)) = E(F).

Let X be a subset of V(G). In (1), E_X means E_X^G , which is equal to $E_{\Omega X}^D$. Therefore $D-E_X$ is the union of b.X+c(G-X) disjoint nonempty subgraphs $D[\theta]$ ($\theta \in \Omega X$), ΩC ($C \in \mathcal{C}(G-X)$) and so $c(D-E_X) \geq b.X+c(G-X)$. Since removing an edge from a graph increases the number of components by at most 1, it follows that $c(D) \geq c(D-E_X) - |E_X| \geq b.X+c(G-X)-|E_X|$. Since X was arbitrary, we infer that $c(D) \geq M$.

Let R(D)=R. Suppose that $\xi\in V(G)\setminus R$ and $\Omega\xi$ includes vertices ψ,χ which are in distinct components of $D-\Omega R$. Since $S(D)\subseteq R(D)$, it follows that $\xi\notin S(D)$ and so ψ,χ are in the same component of D. Therefore D contains a $\psi\chi$ -path, which must include a vertex $\theta\in\Omega R$ since ψ,χ are in

distinct components of $D-\Omega R$. By Lemma 3, no circuit in D includes θ , and so ψ , χ are in distinct components of $D-\theta$. Therefore $p(\theta) \xrightarrow{D} \xi$, which, since $p(\theta) \in R$, implies that $\xi \in R$ by the definition of R(D) = R. Since this contradicts the assumption that $\xi \in V(G) \setminus R$, we conclude that $\Omega \xi$ cannot meet two distinct components of $D-\Omega R$ if $\xi \in V(G) \setminus R$. Therefore the graphs p(F) $(F \in \mathcal{C}(D-\Omega R))$ are disjoint subgraphs of G-R. Since clearly these graphs are non-empty and connected and have union G-R, they are the components of G-R and so

$$c(G-R) = c(D-\Omega R) = c(D-E_{\Omega R}^{D}) - |\Omega R|.$$

Moreover $c(D)=c(D-E^D_{\Omega R})-|E^D_{\Omega R}|$ because all elements of $E^D_{\Omega R}$ are bridges of D by Lemma 3; and clearly $E^D_{\Omega R}=E^G_R$ and $|\Omega R|=b.R$. Therefore $c(D)=b.R+c(G-R)-|E^G_R|\leq M$.

3 Detachments of infinite graphs

What can one prove about infinite graphs on the lines of the above Theorem? The methods of proof in [1], [2] and [3] seem difficult to extend to infinite graphs, but the method used here seems more promising in this respect. As an indication of initial progress, I state below two results hitherto obtained by this method, deferring proofs to possible future papers.

Definitions. An infinite path P is one-way infinite if exactly one vertex of P has valency 1 in P. If Ω is a G-set, C is component of an Ω -detachment of G and $\xi, \eta \in V(G)$ then the statement $\xi \xrightarrow{C} \eta$ will mean that some element of $\Omega \xi \cap V(C)$ separates $\Omega \eta \cap V(C)$ in C.

Proposition 1. If G is an infinite graph, Ω is a G-set and P is a one-way infinite path in a tight Ω -detachment D of G then $V(P) \cap \Omega R(D)$ is finite.

Proposition 2. If G is an infinite graph, Ω is a G-set and C is a component of a tight Ω -detachment D of G then there is no infinite sequence $\xi_0, \xi_1, \xi_2, \ldots$ of distinct vertices of G such that $\xi_0 \in S(D)$ and $\xi_{i-1} \xrightarrow{C} \xi_i$ for every $i \in \mathbb{N}$.

References

- [1] C.St.J.A. Nash-Williams, Connected detachments of graphs and generalized Euler trails, J. London Math. Soc. (2) 31 (1985), 17-29.
- [2] C.St.J.A. Nash-Williams, Another proof of a theorem concerning detachments of graphs, European J. Combin. 12 (1991), 245-247.
- [3] C.St.J.A. Nash-Williams, Strongly connected mixed graphs and connected detachments of graphs, *Journal of Combinatorial Mathematics* and Combinatorial Computing, to appear.