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ABSTRACT. In this paper, we investigate the relationship be-
tween the profiles of Hadamard matrices and the weights of the
doubly even self-orthogonal/ dual [n, m, d] codes from Hadamard
matrices of order n = 8t with £ > 1. We show that such codes
have m < g, and give some computational results of doubly
even self-orthogonal/dual [n,m,d] codes from Hadamard ma-
trices of order n = 8t, with 1 <t < 9.

van Lint [12] recently commented: “We do not know if the construction
of the extremal code using a Hadamard design (matrix) has been tried in
a systematic way.” He also mentions that it seems that the existence of a
doubly even self-dual [72, 36, 16] code is still open.

Assmus and Key [1] recently considered Hadamard matrices from the
viewpoint of coding theory and classified the binary codes from Hadamard
matrices of order 24. They also mention that the next case to consider is
the binary codes from Hadamard matrices of order 32.

In this paper, we investigate the relationship between the profiles of
Hadamard matrices and the weights of the doubly even self-orthogonal/dual
[n,m,d] codes from Hadamard matrices of order n = 8¢ with ¢ > 1. We
show that such codes have m < %, and give an efficient method to deter-
mine d. Finally we give some computational results of doubly even self-
orthogonal/dual [n,m, d] codes from Hadamard matrices of order n = 8,
with1<t<9.
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For convenience and completeness, we include some necessary notations.

A binary linear [n,m] code C is an m-dimensional subspace of the n-
dimensional vector space V, over GF(2). The elements of the code are
called codewords. The addition of codewords is componentwise, and for
each component of two codewords addition is defined as follows

0+0=0, O0+1=1, 1+0=1, 1+4+1=0. (1)

The Hamming weight (or weight) of codeword v is the number of digits 1
occuring in v. A code is called even if all weights of the codewords are even.
A code is called doubly even if all weights of the codewords are divisible by
4. A binary linear [n,m,d] code is an [r,m] code in which the minimum
weight of all nonzero codewords is d.

A matrix G is called a generator matrix of the binary linear code C if
the linear span of its rows is C.

Given an [n, m] code C, the [r,n — m] code
C* = {zeV,, : yTz =0 for each yeC} . --.

is called the orthogonal or dual code of C. The generator matrices of the
dual code C* are called parity check matrices of C. If CCCY, then C is
called self-orthogonal; if C = C+, then C is called self-dual.

Given a (0,1)-matrix G, we define a (-1,1)-matrix

G=J-2G )

where J has all entries +1. In other words, we change (1,0)-entries in G to
(-1,1)-entries in G, respectively. We call G the (-1,1)-matrix corresponding
to G.

We define the Hadamard product of two vectors

2= (211, 2124000y 21»),
22 = (221, 222,..., 22n)
as follows:
21 ® z2 = (211221, 212222,..., 21nZ2n) (3)

i.e. the Hadamard product is componentwise. In particular, for any (-1,1)-
vector z, we have 2@ 2 = J.

It is clear that (1) corresponds to the Hadamard product
1-1=1, 1.(-)=-1, (-1)-1=-1, (-1)-(-)=1 (4)
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as 0, 1 correspond to 1, -1 respectively. Thus by (1) and (2), the addition
of any two binary linear codewords v;, vz is equivalent to the Hadamard
product of their corresponding (-1,1)-vectors 7y, %2. Therefore,

b=gi, +gia+* + i (8)
is equivalent to
b=7;, ®7;,®...97F;, (6)

where g;,, gi,...gi, are rows of G and g, ,3;,,--- ,5;, are rows of G.

For a (-1,1)-matrix G, we define the generalized inner product Piig..ins
as follows,

n

h!a e = Z 1.19':.1 -gik.‘i (7)
i=1
where G;, 5, Giyj0 - - - 1 94, ; 1€ the entries of rows iy, 43, ... , ik and column j
of G and n is the length of §;. We define the k-Profile m(m) as follows,

wx(m) = number of sets {i1, i2,..., ik} (8)
such that
|Psyig..in | = m. 9)

By (1)-(7), the minimum weight of a binary linear [r,m, d] code is equal
to the minimum value of %(n— Pyiy..4,) for all k (1< k < n) and all
11,92,... , 0k

An Hadamard matrix H of order n is an n by n matrix with all entries
in the set of {-1, 1} such that

HHT =aul.

It is known that if there is an Hadamard matrix of order n, then n =1,
or n = 2, or n is a multiple of 4. We assume that the first row of H has
all -1 entries by appropriate negation, then we denote by H° the rows 2
through n of H.

Let G be a binary generator matrix from Hadamard matrices of order
n = 8t, with ¢ > 1, the [n, m, d] code is linear span over GF(2) of rows of
G, where m is the maximum number of linearly independent rows of G.
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Theorem 1. [r,m,d] codes are doubly even self-orthogonal/dual with
m < %. In addition, if m = 3, then [, m,d] codes are doubly even self-
dual [n, },d] codes.

Proof: It can be easily verified that for n = 8¢ with ¢ > 1, we have

GGT =0 (mod 2) (10)

GJ =0 (mod4). (11)

Thus, the code from the linear span over GF(2) of rows of G is self orthogo-
nal by (10), and is doubly even by (11) and a theorem in [9;p14]. Therefore,
the [r,m,d] code from the linear span over GF(2) of rows of G is self
orthogonal and doubly even.

By applying a theorem in [8;p49], we get
n
< -
m=3
In addition, if m = %, then we have doubly even self-dual [r, 3, d] codes. O

The profiles of Hadamard matrices have been used in the investigating of
equivalence of Hadamard matrices ([6], [7]) because equivalent Hadamard
matrices have the same profiles. In the following, we illustrate the relation-
ship between the profiles of Hadamard matrices and the weights of codes
from Hadamard matrices of order 8 with ¢ > 1, which can be used to
determine d.

Lemma 1 (see [13; p427]). If H is an Hadamard matrix of order n
(n > 4), and k is even, then Py, i, and hence | P,,. i, | are congruent
to n modulo 8 when 4 divides k, and are congruent to 0 modulo 8 when k
is congruent to 2 modulo 4.

Thus, we have
Lemma 2. If n=8t witht > 1, then

Pi;ia...ik(H) =0 (mod 8)

and
51 = Pain..an ()] = 0 (mod 4)

where k is even and k > 4.

Theorem 2. If H is an Hadamard matrix of order n = 8¢t with t > 1 and
k > 4, then for H° we have

Pii,...ii (H®) = 0 (mod 8)
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and 1
5[’” - Pixiz...ik(Ho)] =0 (mOd 4)

Proof: The result follows from the method in Theorem 2 in [5].

Theorem 3. If H is an Hadamard matirx of order n = 8t witht > 1,
then the [n,m,d] code from H has weights

%[n = 1Pistz..in (D]

1
-2' [n + I})ixiamik(H)l]
and hence d > 4 where k is even.

Proof: The weights which do not involve row 1 of the generator matrix G
are

1 °
5["' - Pt'n'a...ik(H )]!

the weights which do involve row 1 of the generator matrix G are

n-— %[n = Piyiy..in (H®))

= S+ Py (H°)]
Thus, the weights are

3l = Pote.n(HO)]
and 1

§[n +1Piyia...in (HO)|).
Note that

Piiy..in(H) = Piyiy...ix.(H)

and by Theorem 2, we have d > 4. O

It is known that there is only one equivalence class of Hadamard matrix
of order 8. We found the doubly even self-dual [8,4,4] code. It is known
([2]) that there are exactly 5 equivalence classes of Hadamard matrices
of order 16. From these 5 equivalence classes, we found the doubly even
self-orthogonal/dual [16,5,8], [16,6,4], [16,7,4] and [16,8,4] codes.

It is known ([3], [4]) that there are exactly 60 equivalence classes Hada-
mard matrices of order 24. We found the doubly even self-dual [24,12,4]
code. The binary codes from Hadamard matrices of order 24 have been
classified by Assmus and Key ([1]).
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66,104 equivalence classes of Hadamard matrices of order 32 have been
constructed and classified in [7]. We computed some of these equivalence
classes and found doubly even self-orthogonal/dual [32,12,4], [32,13,4], [32,
16,4] and [32,16,8] codes.

We constructed some equivalence classes of Hadamard matrices of or-
ders 40,48,56,64,72 and found doubly even self-orthogonal/dual [40,20,4],
[48,22,4], [48,23,4], [48,24,4], [48,24,12), [56,28,4], [64,27,4], [64,28,4], [64,
29,4), [64,30, 4], (64,31,4), [72,36,4], [72,36,8], [72,36,12] codes which ver-
ify our results. We did not find [72,36,16] code from Hadamard matirces
of order 72. It seems that some other doubly even self-orthogonal/dual
[, m, d] codes could also be found by constructing more equivalence classes
of Hadamard matrices of orders 40,48,56,64,72.
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