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ABSTRACT. There are many graphs with the property that ev-
ery subgraph of a given simple isomorphism type can be com-
pleted to a larger subgraph which is embedded in its ambient
parent graph in a nice way. Often, such graphs can be classified
up to isomorphism. Here we survey theorems on polar space
graphs, graphs with the cotriangle property, copolar graphs,
Fischer spaces, and generalized Fischer spaces, as well as graphs
with the odd coclique property.

1 Introduction

For the purposes of this survey, a “geometric property” of a graph I" will
always mean that all induced subgraphs X of a fixed isomorphism type
T, wherever they are encountered, are always contained in some larger
subgraph X* which is embedded in I in some canonical way. One should
think of the assertion that any subgraph X of type 7 completes to X* as
a sort of ‘axiom’ governing the structure of the graph I.

Of course such hypotheses are generally strong, as graphs go, and so we
should expect very strong conclusions, in most cases a complete classifica-
tion up to isomorphism.

A very simple illustration is provided by the so-called friendship theorem,

familiar to most graph theorists.
Theorem. (Friendship) Suppose that in a finite community of n peo-
ple any two distinct individuals have exactly one mutual friend. Then n
is an odd number, and one of these persons, P, is acquainted to all oth-
ers. Among the remaining persons, each is matched with a unique friendly
colleague.

JCMCC 19 (1995), pp. 65-92



The unique graph of the friendship relation is given below.
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This theorem seems to go back to unpublished remarks of Graham Hig-
man in 1968 (see Wilf [27]), and has been generalized to digraphs by Ham-
mersley [21].

The hypothesis of the Friendship Theorem imposes two distinct geometric
properties of the graph in the sense intended above:

Property 1: Every edge lies in a unique triangle.

Property 2: Every pair of non-adjacent vertices lies in a unique 2-claw
(the bipartite graph K} 2).

In each property, a subgraph is asserted to lie in a slightly larger sub-
graph, and the uniqueness of the larger graph is an assertion about its
embedding. '

The subjects visited in this survey are depicted below. A box connected
to a box above it indicates that the former is some kind of generalization
of the latter.

The Triangle Property

The Cotriangle Property
| Polar Space Graphs | / '
| The Copolar Graphs J
! Fischer Spaces l

Generalized Fischer Spaces l

| Locally Cotriangular Graphs

Graphs with Odd Cocliques




All graphs which we shall consider are undirected and without multiple
edges and loops. By a clique we mean an induced subgraph that happens
to be complete. It does not mean that it is a maximal such graph, as occurs
in some mostly older literature. A coclique is an induced subgraph having
no edges at all. We will introduce further terminology as it is needed.

2 The Triangle Theorem

The property below is about edges in a graph I" = (V, E). As one can see, it
bears a faint resemblance to the basic property of the Friendship Theorem.
(The Triangle Property): Given an edge e = {u, v} of the graph T, their
exists a third vertex w adjacent to both w and v, such that every further
vertex of the graph not in the triangle T = {u,v,w} is adjacent to 1 or 3
of the vertices of the triangle T
Example: The graph Tg (the dual triangular graph on 6 letters). Its
vertices are the fifteen 2-subsets of a 6-set @ = {1,...,6}. Two such 2-
subsets are declared to be adjacent if and only if their intersection is empty.
- Given an edge consisting of two disjoint 2-subsets U and V/, the triangle
whose existence is asserted is obtained by adjoining the vertex W = Q —
(U+V). It is then clear that {U, V, W} is a partition of the set Q into three
disjoint 2-sets, and that any further 2-subset X has one of its two letters
in two components of this partition, and is disjoint from just one of them,
. That is, any vertex X outside the triangle {U, V, W} is adjacent to exactly
one vertex of the triangle.

Of course, this is a special example, for here each edge lies in a unique
triangle. We can thus think of the system of 15 vertices and 15 triangles as
an incidence system I' = (P, £), of points and lines. It then satisfies these
axioms:

(GQ1) Two distinct points are incident with at most one line.

(GQ2) Given a line L and a point p not incident with L, there exists a
unique line on p which intersects L.

Any incidence system (P, £) which satisfies the axioms (GQ1) and (GQ2)
is called a generalized quadrangle. If it happens that there are exactly
8+1 points on each line and exactly ¢+1 lines on each point the generalized
quadrangle is said to have order (s,t). The generalized quadrangle defined
by our example T has order (2,2). A generalized quadrangle is said to be
non-degenerate if no point is collinear with all remaining points; and
if it is degenerate it consists of a single point Py, and a collection of lines
pairwise intersecting at this point. The vertices and triangles of the graph in
the friendship theorem is a degenerate generalized quadrangle. It is known
that in a non-degenerate generalized quadrangle, if some line has at least
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three points and some point is on at least three lines, then the quadrangle
has order (s, t) for some cardinal numbers s and &.

There are just three types of non-degenerate generalized quadrangles of
order (2,t). (This has been proved at least five times in the literature, [11],
(13, [23], {24], [25].) The cases are:

(1) The 3-by-3 grid having 9 points and 6 lines divided into two parallel
classes.

(2) The example T given above, having 15 points and 15 lines.

(3) A generalized quadrangle of 27 points and 45 lines. (This graph is
related to the famous theorem on the 27 lines of an irreducible cubic.)

The respective quadrangles have order (2,1), (2,2) and (2,4), and the
graphs of the collinearity relation on vertices all have the triangle prop-
erty.

These, of course, represent the special case that each edge lies in a unique
triangle, such that every vertex outside that triangle is adjacent to exactly
one vertex within the triangle. What about the general case? The result is
The Triangle Theorem. Let I be a finite graph having at least one edge
and possessing the triangle property. Suppose no vertez in T is adjacent to
all other vertices of T'. ThenT is isomorphic to one of the following graphs:

1. Sp(2n,2)
2. S+(2n,2)
3. S—(2n,2).

Explanation of the Graphs

1. Let V be a finite dimensional vector space over the field Z/(2), of integers
modulo 2. A symplectic form is a bilinear mapping B: V x V — Z/(2),
which satisfies B(u,u) = 0 for every vector u of V. The radical of B is
the set of vectors r such B(r,u) = 0 for every vector u of V. B is said to
be non-degenerate if its radical is the 0-subspace.

Whenever B is a non-degenerate symplectic form on V, then V has a
so-called symplectic basis {z1,¥1,%2,%2,...1%n, ¥n}, WhereB(z;,y;) =
1,i=1,...,n, and all other symplectic inner products among the basis
elements are equal to zero. In particular V is a perpendicular direct
sum

V = (z1,m1)L(z2,92)L ... L(Tn, Yn)

and has even dimension 2n.
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The vertices of the graph Sp(2n,2) are the non-zero vectors of the 2n-
dimensional space V admitting a non-degenerate symplectic form as above,
Two vectors u and v of the graph are adjacent if and only if they are
perpendicular with respect to B - i.e., B(u,v) =0.

2. Orthogonal geometries over Z/(2) can be thought of in the follow-
" ing way: Let V be a 2n-dimensional space over Z/(2) admitting a non-
degenerate symplectic form B as above. An orthogonal geometry over
Z/(2) is a partition of the non-zero vectors of V into two sets S and N
subject to these rules:

Let u and v be any two distinct nonzero vectors in V' . Then

1. If (u,v) is in $ x S or in N x N then u + v is in S if and only if
B(u,v) =0. '

2. If (u,v) is in $ x N, then u+ v is in S if and only if B(u,v) = 1.

When V has dimension only 2, there are just two possibilities: (Q) all
three non-zero vectors of V belong to N, or (D) two of the non-zero vectors
of V belong to S, the other to V.

In general, then, V is a perpendicular direct sum of non-degenerate 2-
dimensional subspaces of types “Q" or “D”, and it can be shown that the
4-spaces of types D1D and Q.LQ are isomorphic. Thus in general there
are just two cases:

O*: (Hyperbolic) DLD.L ... 1D (all D’s)
and
O~ : (Elliptic) QLD1 ... 1D (exactly one Q).

Thus graph S*(2n,2) and S—(2n,2) are the graphs (S, L) of the per-
pendicular relation on the vertex set S in the hyperbolic and elliptic cases
respectively, when dim(V) = 2n.

The sets S and N are called respectively the sets of singular and non-
singular vectors of the orthogonal geometry. This is an opportunity to
define two further graphs which we shall need later on, namely the graphs
Nt(2n,2) and N~(2n, 2) which record the Perp-relation on the set of non-
singular vectors AV in the two respective cases, hyperbolic and elliptic.

In low dimensions these graphs are often familiar in other contexts.
St(4,2) is the graph of the 3-by-3 grid (9 vertices).

N~(4,2) is the famous Petersen graph (10 vertices).

Sp(4,2) is the graph T of our example (15 vertices).

Nt(6,2) is the graph Tg (28 vertices).

N—(6,2) is Burnside’s graph of the double sixes (36 vertices).

Sp(6,2) is the Perp-graph on the lines generated by the root system of the
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Lie algebra of type E; (63 vertices).
N*(8,2) is the Perp-graph on the lines generated by the root system of
type Es (120 vertices).

The triangle theorem was proved in [23] as an offshoot of a characteriza-
tion of the symplectic groups over GF(2) by the graph of the commuting
relation on its class of transvections. The proof was a simple induction.
Since one could assume that one was dealing with more than a generalized
quadrangle, the induced graph on the set S(a, b) of all vertices adjacent to
two non-adjacent vertices a and b, could be seen to be a connected sub-
graph which also had the triangle property. This was enough structure to
determine the whole graph.

3 Polar Spaces

How should one generalize the triangle theorem? One possibility is to
enlarge the triangle to some special clique with a similar relation to the
graph as a whole: thus one might consider:

(The Polar Space Property): Given any edge e = {u,v} of the graphT,
there exists a clique C(e) containing e such that every vertez = of ' outside
C(e) is adjacent either to ezactly one or to all of the vertices of C(e).

One should note that the point-collinearity graphs of the class of gener-

alized quadrangles fulfills this condition. For these graphs, each external
vertex z is adjacent to just one vertex of C(e), that is, the option for adja-
cency to all vertices of the clique C(e) never arises for any edge e. Unfortu-
nately, despite many excellent characterization theorems (see Chapter 10 of
the forthcoming Handbook of Incidence Geometry) there is presently no ex-
haustive classification theory for generalized quadrangles, and the prospects
look more and more dim as new infinite families of generalized quadrangles
keep emerging.
Notation: If T is any graph, let Rad(T") be the set of vertices of I' which
are adjacent to all remaining vertices. If z is a vertex of I", we let z1 denote
the vertex z together with the set I'(z) of all vertices adjacent to z. Thus
a vertex z belongs to Rad(T') if and only if z1 = V(T"), the full vertex set
of T'.

If T is a graph with the polar space property, we say that I" is non-
degenerate if and only if Rad(T') is empty. There is a graph homomor-
phism from the induced subgraph of non-radical vertices V(I') — Rad(l‘)
onto a graph I'*, obtained by identifying vertices z and y for which zl =yt
It is easily seen that the graph I'* is now a non-degenerate graph with the
polar space property. Moreover, the isomorphism type of I' can be com-
pletely recovered from the isomorphism type of the graph I'* and the cardi-
nality of Rad(T"): one simply blows up each vertex u* of I'* to a clique U of
the cardinality of Rad(T"), inserts all possible edges or none between cliques
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U and V according as their images »* and v* are adjacent in I'* or not,
and then adjoins a copy of Rad(I') whose vertices are made adjacent to all
the vertices of the newly-created cliques U. The result is a reconstruction
of I'.

Thus to classify the graphs with the polar space property, there is no loss
* of generality in assuming that the graph has empty radical. The result-
ing theorem has a simple hypothesis, but a fairly complicated conclusion:
indeed the theorem yields a simple characterization of all of the classical
groups.
The Polar Space Theorem Stated As A Theorem In Graph Theory
Let T be graph with these properties:

(i) Each edge e lies in a clique C,, of three or more vertices, such that
each vertex outside this clique is adjacent to exactly one, or to all of
its vertices.

(ii) No vertex is adjacent to all remaining vertices.
(iii) T possesses at least one edge.

Then one of the following is true:

(1) T is a generalized quadrangle.

(2) There are two maximal parabolic subgroups H and K of a compact
form of an algebraic group G of type E;. The vertices are the cosets
of H in G; two of them being adjacent if and only if they have a
nonempty intersection with a common coset of K.

(3) T is isomorphic to one of the following three graphs defined by a
(possibly infinite-dimensional) right vector space V over a division
ring D:

(i) There exists a non-degenerate (o, ¢)-Hermitian form f on V and the
vertices of I" are the totally isotropic 1-spaces of V, two of them being
adjacent if and only if they are perpendicular with respect to the form

f.

(ii) D has characteristic 2, and V admits a non-degenerate pseudoquadratic
form Q . The vertices are the totally Q-singular 1-spaces, and the
cliques C, are the totally Q-singular 2-subspaces of V' (each viewed
as a collection of 1-spaces).

(iii) V is a 4-dimensional vector space over the non-commutative division
ring D, the vertices I are the 2-dimensional subspaces of V', and two
of them are adjacent if and only if they intersect at a 1-subspace.
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The graphs of the theorem are allowed to be infinite (whether or not
the cliques C., which must all have the same cardinality, are finite or not).
Its proof is not at all graph-theoretic in any natural way, but is basically
a geometric preof since it intrinsically utilizes the theory of Buildings as
developed by Prof. J. Tits ([26]). Moreover, the proof of this theorem
has gone through many stages over the years, beginning with the seminal
work of F.D. Veldkamp ([27]). It was then generalized and adapted for
flag complexes of buildings by Tits ([26]), had its hypotheses simplified
further by Buekenhout and Shult ([4]), and later relaxed by Peter Johnson
to allow infinite rank ([22]). Finally, Cuypers, Johnson and Pasini introduce
further simplifications of Tits’ proof for singular rank at least four ([6], [7]).
Nonetheless, having said all that, it is a theorem that characterizes graphs,
and does so by a geometric property in the sense of the introduction .

4 Graphs with the Cotriangle Property

We turn now to a theorem which does have a natural graph-theoretic proof.
We say that a subset X of the vertices of a graph T, is an odd set if and
only if z! intersects X at a set of odd cardinality for each vertex = of T’
(whether in X or not). Thus in Section 2, the triangles of the triangle
theorem are odd 3-cliques.

We now consider a variation on the theme of Section 2. Consider:
(The Cotriangle Property) For each 2-coclique (non-adjacent pair of
vertices) {u,v} in the graph T, there exists a third vertex w such that T =
{u,v,w} is an odd cotriangle - that is T possesses no edges, and every
vertezr outside of T is adjacent to an odd number of vertices of T.

Example. Petersen’s Graph. The odd cotriangles are the maximal co-
cliques of size three (there are also 4-cocliques here, but they are not odd).

Reductions for the Classification
1. T can be assumed to be co-connected - that is, the complementary
graph T is connected. :

Suppose I partitions into disjoint subgraphs

F'=r1+T2+...T%

where each vertex in I'; is adjacent to every vertexinTj, for1 <i<j<k.
Then it is easy to see that I" has the cotriangle property if and only if each
co-component I'; has it.

2. One can assume TI' is reduced - that is, if z+ = y*, then z =y.

The relation z- = y! is an equivalence relation on the vertices of I'. The
equivalence class containing the vertex z is denoted by the symbol z*. It
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is clearly a clique, and if z* and y* are two such classes, then either every
possible edge exists between z* and y* or there are no edges at all between
z* and y*, this, according as z is adjacent to y or not.

We can thus make a new graph I' whose vertices are the equivalence
classes z* of the previous paragraph, two being adjacent if and only all
possible edges exist between them. The graph I' is clearly reduced; that is,
(z*)t = (y*)* implies z* = y*. Moreover we have a graph homomorphism
I’ — I'* which takes each vertex z to its equivalence class z*.

The point of all this is that I" possesses the cotriangle property if and
only if I'* does.

Conversely if I' is a known graph, then the isomorphism type of the
reconstructed I is completely determined by merely assigning cardinalities
to the classes z* at each fibre of the homomorphism .

Thus, in order to classify graphs with the cotriangle property,
it suffices to classify only such graphs which are (1) coconnected
and (2) reduced.

We can now state:

The Cotriangle Theorem Let I' be a finite reduced coconnected graph
possessing the cotriangle property. Then T is one of the following graphs:

1. The dual triangular graph, T,
2. Sp(2n, 2)

3. Nt(2n,2)

4. N=(2n,2).

The proof proceeds as follows:

First, if a 2-coclique {u,v} lived in two odd cotriangles T; = {u, v, w;},
i=1,2, then (w;)* and (w2)* would coincide. Thus since I" is a reduced
graph, w, = ws; in other words, each 2-coclique {u,v} lies in a unique odd
cotriangle whose third vertex can unambiguously be denoted t(x, v).

Now consider a fixed odd cotriangle T' = {a, b, c}. The rest of the vertices
of I can be partitioned into four sets:

where X, are the vertices of I' — T" adjacent only to vertex » in T, and
A=TL
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Second, {z,y} is an edge in X, if and only if {z,t(y,c)} is not an edge if
and only if {t(z,c),t(y,c)} is an edge. Thus the mapping X, — X, defined
by sending u to t(u,c), is an isomorphism of induced subgraphs of I". It
follows that the isomorphism type of X, completely determines
the isomorphism type of the induced subgraph of

T+X0+Xb+x¢:-

Third, there is a surjective mapping f from the set [Xa, Xa]* of 2-
cocliques of X, to A, whose fibres are determined by a certain equivalence
relation R on [X,, X,]*. Moreover, two R-classes in [X,, X,]* represent
nonadjacent vertices of A if and only if a pair of representative 2-cocliques
from each class together comprise either a 3-coclique or a 4-vertex subgraph
with only one or three edges. Moreover, a vertex = of X, is adjacent to a
vertex f(u,v) of A if and only if z is adjacent to 0 or 2 members of the co-
clique {u, v} of [Xa, Xa]*. It follows that the isomorphism type of I is
completely determined by the isomorphism type of the subgraph
Xa.

Fourth, no vertex in X, is adjacent to all remaining vertices of X,. (Any
such vertex would have the same “perp” as a, against I being reduced.)

Fifth, if e = {u,v} is an edge within X,, then t(u,b) is not adjacent to
t(v,c), and w = t(t(u, ), t(v,c)) is a vertex of X, such that T = {u, v, w}
is an odd triangle. Thus X, satisfies the hypothesis of the Triangle
Theorem. (This was an observation of J.J. Seidel.)

The third, fourth and fifth steps show that T is uniquely determined.
Thus when X, possesses no edges at all (totally disconnected), T is T,.
When X, is Sp(2n,2), T' is Sp(2n+2,2), and when X, is S¢(2n,2),then T’
is N'¢(2n,2), e = £1.
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The Infinite Cotriangle Theorem

It should be remarked that recently J.I. Hall has given an essentially differ-
ent proof of the Cotriangle Theorem - one that does not require finiteness of
the graph ([16]). In his proof the vertices of a reduced co-connected graph
with the cotriangle property are embedded into a vector space V over the
field GF(2) so that

(i) the embedded vertices span V and
(ii) the vectors of an embedded cotriangle always sum to 0.

The new graphs of the conclusion are just infinite versions of the same
finite graphs:
T(Q): the disjointness relation on all 2-subsets of some (infinite) set .
Sp(V'): The perpendicular relation on all 1-spaces of a GF(2)-space V with
respect to a non-degenerate symplectic form.
N(V,q): Vertices are all non-singular non-radical vectors of an infinite
GF(2)-space V with respect to a non-degenerate quadratic form g, two
vertices = and y being adjacent if and only if ¢(z + y) = ¢(z) + q(¥).

Locally Cotriangular Graphs

These are graphs I in which the induced subgraph I'(z) on the set z+ —{z}

of vertices adjacent to z, is a graph with the cotriangle property. This is

still an instance of a geometric property of a graph in the spirit of the

introduction of this survey. It says that we are considering graphs in which
every 2-claw lies in a 3-claw such that every exterior veriex which happens

to be adjacent to its center is also adjacent to 1 or 3 of its three terminal
vertices. It does not make any assertion about exterior vertices which are

not adjacent to its center - which is all the better!

The first real theorem in this area was Jonathan Hall’s theorem clas-
sifying all graphs which are locally the Petersen graph [(14]). This was
a hard theorem. As one gets more experienced in trying to characterize
graphs locally, a certain principle emerges: It is easier if I'(z) is a “richly
structured” graph in the sense that it is reduced and all circuits reduce
to sums of triangles. The trouble here is that Petersen’s graph has girth
five. Just by looking at the conclusion set one can see that there must be
difficulties in the theorem. There are three graphs: all are graphs of the
commuting relation on a class of involutions in some group, and the groups
are (i) Sym(7) (the Ty graph on the 21 transpositions; (ii) 3.Sym(7) (the
63 preimages of the transpositions) and (iii) PI"L(2, 25) (the 65 involutions
conjugate to the action induced by a field automorphism).

In the general case that I'(z) is a graph with the cotriangular property,
one has to contend with the case that I'(z) is not coconnected, and that
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I'(z) is not reduced. Hall and I could not handle the former, and for reasons
that can be easily described, nothing useful can be said about the cases that
I'(z)* is Ky or K3. So suppose D is the class of finite coconnected graphs
possessing the cotriangle property which is not the disjoint union of 1 or
3 cliques. We say that a graph T is locally D, if for every vertex z, I'(z)
belongs to the class D. Note that this is far from asserting that I'(z) is of
a fixed isomorphism type. This is the theorem:

Theorem On Locally Cotriangular Graphs ([20]). Let I’ be a finite
graph which is locally D. Then the connected components of T are in the
Sollowing list:

1. Tn,n2T;
2. Sp(2n,2) minus a (possibly empty) polar subspace.

3. All non singular vectors of an orthogonal geometry with the points of
a coclique of singular points adjoined.

4. The subgraph of Sp(2n, 2) obtained by inducing an orthogonal geom-
etry on the set of lines on a point p, and removing all points except p
from those lines on p corresponding to singular “points” of the residue
of p.

5. The locally Petersen graphs on 63 and 65 vertices, and the 117-vertex
graph N't(6, 3) of square-norm non-singular 1-spaces of the quadric
of type Q¥(6, 3), under the perpendicular relation.

But what if a graph is not locally coconnected? Only very recently have
we learned how to handle this. Jon Hall’s paper “Local indecomposabil-
ity of certain geometric graphs” ([18]) is a brilliant adaptation of ideas
of Aschbacher on component problems in groups to graphs. (This is no
mean accomplishment when one realizes that without the vertices being
group elements, the vertices are “dead” - that means that every argument
where a group-action was previously available now has to be fought out on
its own ground.) This paper is at the core of what we call groups and
geometries: it is a paper every graph-theorist should read.

But all of this section on locally cotriangular graphs is a side-issue.

5 Copolar Graphs

Just as polar space graphs display a generalization of the triangle property
in which the triangle has been replaced by a larger clique with the “one or
all” property, similarly the cotriangle property admits a generalization in
which the cotriangle has been replaced by a larger coclique which has the
same “one or all” property.
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A copolar graph is a graph I" such that for every pair of distinct non-
adjacent vertices {a, b}, there exists a coclique C = C(a,b) in I such that

(i) C contains {a, b}

(ii) every exterior vertex z in I' — C is adjacent to exactly one or all of
the vertices of C.

The study of copolar graphs is amenable to many of the same reductions
that were available to graphs with the cotriangle property. Thus:

1) If T decomposes into coconnected components - that is
F=T1+T2+---+T%

where each vertex in I'; is adjacent to every vertex in I'j, for 1 <
i < j <k, then T is a copolar graph if and only if each component
subgraph T is.

2) If T — I'* is the graph homomorphism that takes each vertex z to its
equivalence class z*, then I' is a copolar graph if and only if I'* is.

Theorem On Copolar Graphs. (J.I. Hall [15]) A finite graph T is
copolar if and only if every coconnected component A of I'* is isomorphic
to one of the following:

(1) a coclique of size at least three;

(2) a Moore graph;

(3) a dual triangular graph T,;

(4) N¥(2n,2);

(5) Sp(2n,q);

(6) thz; oomplementar)} graph of any graph without triangles.

The Graphs of the Conclusion of Hall’s Copolar Theorem

A Moore graph is a graph of valence k and diameter 2 having no triangles
and no 4-circuits. Such a graph has exactly 1 4 k2 vertices. These graphs
were introduced by Hoflman and Singleton who proved that k can assume
only the values k = 2,3,7, or 57 and that the graphs were unique in the
first three cases, namely the pentagon, Petersen’s graph, and a unique 50-
vertex graph (now called the Hoffman-Singleton graph). To my knowledge
it is still not known whether a 3,250-vertex Moore graph of valence 57 can
exist.
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The one-or-all cocliques here are the sets of neighbors of a vertex.

Sp(2n, q) is the graph whose vertices are the 1-subspaces of a vector space
over GF(q) admitting a non-degenerate symplectic form B. Two 1-spaces
are adjacent if and only if they are distinct and perpendicular with respect
to B.

The one-or-all cocliques here are the 1-spaces belonging to a non-degenerate
2-space (hyperbolic line).

Cases (3), (4) and (5) with g = 2 are graphs with the cotriangle property.

Cases (1) and (6) are degenerate in some sense. In case (1) no vertex
is adjacent to all vertices of the one-or-all cocliques while in case (6) the
one-or-all cocliques have size just 2. Still, many complex configurations can
exist, any transversal design yields an example of the former, while anyone
would admit that graphs without triangles are numerous to say the least.
But it is the best that can be said in these cases, for all of them do yield
copolar graphs.
A word about Hall’s proof. In the reduced co-connected case all of the
one-or-all cocliques have the same cardinality ¢+ 1, which can be assumed
to be at least 4. The set I['(z) of neighbor’s of a vertex z also is a copolar
graph. An earlier version of some of the argument’s now in Hall’s paper on
local indecomposability mentioned above, allowed one to assume that I'(z)
is coconnected. Induction then shows (['(z))* must be one of the graphs
(1)-(6). '

We end this subsection with two questions:

Can infinite copolar graphs be classified?

Can some of the locally copolar graphs be classified?

6 Fischer Spaces

There is another generalization of the cotriangle property, which, for lack
of a better name, I will call

The Fischer Property. For each 2-coclique {v,v} in the graph T, there
is a third vertex w, such that

(i) T ={u,v,w} is a cotriangle (3-coclique), and

(i) for each vertex z of I' — T is adjacent to 0, 1 or all three members of

Again, there are two reductions to the classification problem that take
place just as they did for copolar spaces.

1. T can be assumed coconnected.

9. T can be assumed to be reduced - that is, z' = y* implies z = y.
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But there is also a third kind of reduction. We define an equivalence
relation 6§ on the vertex set of I' by writing z0y if and only if the sets I'(x)
and I'(y) of vertices adjacent to = and ¥, respectively, coincide. Then 6-
equivalence classes are cocliques, and for any two distinct #-classes, either
there are no edges between them or else all possible edges between them
exist, so that any two of them together form either a larger coclique or a
complete bipartite graph. In the latter case we say that the classes are
“adjacent”. There is an obvious graph homomorphism ¢: I' — 6T, taking
each vertex to its 6-class. One has

I" has the Fischer property if and only if 6T does.

This means that the isomorphism type of I" and the #-class cardinalities
determine the isomorphism type of I'. Thus it suffices to classify graphs with
the Fischer property only in the case that they are coconnected, reduced,
and 6-reduced (i.e., all f-classes are single-vertex sets) - a combination of
conditions which we will call “irreducible”.

At the moment, it seems hopeless to classify irreducible graphs having
the Fischer property. But there is hope, if some assertion is made about
cotriangle-closed subgraphs which contain three points.

As an earlier step in this direction, Jon Hall noticed in [16] that there is
a very close relation between the following three sorts of objects:

I. Graphs which are locally a 3 x d; grid (d. depending on the local
vertex z).

II. Partial linear spaces with three points on each line, and every pair of
intersecting lines generating a dual affine plane of order 2.

III. 3-transposition groups (G, D) with no non-trivial normal solvable sub-
groups in which no three elements of D generates a subgroup of order
18 or 54.

This three fold correspondence arose in connection with his proof of the
infinite version of the Cotriangle Theorem.

The linear spaces of II result when we regard the system of cotriangles
of a reduced indecomposable graph as the lines of the partial linear space.
The fact that two intersecting lines generate a dual affine plane follows from
the cotriangle property and the fact the graph is reduced. '

If one hopes for such a correspondence between groups and geometries
in the case that the cotriangle property is replaced by the weaker Fischer
property, the structure of the “planes” generated by two intersecting lines
will have to be hypothesized since they are no longer deducible from the
Fischer property alone.
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A point-line geometry Il = (P, L) is a rank 2 incidence system of
so-called “points” P, and “lines”, £, such that each line is incident with at
Jeast two distinct points. IT is called a partial linear space if and only if
distinct lines are incident with at most one common point. A subspaceis
a subset S of P such that any line having at least two of its incident points
in S, in fact have all of their incident points in the set S. Each subspace
S can be regarded as a point line geometry of its own, with its lines being
those lines of £ with all incident points in S. Clearly the intersection of two
subspaces is a subspace. If X is a subset of P, the subspace generated
by X, and denoted (X), is the intersection of all subspaces of II containing
X. ~

There are two point-line geometries of special interest to us here:

The affine plane of order 3 - denoted AG(2,3) - has as its points the
9 vectors of a 2-dimensional vector space over GF(3), and as its lines the
12 additive cosets (or translates) of its 1-dimensional subspaces.

The dual affine plane of order 2 is the system of 6 points and 4 lines
drawn below:

3 4

/5 6\ 1

A Fischer space is a point-line geometry II = (P, £) such that

(Fi) I is a partial linear space with three points per line; and

(Fii) The subspace generated by any two intersecting lines is either an
affine plane of order 3 or a dual affine plane of order 2.

This notion was introduced by Francis Buekenhout in [3].

A 3-transposition group (G, D) is a group G generated by a conjugacy
class of involutions (elements of order two) such that for any two distinct
involutions d and e of D, the product de is an element of order 2 or 3 .

The connection between Fischer spaces and 3-transposition groups
with no noncentral solvable normal subgroups

First suppose II is a Fischer space. For each point u in IT let ¢y be that
permutation of the points of IT which fixes u and takes each point v collinear
with but distinct from u, to the unique third point of the line on » and v,
and which fixes every point of IT which is not collinear with u. Then ¢, is
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well defined since II is a partial linear space. The precise importance of the
two types of planes (affine oyer GF(3) or dual affine over GF(2)) is that
because of them, ¢, preserves the full set of lines £ of the Fischer space II.
Thus £, is an automorphism of II, of order 2. Now the following can easily
be shown:

If » and v are not collinear, then t, and {, commute; otherwise
t,t, is an automorphism of the graph I' of order 3

Thus letting G be the subgroup of Aut(I’) generated by all ¢, as v ranges
over the vertex set of ', G will be a 3-transposition group, provided D is
just one conjugate class in G. Being coconnected and #-reduced will insure
this.

Conversely, suppose (G, D) is a 3-transposition group with no normal
non-central solvable subgroups. Let £ be the collection of triplets T =
{d,e, f} in D, belonging to a Sym(3) generated by any two non-commuting
involutions d and e in D. Then II = (D, £) is a partial linear space.

Here is where the group theory comes in! When one examines what is
generated by three elements of D one comes up with the 6 transpositions of
Sym(4) in two different ways, or the group 31+2; 2 (called SU(3,2)’ by J.I.
Hall) which is an extension of an extraspecial 3-group T’ of order 32 by an
involution which inverts the Frattini-factor group of T’ while centralizing
its center. The two commuting graphs with their attendant cotriangles are
the dual affine plane over GF(2) and the affine plane of order 3. Thus (D,
all {0, 1,3}-cotriangles) is a Fischer space.

And finally, we come back to the analog of cotriangular graphs. The
graph theorist studying the complement of the collinearity graph of a Fis-
cher space is in fact studying a special sort of irreducible graph with the
Fischer property - ones for which intersecting cotriangles generate the co-
triangle closed 6- and 9-vertex subgraphs corresponding to the two classes
of planes. We call such a graph, an irreducible Fischer graph. We call
a graph T' a Fischer graph if and only if it is a graph with the Fischer
property which after f-reduction and *-reduction becomes an irreducible
Fischer graph in the sense of the previous sentence.

So in one sense Fischer spaces, reduced Fischer graphs, and certain 3-
transposition groups are all the same. But in the sense of classifying objects
in their natural contexts they are not the same at all. '

1. For the group G involved in a 3-transposition group (G, D), G may well
have a center Z(G) which is simply invisible in terms of the action on the
irreducible Fischer graph or its Fischer geometry. But as a group-theorist
one is obligated to classify G and hence describe its center.

2. If the Fischer graph is not -irreducible, the group theorist is still
obligated to describe the non-central normal 2-subgroup structure of G,
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while the geometers studying the Fischer space II{(G, D) may ignore the
center of G, but is still obligated to detail the line structure of any normal
2-subgroup of G/Z(G). (A beautiful series of paper by J.I. Hall, in fact ful-
filled the group-theoretical obligation here ([14, [15]).) The graph theorist
studying the Fischer graph I, by contrast, may ignore all of the solvable
normal subgroup structure in classifying the graphs.

3. If the Fischer graph is not #-reducible, its isomorphism type can be

determined from I' and some cardinality commitments. But for every two
vertices in a 0-class of a x-reduced graph I' the unique third member of
the cotriangle must live in the same 6-class. Thus each #-class of T is
itsell a Fischer space of Moufang type (i.e., a linear space in which all
planes are affine of order three). For the geometers or group-theorists, this
structure must be described, while for the graph-theorist it is merely a
totally disconnected graph of some unknown cardinality.
The Classification of Fischer Spaces. In the context of graphs with
geometric properties we are interested here only with irreducible Fischer
graphs. But it is in fact impossible to describe either the conclusions or the
proof without mentioning groups.

In fact, historically everything started the other way around. 3-transposition
groups were studied long before there were any Fischer spaces, Fischer
graphs or even a cotriangle theorem. In fact, the finite groups involved
above were completely classified by Bernd Fischer nearly 24 years ago.
Without much ado, the theorem is as follows:

Fischer’s 3-Transposition Theorem. Let (G, D) be a finite 3-transposition
group with no non-central solvable subgroups. Then we may identify G with
one of the following containments of a class D and a subgroup G':

(1) The transposition class of a symmetric group;

(2) The transvection class of Sp(V, B) where B is a nondegenerate sym-
plectic form B on V over GF(2);

(3) The class of transvections of a non-degenerate orthogonal geometry
over GF(2);

(4) A conjugacy class of reflections of a nondegenerate orthogonal group
over GF(3);

(5) The transvection class of a nondegenerate unitary space over GF(4);

(6) A unique class of involutions in one of the five finite groups Q+(8, 2):
Sym(3), Q+ (8, 3): Sym(3), Fizz, F‘izs, or Ft'zq.

Obviously, from the correspondences given above, this is already enough
to classify all finite irreducible Fischer graphs. However, it is my intention
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here to present the master theorem and a rough plan of its proof as pre-
sented by Jon Hall and Hans Cuypers in [10]. (Of course, by this late date
the proof has incorporated quite a few efforts of many authors to streamline,
and extend the original proof.)

The General 3-Transposition Theorem (Cuypers-Hall)

(Statement) Same as Fischer’s theorem except that in the hypothesis the
word “finite” is removed and in conclusions (1) through (5) the natural
modules for the polar spaces are allowed to be infinite dimensional.

The proof only uses group-theory in a heavy way in getting the conclu-
sions at step (6). There is no way any reformer’s proof is going to get
around Fischer’s innumerable steps - either the basic ones, or the specific
ones - which characterize the three sporadic Fischer Groups.

Obviously any proof of the infinite (irreducible) 3-transposition theorem
will yield as a dividend the classification of the irreducible Fischer graphs.
Classification Theorem For Irreducible Fischer Graphs. Let T be
an irreducible Fischer graph. Then T is one of the following:

(1) T is symplectic type, that is it is a conclusion of Hall’s infinite
version of the cotriangle theorem, Sp(V), N(V), T(R), or one of the
finite versions in the finite case.

(2) T isthe graph of the “perp” relation on non-singular 1-spaces of square
norm or else all of those of non-square norm in some (possibly infinite
dimensional) nondegenerate orthogonal space V' over GF(3).

(3) T is the “commuting graph on unitary transvections” - that is, the
vertices are the singular 1-spaces of a (possibly infinite dimensional)
non-degenerate GF(4) - space with respect to a Hermitian form h.
The lines are the 3 singular points of any 2-space with a trivial radical.

(4) One of the finite graphs appearing in conclusion (5) of Fischer’s 3-
transposition theorem.

Historical Note: By now it should be obvious that the cotriangle theo-
rem mentioned above is but a small case of the Fischer graph theorem we
have just displayed. Moreover, Fischer’s theorem on 3-transposition groups
already existed a good 3 years before the cotriangle theorem. So what was
the point of even proving the cotriangle theorem? There were several:

(1) At that time, Fischer’s theorem (because of its general scope) was a
long hard way to prove something which enjoyed a simpler life in one
of its special subcases.
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(2) If there were ever to be a generalization of the cotriangle theorem in a
direction away from the already-existing Fischer groups, it should be
on the grounds of geometric properties alone. (God does not normally
give the geometers a group to work with. So it made sense to ask why
these things existed.)

The scheme behind the proof, As already mentioned, it suffices only
to examine the Cuypers-Hall 3-transposition theorem. One must first sort
out what the small cases are. At a low-dimensional level much of this
can be calculated on any modern Computational Algebra program. We
have already described the subgroups generated by three “independent”
generators from D. They were the involution commuting graphs of (the
transpositions in Sym(4) and involutions of SU(3,2)’ = 3'+2: 2. But sim-
ilar computations show that the exceptional (not Moufang or irreducible)
conclusions of Fischer’s theorem which could result from a subgroup of G
generated by at most 5 elements of D comprise a finite list of finite groups.
But those which are critical in forming the right case divisions are in the
following DIAGNOSTIC LIST:

(1) 2'+6; SU(3,2)

(2) 9*(8,2): Sym(3)

(3) (3% 4 38): 2146 SU(8,2)’ or its quotient
(4) 38: 21+6: SU(3,2)"

Now the proof proceeds according to the tree-flow-chart as given below.
In this figure, an option in advancing downwards is in almost all cases given
by a dichotomy that can be described in both group-theoretic and geometric
terms. A number in brackets indicates the presence of a theorem classifying
all graphs/groups in this case division, so that no further descent from this
leaf is necessary. I will try to describe these theorems - many of which only
use the group theory lightly.



Here is the tree:

Are there Sym(4)'s? Are dval affine planes
present? .

WM~ Ny

Moufang rA:e there SU(3.2)'s? Are there affine planesd

e \t=

Symplectic type Are there i+6 SU(3,2) subgroups?

Orthogonal over GF(3) | any Q (8.2):Sym(3) or 38 216 sUB2Y?

(4] No
Yes [5]

G is unitary over GF(4)

Sporadic Type

Each stem which reaches a leaf (end-node) in this tree requires a complete
classification of everything which falls into such a cul de sac. We have
numbered these.

[1] This does not concern us graph theorists. The graph simply has no
edges. However the group-theory problem here is quite complex. One
has a 3-transposition group which is 2-nilpotent - in effect an invo-
lution acts on a 3-group so that its conjugacy class in the semidirect
product is a 3-transposition class. In fact, this is how the whole 3-
transposition problem started: Moufang loops of exponent 3 studied
by Marshall Hall.

(2] This is exactly the hypothesis of the infinite version of the cotriangle
theorem quoted above ([16]). So it really has a geometric proof.

[3] The way this works is that there is a provable “extended parallel rela-
tion” on lines, and the parallel classes themselves have the structure
of a polar space over GF(3). From the polar space theorem (stated
in a previous section) there is no restriction on the dimension of this
space. The actual orthogonal GF(3) space can be reconstructed up
to a choice of a class of non-singular 1-subspaces of this polar space.
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[4] This step depends on one of those streamlines of a brilliant first theo-

rem (Fischer’s) ten years earlier. Weiss gave a not too involved proof
that if for some involution d in D, the “sub-3-transposition group”
{D N Cg(d)) = H possesses a non-central normal 2-subgroup then I'
is symplectic or unitary type.
It should be remarked that since the publication of [10], one doesn’t
need the subgroup 3'+8: 21+6SU(3,2)’ in the dichotomy of steps [4]
and [5]. When this group is present, so is the former group €(8,2):
Sym(3).

[5] For what is left it can be shown that things don’t go on forever with
one known 3-transposition group perpetually being a local version of
a “higher dimensional” parent. So - because things cannot extend
beyond the case that a perp of a triangle is centrally of type U(6,2)
- one is completely led back to the finite cases classified by Fischer.

I have to admit that this is a strange proof. Normally one expects a tree
to eliminate the ezistence of pathological subspaces so that at the end of
the proof, one has a very tight situation in which the non-existence of these
subspaces can be considered as axioms forbidding subconfigurations.

But in the proof diagramed above it is altogether different. Every one of
the eliminated cases are of the form that certain subspaces don’t exist.
That is, at each stage we know that in the surviving geometry or graph at
least one subspace of a certain type exists. This means that after a series of
“No” answers, one is left with a fairly complicated space: it must have at
least a certain complexity in its subspaces. Far from making the final cases
hard to classify, they are in fact made easy to classify because somehow
the subspaces whose attendance is required don’t mesh. We shall meet this
same phenomenon in the next section on Generalized Fischer spaces. There
ought to be a name for this teo-many-incompatible-subspaces phenomenon.

7 Generalized Fischer Spaces

An obvious generalization of a Fischer graph would be this graph-theoretic
property:

Every 2-coclique {u,v} of the graph I' lies in a unique coclique C' =
C(u,v) of at least three vertices, such that every vertex = not in C is
adjacent to either 0, exactly one, or all the vertices of C.

Just as the irreducible Fischer graphs could be converted to Fischer
spaces by considering the complementary graph, so also the above prop-
erty has a corresponding “space” that goes with it:

A partial linear space II = (P, L) is called a delta space if for every line
L and point p not on L, p is collinear with no, all but one, or all points of
L.

86



It can also be shown that if the delta space has a connected collinearity
graph, that all lines have the same cardinality q.

The problem here is that we don’t know what all the planes should look
like. In the case of Fischer spaces we knew that there had to be just two
types of planes because we could classify the subgroups generated by just
three 3-transpositions. But when ¢ is larger than 3, there is no group
around to tell us what the planes are.

In fact, Hans Cuypers showed that if the lines of a delta space satisfy the
so-called Pasch axiom

x
i%—p implies ?,A,F- P
L N L N

The configuration - L and N intersect

" then all the planes (that is, subspaces generated by two intersecting lines)
are either projective planes or dual affine plans.

In this case, if only projective planes occur, then II is simply a protective
space by the celebrated theorem of Veblen and Young.

If only dual affine planes occur, then IT is a copolar space. An infinite
version of Hall’s copolar space theorem was then proved by Cuypers to show
_ that IT is the geometry of points and hyperbolic lines of some nondegenerate
symplectic geometry, or ¢ is 3 and the complement of the collinearity graph
is a cotriangular graph and hence known.

But if both types of planes appear Cuypers has shown that II is a pro-
jective space with all the points of a subspace S of codimension at least 3
removed and all lines which non-trivially intersect this subspace removed
as well.

But these are not the planes which make their appearance in Fischer
spaces. Accordingly, Hans Cuypers has defined a generalized Fischer
space to be a connected point-line geometry II = (P, £) such that any two
intersecting lines generate either an affine plane or a dual affine plane.
Classification Theorem For Generalized Fischer Spaces. A gener-
alized Fischer space must be one of the following:

(i) A Fischer space (B. Fischer, [12], H. Cuypers and J. Hall, [10]).
(ii) An affine space (F. Beukenhout, [2]).

(iii) The geometry of hyperbolic lines of a non-degenerate symplectic space

([15], (8))-
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(iv) NU(n,2), ¢=4 (H. Cuypers, [5] and Cuypers and Shult, [9]).

Again the proof is a kind of sieve:

If g = 3, II is known by the classification of Fischer spaces.

If only affine planes appear, since ¢ > 3, (ii) holds.

If only dual affine planes appear, case (iii) results. (Note that the refer-
ence to Cuypers ([5]) yields an infinite version of J. Hall’s copolar theorem
with specified planes.)

So we must have both kinds of planes.

We say II has property (P) if and only if for any point p not in one of the
affine planes A, p cannot be collinear with all but one point of A. In this
case Cuypers showed that II has as its points the non-singular 1-spaces of
an n-dimensional vector space over GF'(4) with respect to a non-degenerate
Hermitian form. The lines are the quartets of non-singular points belonging
to any 2-space with a 1-dimensional radical - i.e., any projective line tangent
to the Hermitian variety.

Cuypers and Shult ([9]) then showed that if ¢ > 3, no generalized Fischer
space can fail to have property (P). This completes the classification.

8 Graphs with Odd Cocliques

Let " be a graph. A subset A of the vertex set is called odd if |z1 N A} is
odd for all vertices z of I'. Another variation of the cotriangle property is
the following

0Odd d-Coclique Property: Fix an integer d > 1.

(Cc)a Each (d — 1)-coclique is contained in some odd d coclique.

(C1)4 There exists an odd d-coclique C and vertex z not in C, such that
z is collinear with exactly one vertex of C.

As easily seen, a graph I" has the odd d-coclique property if and only if
each of its coconnected components I'; has it, and if its canonical reduced
image I'* has it. Thus in classifying graphs with the odd d-coclique property
it may be assumed without loss that I is an irreducible graph, that is, a
reduced coconnected graph.

When d = 3, such a graph I is a connected irreducible graph with the
cotriangle property, and so has been classified up to isomorphism by earlier
results in this survey.

Theorem (A. Brouwer and E. Shult [1]). Let I be a finite irreducible
graph. Then I' possesses the odd d-coclique property for d > 4 if and only
if T is isomorphic to one of the following graphs.
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1. VO*(m,2) and either d = 0 (mod 8), m > d+1—¢,ord =4 (mod 8),
m2>d+1+e

2. 0%(m,?2) and either d=1 (mod 8), m > d+2—¢,ord=5 (mod 8),
m>d+2+e

3. T(0%(m,2)) and either d = 2 (mod 8), m 2 d+1—¢ ord =86
(mod 8), m >d+1+e.

4. N¢(2n,2) and either d = 3 (mod 8), 2n > d+2+¢,ord =7 (mod 8),
2n>d+1l—e

Explanation of the graphs

Let (V,Q) be an m-dimensional vector space over GF(2) with a non-
degenerate quadratic form. This means that either m is an even dimension,
and the associated symplectic form B is non-degenerate, or else m is an odd
dimension and the radical of the symplectic form B is 1-dimensional and
non-singular. In the latter case the associated polar space is isomorphic to
the polar space of the symplectic geometry Sp(m — 1,2).

In case 2, the graphs O%(m, 2) have the Q-singular 1-spaces of V' as vertex
set, two vertices being adjacent if and only if they are perpendicular with
respect to the bilinear form B. Thus when m is odd, we get the graph
Sp(m — 1,2) defined earlier. In fact, the graphs in this case are precisely
the graphs of the triangle theorem.

In case 4, the graphs are the perp-graphs on the non-radical non-singular
1-spaces of V. When m is an odd dimension, the graph is again Sp(m —
1,2). These are precisely the graphs of the cotriangle theorem, with the
exception of the dual triangular graphs. :

In case 1, the vertices are the actual vectors of the space V, two of them
being adjacent if and only if they differ by a nonzero singular vector.

Now let A be any connected graph. The Taylor graph T'(A) is formed
as follows:

1. One forms an isomorphic copy A’ of A with the isomorphic image
of vertex z being denoted z’. The vertices of T(A) are the disjoint
unions of the vertices of A and A’ and two new vertices « and o'.

2. The edges of T(A) are

( i) the edges of A and A’ so that these are induced subgraphs of T(A).

( ii) « is adjacent to every vertex of A; o' is adjacent to every vertex
of A’.

( iii) A vertex z in A is adjacent to a vertex y’ if and only if z and y
are distinct non-adjacent vertices of A.
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Such a graph is a double cover of the complete graph. Clearly if A is
the complete graph, then T(A) is just two copies of the complete graph
{a} + A. Otherwise, each vertex z has a unique antipodal vertex z’ and
the graph looks like this: .

A A

Now in case 3, we are just forming the Taylor graph construction when
A is one of the three graphs of the triangle theorem.

Remark: The proof consists in showing that I' is uniquely determined by
the subgraph C UC, where C is an odd d-coclique and for a vertex a in C,
C, is all exterior vertices adjacent only to a in C. Because there is now an
infinite version of the cotriangle theorem due to Jon Hall ([16]), induction
on d and the proof of uniqueness doesn’t use finiteness, we see that the
condilion on finiteness can be dropped in the above theorem.

This only means that in the conclusion, m is now a possibly infinite
cardinal. (Of course, when m is infinite, the distinction between ¢ = +1
and € = —1, in the orthogonal geometries disappears.)

We close this survey with a query. Can anyone give an explanation (from
the “first principle” of the odd d-coclique property itself) of the unusual
and totally unexpected periodicity modulo 4 in the types of graphs which
appear in the conclusion of the odd coclique theorem?
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