Permutation Graphs: Hamiltonian Paths*

Charles Riedesel and Jitender S. Deogun

Department of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115, U.S.A.

ABSTRACT. Permutation graphs, a well known class of perfect
graphs, has attracted the attention of numerous researchers.
There are two noteworthy representations of permutation graphs.
Permutation diagrams have been widely employed in theoreti-
cal and application research. The 2-dimensional Euclidean rep-
resentation suggested by Ore is relatively unknown and unex-
plored. In this paper we demonstrate the utility of the lat-
ter representation in the investigation of the Hamiltonian Path
problem in permutation graphs.

1 Permutation Graph Representations
Let 7 be a permutation of the first n natural numbers, and let #—! and R
denote the inverse and reverse permutations respectively. For example, if
m=[11,2,1,12,5,9,7,6,8,3,4,10], then
7~! =[3,2,10,11,5,8,7,9,6,12,1,4] and
R =10,4,3,8,6,7,9,5,12,1,2,11], so that
m =11,7;' =1, and 7% = 10.

The graph G(7) is constructed with vertex set V = {1,2,...,n} and edge
set E = {(4,5)|(i — §)(m; =77 1) < O} '

An undirected graph G is called a permutation graph if there exists a

permutation w and a vertex labeling V called a permutation labeling such
that G = G(w) [1]. Unless otherwise indicated, a vertex will be referred

*This research was supported in part by the Office of N:;val Research under Grant
No. N0014-91-J-1693

JCMCC 19 (1995), pp. 55-63

to by its permutation labeling and its position in 7 by n; 1. A graph
G(n) = G(V, E) has a transitive orientation Fg = {ijli > j,(i,5) € E}.
The complement graph G€(w) = G(n®) is also a permutation graph. This
means permutation graphs are comparable and cocomparable. Thus there
exist partial orderings of V associated with Fg for G(«) and Fge for GC(),
so both graphs G(m) and G¢(r) can be represented by Hasse diagrams.

1 2 3 4 5 6 7 8 9 10 1 12

AN

/ //

11 2 1 125 9 7 6 8 3 4 10

Figure 1: A Permutation Diagram for G(w)

The common representation for a permutation graph G(V, E) = G(x) is
the permutation diagram in which the ordered sequence V and the permu-
tation m are listed opposite each other on two parallel lines. Straight line
segments are drawn connecting all pairs of matching elements. The inter-
section of two line segments indicates the existence of an edge between the
corresponding vertices. In this way a permutation graph can be thought
of as an intersection graph. An intersection occurs exactly when the labels
are reversed in the orderings V and .

An alternate representation was inspired by Ore [3]. He showed that an
n-dimensional partial order P = (S, >) can be represented by points in a
quadrant of an n-dimensional Euclidean space. The axes correspond to the
n linear extensions in a realizer for the partial order. Each coordinate for
plotting an element s of S is the position ps» of s along the linear extension
r. Members of P can be identified as those ordered pairs s;s; such that for
each coordinate 7, ps; r > Psj,r-

A 2-dimensional partial order PG = (V,>) corresponding to the per-
mautation graph G = (V, E) can be defined using the transitive orientation
Fge. Let the two linear extensions of a realizer be the natural ordered
sequence V and the permutation . Now Pg = {ij|ij € Fgc}. For conve-
nience we use the fourth quadrant of an = — y coordinate Euclidean space

56

to plot the vertices of G, and let y increase downward. In this quadrant,
members v;v; of P identify exactly those pairs of vertices v; and v; lying
on negatively sloped lines. The edges of G will then be identified by the
pairs of vertices lying on positively sloped lines. Some features useful for
investigating the Hamiltonian Path problem become much more visible this
way.

07T

Figure 2: Euclidean Representation of Permutation Graph G()

1.1 Layering in the Euclidean Representation

Figure 2 shows the Euclidean representation of graph G for the example
permutation 7 with layers drawn in. The plotted points are labeled with
V, the permutation labeling (upper left), and position 7~ (lower right),
so for instance, the lowest rightmost vertex is v = 10 at position T = 12.
An edge exists exactly when the slope between a pair of vertices is positive,
indicating labels being reversed in the permutation, or equivalently non-
members of the partial order Pg (without regard to the ordering of the
vertices). :

57

Each vertex v is assigned to a layer I(v) numbered 1,2, ..., A from upper
left to lower right. Let the number of vertices in I(v) be denoted by Cy(y).
For example, {(10) = 5 and Cj(0) = Cs = 1. The layers are drawn as non-
intersecting leftward descending staircases using vertices as the outer tips
of the steps. The process of drawing the layers involves no backtracking
when going in sequence starting with layer 1, proceeding from either end
through the whole layer. The labeling V' decreases along each layer from
upper right to lower left, while the positions w1 increase.

There is an edge (v;, v;), {(v;) < I(v;) when either v; > v; as with vertices
9 and 8 of layers 3 and 4 respectively, or when 1r;‘_1 > m,, 88 with vertices
4 and 8 (n;' = 11 > 7wg! = 9), also of layers 3 and 4. This stronger
statement is justified because given I(v;) < I(v;), at least one coordinate
of v; must be less than that of v;. Edges also exist between all pairs of
vertices of the same layer.

Let L;p be the pth vertex on layer ! from the upper right, and Ry, be
the pth vertex from the lower left.. In the example L3 ; = 9 and R3,; = 4.
The vertex ordering within each layer can be expressed as Ri; < Ry j and
nph <7, fori<j.

The direct consequence of the relations in the preceding two paragraphs
is this observation:

Lemma 1. If there exists an edge with one vertex in layer i and the other
in layer j, then at least one of the following is true:

o (Li1, Ri;1) is an edge.
e (Ri1,Lj,1) is an edge.

A generalization to this observation can also be made:

Lemma 2. Given vertex v in layer i and the non-empty set of edge E' =
{(v,v;)|(v,v;) € E,v; € layer 1}, then there exist m and/or n such that
E'={Li, L2, ..., Lim, Rig, Ri2..., Rin}.

Generating the layers for a permutation graph of order n, given a defining
permutation m, is straight forward and can be done in O(n)) time, where
A < n. Each layer beginning with the top layer is formed by searching
and extracting the maximal length decreasing sequence in the permutation
starting with the first (left-most) vertex remaining in 7.

Algorithm 1 (Layering)
input:

permutation 7

number of vertices n
output:

58

2-D array of vertices by layer L
array of number of vertices per layer C
number of layers A
A0
ne—n
While = #£ 0
Increment A
Cy«~1
Jje1
L«\,GA — Ty
Delete 7; from «
Increment j
While j < n’
If L,c, > m; Then
Increment Cj
Lyc, «— 7;
Delete 7; from 7
Decrement n’
Increment j
End While
ne—n'

End While

2 Hamiltonian Path Algorithm

A Hasse diagram partitions the ground set S of a partial order P = (S, >)
into levels. In particular there is a partitioning £(P) in which the Hasse
diagram is arranged so that each element s € S is at the highest possible
level. In £ each element s of each level below the top has an upper bound
element sy, in the next higher level.

By construction of the Euclidean representation, the edge complement
relation for vertices exhibits the same characteristics when ‘layer’ replaces
‘level’. Specifically, for all v,I(v) > 1, there exists v’, l(v') = I(v) — 1, such
that (v,v") ¢ E). The layers do therefore partition V' of G(«) to be the
same as L(Pg).’

It has been shown [2] that if a cocomparability graph is traceable, then
there exists a layered Hamiltonian path that traces a route through £(Pg)
from the bottom up. That result was based on the correspondence of the
Hamiltonian path problem in cocomparability graphs with the bump num-
ber problem in partial orders. Such a path is built by iteratively claiming
vertices from the lowest existing level. As a level is exhausted, a lowest
vertex to which an edge exists is claimed, even if the vertex must be pulled

59

down from a higher level. These transitions between the levels can be made
by applying greedy choice rules for pulling down vertices from higher lev-
els. Our algorithm utilizes this existence characteristic without the need
to generate and store a Hasse diagram. Furthermore the internal ordering
of vertices in each layer allows the greedy choice conditions to be met by
testing no more than four vertices per layer, specifically Ly 1, Lp2, Rp2,
and R, ;, where p is the lowest layer to which a transition exists (the pull
layer).” At most two vertices, Ly and Rs;, may need to be tested in the
layer being exited (the base layer). This is an immediate consequence of
Lemma. 2.

There are three greedy rules for selecting a transition vertex in the pull
layer to which an edge exists from an available vertex in the base layer:

1. If either (Lp,1, Rp2) or (Rs,1, Lp,2) is an edge and Cp > 2, choose that
edge for the transition vertices. This leaves Ly ; and Rp; available
to exit the pull layer later.

2. If both (Ly,1, Rp,1) and (Re,1, Lp,1) are edges, reserve them until a
choice is forced later or it is determined that neither vertex result in
the path being blocked.

3. Either (Ls,1, Rp,1) or (Ry1, Lp,;) must be an edge because some edge
is assumed and lemma 1 states it must be one of these. Choose that
edge for the transition vertices. :

Input for the algorithm is a permutation 7 representing the permutation
graph G(x). The internal representation of the graph may consist of only
the permutation and its inverse 7~!, thus saving the space and computation
time for an adjacency matrix. Many vertices may never need to be checked
for edges. A call must first be made to the Layering algorithm to generate
the rest of the commonly used parameters.

Note: L and R are always updated to reflect the current positioning of
vertices in the layers. In the implementation, L and R are heads at either
end of a doubly linked list of elements.

The algorithm returns an array of transitions in TransitionEdge and the
remaining vertices in L (or equivalently R). These vertices can be inserted
arbitrarily between the transitions layer by layer to produce a Hamiltonian
path.

Algorithm 2 (Hamiltonian Path)
be—A _
While b > 1 and not fail
p—b
While p > 1 and a pull layer is not found

60

p—p-—1
Case
Greedy rule 1 applies:
Pull(b, p, LtoR> or RtoL> as appropriate)
Greedy rule 2 applies: '
Reserve(b, p)
Greedy rule 3 applies:
Puli(b, p, LtoR or RitoL as appropriate)
Else pull layer not found yet
End While
If p=1 and a pull layer is not found
Then fail
be—b-1
End While

Procedure Reserve(b, p)
If Reserve, already exists
Then Resolve(p, LtoR)
Pull(b, p, RtoL)

Else Reserve, «— b

Procedure Resolve(p, EdgeChoice)
Pull(Reserve,, p, EdgeChoice)
Clear Reserve,

Procedure Pull(b, p, Edge Choice)
Case EdgeChoice of
LtoR: Extract vertices Ly, and R, from L
RtoL: Extract vertices Ry, and L, ; from L
LtoRy: Extract vertices Lp; and Rp 2 from L
RtoLy: Extract vertices Rp 1 and Ly s from L
TransitionEdge(b) «— extracted vertices
If Ly, and Ry were reserved
Then Resolve(b,edge to remaining vertex)
Update C,, Cp

Reserves may be resolved if either of a couple cases exist:

1. a) If the closest transitions are to R, ; and Ly ; only and these are
already reserved, then both must be claimed and will not be available
as exits later. Any existing reserved vertices at the base layer can
be resolved arbitrarily and the reserved vertices at the pull layer can
then be resolved using the remaining vertex.

61

2. b) If some closest transitions include Ry 2 or Ly 2, then such a vertex
can be pulled without penalty. Any current reserved vertices at the
base layer can be resolved in a way compatible with this choice.

Chains of reserves may exist and can be resolved either at the end of
the algorithm or as the next higher reserve is resolved, depending on which
occurs first.

The base layer moves up one layer with each iteration of the outer loop,
so there are A — 1 iterations. With no more than a constant number of
vertices to check at each iteration, the algorithm runs in O()) time, where
X < n. The overall time complexity of our algorithm is O(n)) because of
the initial layering routine. In the worst case this could be O(n?). This is
an improvement on the O(n3) complexity of the best existing algorithm for
cocomparability graphs.

2.1 Example of Algorithm
Let = = [11,2,1,12,5,9,7,6,8, 3,4, 10] so that ! = [3,2,10,11,5,8,7,9,
6,12,1,4] as in the previous examples.

The vertices at each layer L; and remaining 7 as each layer is extracted
are as follows:

Ly =[1,2,11] = =[12,5,9,7,6,8, 3,4,10]
Ly=1[3,5,12) m= (9,7,6,8,4, 10]

L3 =[4,6,7,9] 7= (8,10]

Ly = [8)] « = [10]

Ls = [10] =0

The initial assignments of each layer’s end vertices are as follows:

layer [Rin Rip Liz Lin
1 1 2 2 11
2 3 5 5 12
3 4 6 7 9
4 8 8
5 10 10

Starting at layer 5, no edge exists to vertex 8 of layer 4, and again no
edge exists to either vertex 4 or 9 of layer 3, but an edge is found to exist
to vertex 12 of layer 2. There is no edge to either 3 or 5,50 greedy rule
3 applies. Claim 12 as the pull vertex to layer 4 using edge (10,12),s0 in
effect 12 a member of layer 4.

62

From the only remaining vertex (8) of layer 4 edges exist to only the
outside vertices 4 and 9 of layer 3. Greedy rule 2 applies. Reserve these
vertices, allowing them to be considered for exiting layer 3.

Looking for edges from layer 3 to layer 2, two are found: (9,3) and (4,5).
(Vertex 12 was claimed earlier.) Because 3 and 5 are both outside vertices,
greedy rule 2 applies again. Reserve them, allowing either to be used to
exit layer 2.

One edge, (3,11), is found from layer 2 to layer 1. Greedy rule 3 applies
and vertex 11 must be the pull vertex. Earlier reserved vertices can now
be examined.

Vertex 3 is used to exit layer 2, leaving vertex 5 as the pull vertex for
layer 3. Now vertex 4 used to exit layer 1, leaving vertex 9 as the pull
vertex for layer 4.

The edges for traversing the layers are (10,12), (8,9),(4,5), and (3,11). In-
serting the remaining vertices produces a Hamiltonian Path [10,12,8,9, 6,7,
4,5,3,11,1,2].

References
[1] M. C. Golumbic. “Algorithmic Graph Theory and Perfect Graphs”.
Academic Press. 1980

[2] P. Damaschke, J.S. Deogun, D. Kratsch and George Steiner. Finding
Hamiltonian Paths in Cocomparability Graphs Using The Bump Num-
ber Algorithm. Order, 8(1992), 383-391.

[3] O. Ore. Theory of Graphs. Section 10.4 Amer. Math. Soc. Collog. Publ.
38 Providence, RI. M R27 #740.

63

