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Abstract

The problem of finding the distance between two graphs is known to be
NP-complete. In this paper we describe a heuristic algorithm that uses
simulated annealing to find an upper bound for the distance between two
graphs. One of the motivations for developing such an algorithm comes
from our interest in finding the diameter of families of non-isomorphic
extremal graphs. We tested our algorithm on each family of extremal
graphs with up to 16 vertices. We show that the exact distance was
obtained in all cases.

1. Introduction

The importance of determining whether two graphs are isomorphic is well
known. If two graphs are not isomorphic, then it is often useful to know how
different they are. Three areas where the concept of maximum common
subgraph arises are (1) in the context of algorithmically recognizing the
structural features that occur in a chemical reaction [1], (2) determining the
maximum commonalties between structures [2], and (3) developing a metric for
studying the relationships between molecular structure and the chemical
properties [3]. There is an excellent review article on this subject by Chartrand
et al [4]. We use their definitions as stated below. Two graphs G,=(V,, E;) and
G,=(V,, E,) are isomorphic, G, = G,, if and only if there exists a one to one
correspondence f: V; — V, such that (u,v)€ E, if and only if (flu) fAv)) € E,. A
graph G is a common subgraph of graphs G, and G, if and only if there exists
H, and H, such that H,c G, and Hyc G, and H,=G and H,=G. A
maximum common subgraph (MCS) is a common subgraph which contains the
maximum number of edges. The distance between two graphs G, and G, is
defined as follows:

d(G,,Gy) =1 El+1E)l-2E 2l+ HV - 1V,H
where IE, »| is the number of edges of a MCS. The dzameter of a family of
graphs is defined as Diam(F) = max{d(G,H)\G,H € F). In this paper we only
consider the distance between the graphs with same order and size and it follows
that d(G,, G,) = 2(1E|| - | E} ,I). Given the mapping f:V, — V,, we define the
distance induced by f as follows
(G1,Gy) =2(E-IE, 1)
where | E,| is the number off edges in a common subgraph of G, and G,.
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Let Gi=(V}, E,), G,=(V», E,), and k be a positive integer. Consider the
decision problem “Do there exist subsets El CE, and E,c E, with IE,I =1E,l
> k such that the two subgraphs G,=(V,,E,) and G,=(V,,E;) are
isomorphic?”. This is a NP-complete problem [5]. A linear time algorithm for
trees was developed by Edmonds and Matula [S]. In section 2, we describe the
simulated annealing technique which we used to develop an algorithm that can
find an upper bound on the distance between two graphs.

Another motivation for developing an algorithm to find the distance
between two graphs is to find the diameters of families of non-isomorphic
extremal graphs without three-cycles and four-cycles. In 1975, P. Erds [6]
mentioned the problem of determining the value of fv), the maximum number
of edges in a graph of order v and girth at least five. Let F (v) be all non-
isomorphic extremal graphs of order v and girth at least five. Recently, Gamick
et al. published two papers on f{v) [7,8]. They employ search techniques, such
as hill-climbing and hill-tracking, to find the graphs without 3-cycles and 4-
cycles. The lower bounds on f(v) for v<200 are listed in [7]. Furthermore, they
prove that the lower bounds are the exact values of f{v) for v<24. All graphs in
F (v) for v<21 are enumerated in [8]). Bascd on their work we try in section 3,
to explore more structural properties for each family of graphs by addressing the
following two questions: (1) what is the distance between the graphs in F (v),
and (2) is there a common subgraph of size IEI - (Diam( F (v))/2. In other words,
if d = Diam(( F (v))/2 is the largest distance between two graphs in F (v), can we
find a graph H of size |El-d such that it is a subgraph of all the graphs in F (v)?
To investigate these questions, it is essential that we have a computer program
that gives us a good upper bound of the distance between two graphs.

2. Simulated Annealing

Simulated annealing is a means of finding good solutions to combinatorial
optimization problems [9]. The basic operation in this technique is a move. A
move is a transition from element of the solution space to another. Each move
affects the cost of the current solution. Intuitively, one favours cost decreasing
moves, since a solution with minimum, or near-minimum, cost is the objective.
However, by allowing only such moves, it is likely that the final solution is a
local minimum, rather than the absolute minimum. In order to escape from a
local minimum, cost increasing moves must be made.

In simulated annealing, prospective moves are chosen at random. If a move
decreases the cost it is accepted. Otherwise, it is accepted with probability
P(AE) = e~ 2E/T where T is the temperature and AE is the increase in cost that
would result from this prospective move. Initially T is large, and virtually all
moves are accepted. Gradually T is decreased, thus decreasing acceptance of
cost increasing moves. Eventually the system will reach a state in which very
few moves are accepted. In such a state, the system is said to be frozen. The
sequence of decreasing temperatures is called the annealing schedule. The next
temperature is obtained by T,,, = aT,, where a is the cooling rate. Typical
values for a are in the range from (.75 to 0.98.
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We developed a computer program that uses simulated anncaling to find an
upper bound for the distance of two graphs. Our program starts with a random
mapping f:V, - V,. A prospective move is found by randomly selecting two
vertices, V; and v;. A new mappmg [ is obtained by interchanging the images
of v; and v The cost of the move is calculated a follows:

cost= d(Gy,Gy) - d, (G, G,).

A move with negative cost is always acc?pted A move with positive cost is
accepted with probability P(AE)=e . The pseudo code for our
implementation is given below. In the inner loop, moves are selected at random.
A limitecd number of moves are accepted at each temperature level. We use
20 *|V| as a limit. This means that with larger graphs more moves are accepted.
Furthermore, there is a limit for the number of moves attempted at each
temperature. For each accepled move we want (o attempt no more than 80
moves. Once the maximum number of accepted moves or the maximum number
of attempted have been reached the temperature is lowered and a new iteration
begins. The process stops if the number of accepted moves has not reached the
maximum level (max_moves) for more than a given number of consecutive
iterations. That is, we consider the system frozen if less than one in 80
attempted moves is accepted.

anneal(Gl.Gz,bcsl_map)

temp = initial _temp = 1.0
cool_rate = 0.95
map = random mapping
best_map = map
max_moves = 20*|VI|
max_attempted_moves = 80*max_moves
max_frozen = 10
frozen=0
while(frozen < max_frozen)
moves = attempted_moves = 0
while((moves € max_moves) and
(attempted_moves < max_attempted_moves))
increment attempted_moves
pick a random move map_ran
if the move is accepted-
map = map_ran
increment moves
if( d%p(Gl'G2)<dbcsl_map
best_map = map
end if

(G,.G,)

end if

end while

temp = temp * cool_rate

if(attempted_moves > max_atiempted_moves)
increment frozen

else
frozen=0
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end if
end while
end anneal

The following variables: initial_temp, cool-rale, max_moves, max_attem-
pted_ moves, and max_frozen could have been set differently. We arrived at the
settings as shown in the pseudo code above through experimentation and
empirical observation. A change in these variables will affect both the results
and the execution time of the program. With the values given above our
program found the minimum distance for all graphs with 16 vertices described in
the next section The program can find the distance of two graphs with 16
vertices in about 12 seconds of CPU time on a DecStation 5000.

3. Results on distances among the graphs in F(v).

We used the computer program, described in section 2, to find the upper
bounds of Diam( F (v)) for v<21 (see Table 1). We prove that the upper bounds
are indecd the exact value of Diam(F (v)) for v<16. We also discuss the
problem of finding the largest possible common subgraph in each family of
graphs, F(v) for v<21.

We omit the structure for most graphs in F (v), since they can be found in
{8]. In Table 1, the valucs with a star are the upper bounds of Diam( F (v)).

F (4) has two members, K, 5 and P;. The greatest common subgraph of
F (4) is a path of length two. F (6) has two members, Cs with a pendant edge,
and Cg, and the greatest common subgraph of F (6) is a path of length five.

v 1] 23] a]s]e6]7]8]9]wo[n]iz]3]14
Fv) Tt 12| v | z2] 1|t |1 ]t[3]7|1]2a
Diam(F(v)) 0Jo|o| 2|0 2[]0o|o[o]lo]2]|e6|0]s
v 15]16] 17| 18| 19] 20] 21
Fv) 1 (21|15 1]1]3
Diam(F(v)) o|10[10[10°| 0] 0] 6°

Table 1. Diameter of Families of Graphs.

Diam(F(11))=2.

Clearly, Diam( F (11))>2 since the graphs in this family arc non-isomorphic
graphs. By using our algorithm, we find the upper bound of the distance
between any two graphs among the three graphs is two. Hence,
Diam( F (11))=2. Itis interesting to notice that there is a common subgraph of
size 14 among three graphs in F (11). The common subgraph consists of the
Petersen graph with the following modifications - an additional vertex is joined
to any vertex of the Petersen graph and one edge other than the one we added is
removed from the vertex of degree four.
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Diam(F(12))=6.

12a 12b 12¢ 12d 12¢ 12r 12g
12a 0 2 2 2 4 4 4
12b 0 2 2 2 2 4
12¢ 0 2 4 4 4
12d 0 4 4 2
12e 0 4 6
12 0 4

Table 2. Distance between the graphs in F(12).

With the help of the computer program we obtained Table 2. The largest
distance between any two graphs in this family is 6 and it only occurs between
12e and 12g. To show Diam(F (12))=6, we have to prove that 12¢ and 12g
cannot be isomorphic graphs when two edges are removed from each graph.
Note that 12g is 3-regular graph. However, there are three vertices of degree
four with distance three apart in 12e. Clearly, we have to remove at least three
edges from 12¢ such that the remaining graph has maximum degree three.

Garnick and Nieuwejaar [8] define an equivalence class ¢;(G) among the
vertices in v(G) such that a vertex uisin ¢;(G) if and only if u is in i 5-cycles in
G. They claim that in each graph they looked at, if two vertices are in same
class then they have same degree. This is an interesting statement because it
implies that we can get a finer partition using the number of 5-cycles containing
each vertex rather than using vertex degrees. We found a counterexample. In
the graph 12a (see Figure 1), both vertices 3 and 4 are in seven 5-cycles but
d(3)=4 and d(4)=3.

Note that distance six between two graphs implies that three edges have to
be removed from each graph. There is another interesting fact about this family
of graphs. Even though there are only two graphs with distance six apart among
the seven graphs of size eighteen in F (12), the family F (12) has no common
subgraph graph of size fifteen.

12a 12e 129

Figure 1. Three graphs from F(12).
Theorem 1. The size of a greatest common subgraph of F (12) is fourteen.
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Proof: We will first show that there is no common subgraph of size 15 among
12a, 12¢ and 12g (See figure 1). Then we find a graph of size fourteen that is a
common subgraph of all the graphs in F (12).

Suppose there exists a graph, H, of size 15 such that it is a subgraph of all
these three graphs. Let d; be the number of vertices of degree i for i=0,1,2,3,4.
Let D,=(1,2,11}, D,=(3,4,7,89,10} and D,={0,5,6} in 12e.

First, we consider the graphs 12e and 12g. The maximum degree of H is
three since the maximum degree of 12g is three. This implies that we have to
remove one edge from each vertex of D, . If two of these three removed edges
are joined to the same vertex in D,, then either 12e has degree sequence dy=1
and d;=1 and this implies we have to remove four edges from 12g, a
contradiction, or 12e has degree sequence dy=1, d,=3 and two vertices of
degree two at distance two. This contradicts the fact that all three vertices of
degree two in 12g must be at least distance three apart. Hence, we have to
remove three independent edges from 12e. The three edges cannot be between
D, and D, since it is impossible to have three vertices of degree one by
removing three edges from 12g. If two of these three edges are between D, and
D,, then we have to remove a path of length three from 12g so there are two
vertices of degree one. However, there is a vertex of degree one in D, which is
distance two from another vertex of D, with degree one or two in 12¢ and there
are no such a pair of vertices in 12g, otherwise there is a 3-cycle or 4-cycle
(since we remove a path of length three from 12g). Hence, we have to remove
either one edge between D, and D, and two edges between D; and D,, or
three edges between D, and D,. In other words, the only possible degree
sequences, for the subgraph H are, d,=1, d,=4 and d,=7 or d,=6 and d;=6.

Second, we consider the graphs 12a and 12e where H has a degree sequence
d,=1, d,=4 and d,=7. We cannot remove any edge adjacent to vertices 10 and
11 of 12a since this leads to a vertex with degree one adjacent to a vertex with
degree two in 12a and it is impossible to have such a pair of vertices in 12e.
Note that vertices 10 and 11 are adjacent in 12a, they must correspond to the
vertices in D, since there is no edge in D,. Consider the two vertices of degree
two in Dy from which we have removed two edges. They must be at least
distance three from D, since we remove the only edges between them and D,.
This implies that any vertex with degree one or two in 12a must be at least
distance three from vertices 10 and 11. Clearly, we have to remove one edge
from 0 and one edge from 3 in 12a since 0 and 3 have degree four. If (0,4) is
removed from 12a, then we have to remove (4,3) or else d(4,11)=2. This leads
us to remove another edge independent to (0,4) and (4,3) in order to get four
vertices with degree two. The two end vertices of the third removed edge in 12a
must be at least distance three, since there is no 3-cycle and 4-cycle in 12a and
they must correspond with the vertices in D, of 12e. This contradicts the fact
the distance between any two vertices with degree in D, is two. Hence, we
have to remove either (0,1) or (0,5) from 12a. Without loss of generality, we
may assume that (0,1) is removed. It follows that (1,2) or (1,6) has to be
removed in order to have a vertex with degree one in 12a. The removal of (1,2)
will result in d(2,11)=2. We have to removed either (3,2) or (3,8) from 3 and in
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either case there are two vertices with degree one or two corresponding with two
vertices in D, , a contradiction with the fact that D, is an independent set.

Finally, we consider the case where d,=6 and d,=6. We will use the
following two facts about the vertices of degree two in 12e: (a) the six vertices
of degree two can be divided into two sets A and B such that A= D, contains
three independent vertices and B contains those vertices with degree two in D,;
(b): each of the three vertices of set B are at least distance three from A since
we have removed the only three edges from B to D,. Now consider the graph
12a. Since we have to remove one edge from each of 0 and 3, there are two
possible ways to remove the third edge: (i) The third edge to be removed is
incident with either 0 or 3, say 0. It follows that (0,10) and (3,11) must remain
in the graph, and 0, 10 and 11 must be in B since there is no edge among the
vertices in A. The vertex of degree two created by the removal of the edge
incident with 3 is either distance one from the other two vertices of degree two
resulted by the removal of two edges from 0 or distance less than three from 0.
This contradicts the facts (a) and (b); (ii) The third edge is independent from the
other two edges that have been removed from 0 and 3. Clearly, we cannot
remove both (0,4) and (4,3) or else d(4)=1. If one of these two edges, say (0,4),
is removed, then 4 is distance 2 from 11 and {4,10,11} must be B. Vertices 1, 5
and 9 are within distance two from {4,10,11} and it follows that we have to
remoye either (3,8) from 3 and (2,7) as the third edge or (2,3) from 3 and (6,8)
as the third edge. However, either d(2,11)=2 or d(8,11)=2 occur in 12a, a
contradiction with Fact (b). As a consequence, we have to either remove (0,5)
and (2,3) or (0,1) and (3,8) from 12a, since 10 and 11 are in B and A is an
independent set. Without loss of generality, we can assume that (0,1) and (3,8)
are removed. Since A is a independent set, vertices 10 and 11 must correspond
to the vertices in B. Note that vertices 2, 5 and 6 are distance one from 1 or 8. It
follows that the edge adjacent to any vertex in {2,5,6} cannot be removed, or
else there are two independent edges in the subgraph induced by the vertices of
degree two and this implies either there is an edge among the three vertices in
12a are in A or there is a vertex in A adjacent to a vertex in B, a contradiction
with facts (a) or (b). Thus, the third edge that has to be removed must be either
(7,9) or 9,4). If (9,4) is removed, then {4,10.11} must be set B of 12e and
vertex 6 is joined to all three vertices in set A. However, it is easy to see that
there is no such vertex in graph 12e. If (7,9) is removed, then vertex 9, with
degree two, cannot be in B since it is distance two from vertex 1, a vertex of A,
and this contradicts fact (b). Also, it cannot be a vertex in A, or else 6 is the
vertex joined to the three vertices in with B, a contradiction.

Through carefully examining all the graphs in this family, we find there is a
graph that is the common subgraph of size fourteen in this family of graphs.
This subgraph is obtained by removing (0,1), (2,7), (3,4) and (10,11) from 12a.
To verify it is indeed a subgraph of all graphs, we run our algorithm on this
graph with every graphs in F (12) and the result shows the distance from this
graph to every graph in F (12) is eight.

This completes our proof.
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Diam(F (14))=6.

14a 14b 14¢ 14d
14a 0 4 2 4
14b 0 2 4
14c 0 2

Table 3. Distance between graphs in F(14).

According to our computer program, the upper bound for Diam( F (14)) is
four. Therefore, it suffices to show there exist two graphs that are at distance
four. We will show that it is not enough to remove one edge from each 14a and
14b (see Figure 2) such that the remaining subgraphs are isomorphic. Note that
there are two edges, (5,11) and (6,8), with both end vertices of degree four in
14a and there is no edge among the vertices, {0,5,7,9}, of degree four in 14b. It
follows that there must exist an edge between (5,11) and (6,8) in 14a such that
there will be no edge among the vertices of degree four after this edge is
removed. However, there is no such edge in 14a. Therefore, we have to remove
at least two edges from 14a and 14b to obtain isomorphic subgraphs.

14a 14b

Figure 2. Two graphs from F(14).

Again, there is no graph of size twenty-one. Since the proof is similar to the
previous case, we omit it. We verified that the graph, H=14a - {(0,3),(2,8),
(5.9)}, is a common subgraph of all graphs in F (14) by running our algorithm
on this graph with every graphs in F (14).
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Diam(F(16))=10

16 a| b} c| df ef f]| g] h| i| J| k] 1| m| n] o p| qf r| s| t] u] v
al 0| 2|4]2|4]10/4)j4|2])6]4|a]a|a|a]l6]|8]6]|4a|a]e6]|se6
b 0f2|]2]|2|8|2|[6|4]a]2|6|]6]6|4]2]d4|4]4]6][6]38
c 0Ol4)2(10/]2]|4]6|6|4|8|6|]6]6]a]8]6|4a]8|]6]S8
d 0]l4|100|]6|6|6|6]4]j4a4|4]6la4]|4a]6|a]6]4a]a]ls
¢ O|10|]4|[4afj6|a|]2{6]6|l6|afjale|6]6]6]|4a]e6
f 010/ 8|10|8|8|8|10]8|8]|8|4]|]6]|8]8|6]10
[ 0l4|6)2|6|]6|6|a|]6|4a]6]a|2]6)4]38
h 0]6|4|4|6|4]|4|6|4|]4|6]a]6]6]6
i 0]16]2]4|2|4|2]2)/6|a]6]2|6] 4
j 0] 6j4|6|6j6|6|4|4|2]6]6]8
k 0]6|]4]6[6|]a]ale|8]a|a]6
1 01212144 4a|l6|6]2]6]4
m 0]4|214|6|a({d4)4a]6]6
n 0|]6|6]4|]6{8|4]4]4
o 04| 6J12]|]4| 64| 4
P ofal2]4a]4a]a[s
q 02|44 2]6
r 0|24 2|6
8 0| 6| 4] 38
t 042
u 0] 4

Table 4. Distance between graphs in F(16).

This is a large family of graphs that contains twenty-two non-isomorphic
graphs. As we can see from the above table, the largest distance, ten, between
any two graphs only occurs when 16f is one of two graphs. In other words,
graph 16f must have some distinct structural feature that the other graphs do not
have. We can prove that Diam(F (16))=10 by showing d(16f,16i)=10 [10].
However, the proof is rather long and we omit it here. .

In the first examples given in this section, we frequently use the degree
sequence to find a common subgraph. It is worth pointing out that the argument
on the degree sequence does not work for graphs in general. For example,
consider the graphs given in Figure 3. Both graphs, 16f and 16i, have exactly
the same degree sequence — eight vertices of degree three and eight vertices of
degree four. However, they are nonisomorphic. In fact, five edges have to be
removed from each graph before a common subgraph can be found. We cannot
follow the trace of degree sequences to find the common subgraph of 16f and
16i. That is, in the process of removing five edges from each graph, the
intermediate degree sequences are not necessarily the same.

Before we implemented the algorithm described in this paper, we were not
able to find the largest subgraph for 16f and 16i. In fact, this was the primary
motivations to develop an algorithm that works quickly for any graph (not just
for bipartite graphs or planar graphs) and provides a good estimate for the
distance between two graphs. We estimate that an exhaustive search for a
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common subgraph of 16f and 16i will take about one year of CPU time. Our
algorithm finds the distance between 16f and 16i in 16 seconds of CPU time.

16f

Figure 3. Graphs 16f and 16i from F(16).

4. Concluding Remarks

Garnick et al. [7] point out every graph, G, without 3-cycles or 4-cycles and
with at least five vertices contains S, 5_,, where A (8) is the maximum
(minimum) degree of G. S, 5_, is a (4,6)-star, consisting of a vertex called
root joined to A vertices and each of the A neighbors of the root joined to -1
additional independent vertices. For example, every graph in F (12) must
contain S,; with eight edges. As shown in Theorem 1, the greatest common
subgraph of F (12) has size fourteen. This implies that all graphs in F(12) share
some common structure that has more edges than S, 5_;. This observation is
also true for all other graphs we analyzed. In fact, the size of the greatest
common subgraph is usually much larger that the size of S, 5_,. Clearly, two
edges can be added to S,; without creating any 3-cycle or 4-cycle. It will be
interesting to find a good estimate of the size of a greatest common subgraph for
a family of extremal graphs with girth five.

Another interesting question that arises from investigations is: Under what
conditions can a common subgraph for F (v) with size exactly equal to f(v) -
(Diam( F (v))/2 exist? In other words, is there a graph with the size of a the
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greatest common subgraph between two graphs that has the largest distance
among all pairs of graphs in this family?

Once a large common subgraph in a family has been found, it might be
possible to construct more non-isomorphic graphs in F (v) by adding k edges to
the known common subgraph, where (Diam( F (v))/2 < k. For example, the
authors in [7] have found two non-isomorphic graphs in F (26). By using our
algorithm, we can find a common subgraph (it will not necessary be the greatest
common subgraph in F(26)) of the only two known members in F(26). Can we
add some edges to this common subgraph such that more non-isomorphic graphs
of F(26) can be generated?
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