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1 Imntroduction

We only consider simple, undirected graphs and refer to [2] for terminology
and notation not defined here. A graph G with n > 3 vertices is hamiltonian
if G contains a cycle of length n, and pancyclic if G contains a cycle Cy
of length k for each k with 3 < k < n. A graph G is cycle extendable if
for every nonhamiltonian cycle C C G there is a cycle C’ C G such that
V(C) c V(C’) and |[V(C') \ V(C)| = 1. If Cn, is a cycle with m vertices
labeled vy, v2,...,vm such that {z,vi41]l <i < m—1}U {vmv1} C E(G)
and v;vj1+x € E(G) for some j, k (modulo m), then the edge v;v;. is called
a k-chord of Cp,. Clearly, this k-chord can be used to construct a cycle of
length m — k +1 from the given cycle C,,. We say that a graph G is cycle
k-extendable if each nonhamiltonian cycle C can be extended to a cycle C’
that has one additional vertex and uses at most k chords of C. Finally, a
graph G has a k-pancyclic ordering if the vertices of G can be ordered such
that the graph induced by the first j vertices ( > k) is hamiltonian, and a
graph with a 3-pancyclic ordering is said to have a pancyclic ordering.

If G and G’ are graphs, then we say that G is G'-free if G contains no
induced subgraph isomorphic to G’. Specifically, we denote by C the claw
K13, by D the deer, by H the hourglass, by Py the path with k vertices
(i.e. of length k — 1) and by Z; and Z; the graphs obtained by identifying
a vertex of K3 with an end-vertex of P, and Ps, respectively (see Figure
1). :

Probably the first sufficient condition for hamiltonicity of a graph in
terms of forbidden subgraphs is due to Goodman and Hedetniemi [4].

b a a e by
‘< E . o ;

The claw C
[N bg
[4] C2
}v} XA .i
The deer D The hourglass H Z Z Z3
Figure 1

Theorem A [4]. If G is a 2-connected CZ-free graph, then G is hamil-
tonian.

Could and Jacobson [5] extended this result to CZp-free graphs.
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Theorem B [5]. If G is a 2-connected CZ,-free graph then G is a cycle
or is pancyclic.

Hendry [6] further extended this result showing the following.

Theorem C [6]. If G is a 2-connected, CZ>-free graph onn > 10 vertices,
then G is cycle extendable.

The graph G, in Figure 2 shows that C and Z3 in Figure 1, as forbidden
subgraphs, are not sufficient to guarantee even hamiltonicity.

A result similar to Theorem B was proved for C P;-free graphs by Bedrossian
[1).
Theorem D [1]. Let G be a 2-connected C Ps-free graph. Then G is either
pancyclic or a cycle.

The graph G2 in Figure 2 (given in [1]) shows that, to guarantee pan-
cyclicity, Ps cannot be replaced by the forbidden subgraph Pg in the hy-
pothesis of Theorem D.

G] G‘Z
Figure 2

However, to obtain hamiltonicity, the following result of Broersma and
Veldman ([3]) can be used to weaken the hypothesis of Theorem D. If G’
is a subgraph of G and u,v € V(G’), then G’ is said to satisfy property
&(u, v) if (N(u)NN(v))-V(G’) # 0, where N(z) denotes the neighborhood
of the vertex x in G. The symbols A and V are used here to denote “and”
and “or”, respectively.

Theorem E [3]. Let G be a 2-connected, C-free graph. If every induced
subgraph of G isomorphic to D or P; (see Figure 1) satisfies ®(a,b1) V
®(a, by) V (®(a,c1) A ®(a, c2)), then G is hamiltonian

This result has the following immediate consequence.

Corollary F [3]. Let G be a 2-connected C-free graph. If G is Pa-free or
DP;-free, then G is hamiltonian.

In this paper we will show that

(i) every CDP;-free (and thus also CPs-free or even CP;-free) graph is
pancyclic or belongs to a finite family of exceptional graphs, and
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(ii) every CZy-free graph is either 2-chord extendible or belongs to a
finite family of exceptional graphs.
These families of exceptional graphs are fully described.

2 Results

Proposition 1 (Reduction Procedure RP). Let G be a CDPr-free
graph on n > k > 9 vertices. If G contains a Cg, then G also contains a
Ck-1-

We first introduce some additional notation which will be useful in the
proofs that follow. Let C be a cycle in a graph G. If an orientation of C is
fixed and u,v € V(C), then by C v we denote the consecutive vertices on
C from u to v in the direction specified by the orientation of C. The same
vertices, in reverse order, are given by v 5 u. If C is a cycle of G with a
fixed orientation and u € V(D), then u* denotes the successor of u on C
and u~ its predecessor, respectively.

In the proofs the following four statements for C-free graphs can easily
be verified, and will be frequently used and just referred by the indicated
label.

(A) Let Cy, be a cycle with m > 2k + 2 > 6 vertices labeled vy, %3,...,%m
and a k-chord v;v;4k. If there are no i-chords for 2 < i € k—1, then
Vj1V5+ks Viitk+1 € E(G).

(B) If, moreover, vj—1%j+k-1 € E(G) OF ¥j41¥j+k+1 ¢ E(G), then v

vj+k+1 € E(G).
(C) Let v;v;4; be an i-chord with 3 < i < £ in a cycle C; without 2-
chords. If vjuj4i—1 ¢ E(G), then v;vj4i+1 € E(G), and likewise if

vj+195+i ¢ E(G), then v;j_1v54: € E(G).

(D) Let vjv54; be an i-chord in a cycle Cg. If i > 2 and v;1+19j544+2 € E(G)
or if i > 3 and v;12vj4i+1 € E(G), then v;v544 c Vj41Vj4i4+2 c vj or
VjUjti 5 Vj42Yj+itl 6 v; is & Ci—1, respectively.

Proof (of Propositon 1): Let vy,..., v be the vertices of Ck. Since G
is Pr-free, the cycle Cj contains a chord. Let i 2<i< !;-) be smallest
integer such that G has an i-chord. Among all chords of Cj choose such a
minimal i-chord (2 <1 < g) Choose a labeling vy, va, . . . , Uk Of the vertices
of Cj. such that ({v,-v,-+1|1 <5< k—l}U{'vkvl,'vw,-H}) C E(G). We then
distinguish the following five cases.

Casel.i=2

Then V1V3V4 ... UV isa Ck_l.
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Case 2.i=3

By (A) we have vyvs,vkvs € E(G). If vaus € E(G), then we obtain a
Ci-1 by (D). Hence, we may assume that vaus € E(G) and so vxv7 € E(G)
by (B). If vaus € E(G), vavr € E(G), or vavg € E(G) then we obtain a
Ci-1 by (D). Hence we may assume that vave, v2v7, and vsve ¢ E(G). If
v3vr € E(G), then vxvsvsv1v2v3v7 C vk is a Cg—1. Therefore, vavr ¢ E(G)
and thus v4v; ¢’ E(G) by (A). Suppose now that vsvg € E(G). Then
V4V8,UsV9 € E(G) by (A) and vaug € E(G) by (B), since vavy ¢ E(G)
by (D). Now if vevx € E(G) or vrvx € E(G), then vxvgusv1v2v3vavs C
Ui OF UkU7VeUsU1V2U3V4v9 C Uk is & Cr—1. If vguk,vrvk ¢ E(G), then
G[{vz,va,v.;,vk,vs,vs,w}] is an induced deer, a contradiction. Hence we
may assume that vgus ¢ E(G). If vavs € E(G), then vgvs, vqvp € E(G)
by (D) and wsvg € E(G) by (B) and we obtain the same contradiction.
Hence we may assume that vvg ¢ E(G). Analogously, if vsus € E(G),
then wqus, vave, v2vg € E(G), and if vevx € E(G) or vk € E(G), then
VkUsUsU4V V20UV C Ui O UgU7UeUsVsU3V2Us C v is a Cg—1, respectively.
Hence we may assume that vavg ¢ E(G). If voug € E(G), then v,vg € E(G)
by (C), and if vevx € E(G) or vrvg € E(G), then vivg C v19s C Vi OF
VU7 5 voug C vk is & Ck—1, respectively. Hence we may assume that vovs ¢
E(G). But then G[{va, vs, ..., vs}] is an induced P, our final contradiction

Case 3.i=4

By (A) we have vvg,vvs € E(G). If vaug € E(G), then we obtain 2
Ci—1 by (D). Hence we may assume that voug ¢ E(G) and thus vz €
E(G) by (B). If vau; € E(G) or vovs € E(G) or v3ur € E(G), then we
obtain a Ci— by (D). Hence we may assume that vovz, vavs, v3v7 ¢ E(G).
If vqvs € E(G), then vxvsvsv1V2V3V4Vs 5 v is a Ck-1. Hence we may
assume that vsvs ¢ E(G) and thus vsvs ¢ E(G) by (C), since vzvs ¢ E(G).
But then G[{vs,v3,...,vs}] is an induced Pz, a contradiction.
Case 4.i=5

By (A) we have vjvr,vcv6 € E(G). If vovr € E(G), then we obtain
a Ci_i by (D). Hence we may assume that vov7 ¢ E(G) and thus v,v7 €
E(G) by (B). If voug € E(G) or vaug € E(G), then we obtain a Ck—; by (D).
Hence we may assume that vous, vavs ¢ E(G). But then G[{v2,vs,...,v8}]
is an induced Py, a contradiction.
Case 5.i=6

Since G is P;-free, C) contains all possible 6-chords. Thus vavg, vevi €
E(G). By (A) we have vzv7 € E(G) and thus vevr 5 VgUs 5 v is a Ci—1.
o

The proof of Proposition 1 gives the following two corollaries.

113



Corollary 2. Let G be a CPgs-free graph on n > k > 7 vertices. If G
contains a Cy, then G also contains a Cj_;.

Corollary 3. Let G be a CP;-free graph on n > k > 6 vertices. If G
contains a Cy, then G also contains a Ci_.

Remark. The cycles C5 and Cs and the graph Ggs (Figure 4) show
that the assumptions “k > 6” or “k > 7 or “k > 9” in the hypothesis of
Corollary 3 or Corollary 2 or Proposition 1 cannot be improved, respec-
tively. Furthermore, the graph F of order n = 4r in Figure 3 shows that
the assumption that G is D-free is an essential hypothesis of Proposition
1, since it.is hamiltonian, but it has no cycle of length n — 1.

H.L &5

Figure 3

The next two propositions will be used to prove our main result.

Proposition 4. Let G be a CDP;-free graph on n > 9 vertices. If G has
a hamiltonian cycle without 2-chords, then G is pancyclic.

Proof: Let G be a CDP;-free graph on n > 9 vertices, which has a hamil-
tonian cycle without 2-chords. Then G has an i-chord for some ¢, 3 <¢ < 6,
since G is P;-free and n» > 9. Among all i-chords choose one such that ¢ is
minimal. Then n > 2i+ 1, since G is C-free and ¢ > 3. By Proposition 1,
we know that G has a Cj, for 8 < k < n. Therefore it suffice to show that
G has a Cj, for 3 < k < 7. Choose a labeling vy, vy, ..., v, of the vertices
of G such that ({'v,-vj+1|1 <js<n- l}U {v,.vl,vlv,~+1}) C E(G) We then
distinguish the following four cases.
Casel.i=6

Then n > 13 and G has all possible 6-chords, since G is Pr-free and
i = 6. By (A) we have v,vs,v2v9, v3v10 € E(G). Thus G has a C3, C4 and
a C7. A Cs and a Cs are given by V1V2V3 V9 VRV and by V1U2V3V10V9V8 V1,
respectively.
Case2.i=5

By (A) we have vyv7,v6vn € E(G) and thus G has a C3, Cy, Cg and
C7. Hence, we may assume that G has no Cs. If vsv, € E(G), then
UnUsUgU7V1Vn is & Cs. Hence we may assume that vsv, ¢ E(G) and
thus v;v, € E(G) by (C). Now if vsv,_; € E(G) or vyv,—1 € E(G),
then vp—_1U5V6U7UnVUn_1 OF Up_1V4UsVeUnUn—1 i a Cj, respectively. Hence
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V5Un—1, VaUn—1 € E(G), but then G[{vn_1,vn,v1,v2,73, .v4,v5}] is an in-
duced Py, a contradiction.
Case 3.i=4

By (A) we have vvg,vsv, € E(G) and thus G has a Cs, Cy, Cs and
Cs. Hence, we may assume that G has no C;. Thus vv,—2 ¢ E(G).
If v3vn-2 € E(G), vavn-2 € E(G), vavn—1 € E(G), or v3vn_1 € E(G),
then v;U2U3Un—2Un—1Un¥5V1, V1U2Un—2Un—1UnUsVUeV1, V1V20U3V4¥Un—1VUnVs?1,
OF V1U2vU3Un_1UnUsVev; iS & Cy, respectively. Now vqv, ¢ E(G), since
V4VUp—1, V1¥4, V1¥Un—1 ¢ E(G) and G is C-free. But then G[{v,,_z,v,,_l,vn,
1,2, 3, v4}] is an induced Py, a contradiction.
Case 4. i=3

By (A) we have vyvs,v4vn € E(G) and thus G has a Cs, C4 and Cs.
Hence we may assume that G has no Cg or no C7. If one of the edges
VsUp_1,V3Vn_2 O ¥3Un_s is present, then G has a Cg and a Cy. Now
vgvy, ¢ E(G), since G is C-free, v3vn—1 ¢ E(G), and ¢ = 3. If one
of the edges voUn—1,V2¥n—2,V2Un-3, OF V1Vn—3 is present, then G has a
Ce and a C;. Now vv,_1 ¢ E(G), since G is C-free, vivn-3 ¢ E(G),
and i = 3. By the same argument we have v,_3v, ¢ E(G). But then
G[{¥n—-3, Vn—2, Un—1, n, ¥1, V2, v3}] is an induced P7, a contradiction. O

Proposition 5. Let G be a 2-connected, CDP;-free graph on n < 13
vertices. Then G is either pancyclic or isomorphic to one of the following
graphs: Cy,Cs,Cs,G6.1,C7,G1.1 - G1.4,Gs.1 - Gs.10,Go.1 - Go.11,Gr0.1 -
G10.8,G11.1 - G11.7,C12.1 - G12.4, G13 (see Figure 4).

The proof of Proposition 5 is lengthy and involves a detailed case analysis,
and is therefore postponed to the appendix. We are now ready to state our
main result.

SR OIOTPISTS)
S © 9101010}
N PIOIDISTS]

Figure 4
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:j Gar I I Gss ; : Gaao : j Gs.10

; ; Ga. ; ; Goa : : Gas ; : G Gas

: : Gas : ; Gay : : Goas ; %Go.s i j Gs.10 : : Goat
G Groaz Ghros ; G Gros
Ghos Groz Gios Gua Gu.2
Guas Gua Gus Gus Gu.s
G Giza Giaa Graa G

Figure 4 (cont.)
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Theorem 6. Let G be a 2-connected CD P;-free graph. Then G is either
pancyclic or isomorphic to one of the following graphs: C4,Cs,...,G3 in
Figure 4.

Proof: Let G be a 2-connected CDP;-free graph on n > 3 vertices. By
Theorem E we know that G is hamiltonian. If n < 7 then G is either
pancyclic or isomorphic to Cy, Cs, Ce, Gs.1, Cr, G1.1, Gr.2, G1.3 OF G714
which can be easily verified by a straightforward case analysis. If n > 9,
then G contains all cycles from Cg up to Cy,, by Proposition 1. If, moreover,
G has a cycle Ci for some k with k > 9 without 2-chords, then G is
pancyclic by Proposition 4. Hence, any counterexample must have n = 8
vertices or must have a cycle Cj with a 2-chord for some k with k > 9.
All these counterexamples are given by Proposition 5. Furthermore, the
proof of Proposition 5 shows that there are no counterexamples on n > 14
vertices. This completes the proof. a

Theorem 6 has a number of consequences. First observe that all excep-
tional graphs have connectivity x = 2.
Corollary 7. Let G be a 3-connected C-free graph. If G is DPy-free or
Ps-free, then G is pancyclic.

Corollary 8. Let G be a 2-connected, C-free graph. If, moreover, G is
DPy-free and n > 14, G is Ps-free and n > 10, or G is Ps-free and n > 6,
then G is pancyclic.

With the use of Proposition 1, Corollary 2, or Corollary 3 we obtain the
following results for pancyclic orderings, respectively.

Corollary 9. Let G be a 2-connected C D P;-free graph on n > 8 vertices.
Then G has an 8-pancyclic ordering.

Corollary 10. Let G be a 2-connected C Ps-free graph on n > 6 vertices.
Then G has a 6-pancyclic ordering.

Corollary 11. Let G be a 2-connected, C Ps-free graph on n 2 5 vertices.
Then G has a 5-pancyclic ordering..

Remarks. The graph Gss (Figure 4) and the graph G; in Figure 2
show that “8-pancyclic’ and “6-pancyclic” in the conclusions of Corollary
9 and Corollary 10 are best possible, respectively. The following two classes
of graphs show that “6-pancyclic” and “5-pancyclic” in the conclusions of
Corollary 10 and Corollary 11-are best possible, respectively.

For the class of CZ,-free graphs we prove the following extension of
Theorem C.
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Theorem 12. Let G be a 2-connected CZa-free graph. Then G is either
cycle 2-extendable or isomorphic to one of the eight graphs in Figure 6.

Figure 5

Figure 6

Proof: Let B be a cycle of length k > 3 in a 2-connected CZ»-free graph,
which cannot be extended using at most two chords. We distinguish two
cases:

Casel. k>4 .

Since G is 2-connected, there is a path vyz1z2 . .. zjv3 such that vy,v2 €
V(B), z; ¢ V(B), and N(z;) N V([v},v3]) =0 for 1 < i < l. Now let
{ be minimal, and among all those paths of length [ choose one such that
[V([v{,v2])] is as small as possible.

Case 1.1. 1=1 . . .

Then vy # v], and v; # vJ, since otherwise, v1z1v2 B vy or vazav; B v
would be a O-chord extension of B. Thus v; v} € E(G), for i = 1,2,
since G is C-free. Now v] vz, v vy ¢ E(G), since otherwise, vy v2z1v; E
v;v B vy or mzww B vy B v, would be a 2-chord extension of
B. Therefore, viv; € E(G), since otherwise, G[{v],v1,v{,z1,v2}] is an
induced Z,.
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Let y € V([v1,v2]) be the first vertex not adjacent to v; and consider
G[{v1,z1v2y~,%}]. By the choice, z1y,z1y~,uit ¢ E(G), and therefore
vay € E(G) or voy~ € E(G). Thus, there exists a vertex z € V([v{,v3])
such that viz—,zvs € E(G). Now v z~,2v§ € E(G), since otherwise,
Gl{v,v1,21,2}] or G[{2,v2,71,v35 }] would be an induced claw. But then
vz~ E V1T1V2 § zvé“ E v, is a 2-chord extension of B, a contradiction.
Case 1.2. 1> 2 .

Again vy z1,v} 7 ¢ E(G). Next vy,vzs,vfz; ¢ E(G), since I is mini-
mal. Now v]z2 € E(G), since otherwise, G[{vy,v1,v],z2}] would be an
induced Z,. Hence, we may assume that I = 2 and v} z; € E(G) (exchange
vy and v}). Thus, v = v Since G is C-free and there is no 0-chord exten-
sion of B, we have v v, v; v2 € E(G). Next zyvf ¢ E(G), since otherwise
vy vau1Z105 B v; would be a 1-chord extension of B. Then vy v3 € E(G),
since otherwise G[{v, v1, z1, v3 }] would be an induced claw. Now consider
Gl{vr ,v2,v§,z2,71}]. Since G is Za-free and z1vF, T19] , T1va, Tovd ¢
E(G), we have vyz2 € E(G). But then zavvivg B vy z2 is a 1-chord
extension of B, a contradiction. R
Case 2. k=3

Let the vertices of B be labeled v1,vz,v3, and let U; := {z € V(G) —
V(B)|z € N(v;)} for 1 < i < 3. Then

UinU;=0for1<i<j<3, (1)

since otherwise, there would be a 0-chord extension of B. If R = V(G) —
[Uy U Up U U3 U {v1,v2,u3}] # @, then there is a vertex w €R contained
in an induced Z» (together with v, v2 and v3), since G is connected, a
contradiction. Thus R = @. Next observe that G[U;] is complete for 1 <
i < 3, since G is B-free and by equation (1).

Suppose now that |U;| < |Uz| < |Us|. Since G is 2-connected and by the
previous assumption we have :

Us, Us #0.. : (@)

If a vertex w; € U; is adjacent to two vertices wj;, wjz € Uj then G[{vy, va, vs,
wj1, wjz}] contains an induced Z, a contradiction. If a vertex w; € U; isnot
adjacent to either of the two vertices wj1, wj2 € Uj, then G[{w, v, v, ws1,
wjz}] is an induced Zj, a contradiction. Thus, by equation (2) we conclude
that :

1< |Vl £ |Us| <2, @)

which implies 5 <n < 9.
Now using all of this information we obtain the eight exceptional graphs
Zs.1, Z6.1, 262, Z1.1, Z1.2, Z1.3, Zs.1 and Zg; depicted in figure F6. O
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Corollary 18. If G’ is a 2-connected CZy-free graph on n > 10 vertices,
then G is cycle 2-extendable.

8 Concluding Remarks

The proof of Theorem D admits another interesting corollary which seems
not to be mentioned elsewhere.

Corollary 14. Let G be a 2-connected C-free graph. If G is H P;-free,
‘then G is hamiltonian.

Unfortunately, the graph in Figure 3 shows that it is not possible to
obtain an analog of Theorem 6 replacing “D-free” by “H-free”. However,
the whole proof concept of Theorem 6 can be used in the same way to prove
the following result.

Theorem 15. Let G be a 2-connected, C-free graph. If, moreover, G is
HP;-free and n > 9, then G is either pancyclic or missing only one cycle.

Sketch of Proof: We follow the proof of Theorem 6 and state only the
main differences. If n < 7, then G is either pancyclic or isomorphic to Cjy,
Cs, Cs, Gg.1, Cr, G7.1, Gr.3, or G74. Next observe that in the proof of
Proposition 1 only once a contradiction is obtained by the existence of an
induced deer,; namely in Case 2 (v,v4 € E(G)).

Now, the fact that G is H-free will be used instead of the D-free property.
In order to avoid an induced P; we successively conclude that vsvg, vovi2,. ..,
Vak—8V4k, Vak+1Vak+4 € E(G), wheren=4k+1, n =4k +2, n = 4k + 3,
or n = 4k + 4 (indices modulo n), respectively. As in Case 2 we know that
V4i V4iy Vdi—4V4+1,V4i-3V4+1 € E(G) for each edge V4i-3V4i. Then, however,
Vp U3V VsV C VUn, Un—10201UnVsVs C Un—1, OT Un_3¥2¥1Un—2Un—10n% C
vp—3 is & Cpy, if n =4k + 1, n = 4k + 2, or n = 4k + 3, respectively.
Hence, we may assume that n =4k, k > 2.

Now vyv4vs C v and vyvsvg C vy area Cp_2 and a C,,_s, respectively.
By successively replacing paths v4;—3vsi—2v4i1—v4: by the edge v4;—3v4; for
2 < i < n/4 we exhibit all cycles C,,, for n/2 —1 < m < n —4. Next, for
1 £ p <nf4-—1, weobtain a cycle Cop1 by v195... V4p+1VapaViap—4 - . . V4V
or a cycle Czp by nyvs... V4p—-3V4pV4p—a - .. U4V1, respectively.

Therefore, if n > 9, then G contains all cycles from Cg up to C, or is
missing only one cycle. For n = 8 we refer to Figure 7.

A family of graphs that satisfy the assumptions of Theorem 15 and are
missing exactly one cycle (namely, the cycle of length n —1) is given by the
graphs in Figure 3. The graph Gs.10 on n = 8 vertices in Figure 4 shows
that ‘n > 9’ in the hypothesis of Theorem 15 cannot be improved.
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Cy Cs Ce¢ Gey C7z Gri Grz Gra Gga

Gs2 Gsa Gsr Ggs Gsg Gsio Goa Goz Groa

Figure 7

All 2-connected CH Pr-free graphs on 4 < n < 8 vertices that are not
pancyclic.

4 Appendix

Proof of Proposition 5: At first we generate all claw-free, Py-free, and
deer-free graphs on n < 8 vertices, which are not pancyclic!. Next suppose
there is a claw-free, P;-free and deer-free graph on n + 1 vertices, n > 8,
which is not pancyclic. Then, by Proposition 4, it has a 2-chord. Using this
2-chord in the RP (Proposition 1), we thus also obtain a counterexample on
n vertices. Vice versa, the set of all counterexamples on nn + 1 vertices can
be generated from the set of all counterexamples on n vertices as follows:
Let G be a counterexample on n vertices vy,vs,..., v, labeled such that
({‘Dg'UH.lll <t<n- 1} U {'v,,,vl}) C E(G) (see Figure 4, where v, is
always double-circled and vertices are labeled in clockwise orientation).
We then successively replace each edge v;v;43 of this C,, by a triangle
with edges vivi+1,%iUn+1,Vi+1Vn+1 if 1 <4 < n—1, and a triangle with
edges v1vn, ¥1¥n+1, YnVUn+1, Otherwise. Each new graph has to be checked
whether it is claw-free, P;-free, deer-free, and not pancyclic, and whether
additional edges adjacent to v,; are possible. For the sake of brevity, the
figures of those of these graphs, which are not counterexamples (Gg.j0 —
Go.41, G10.6 —G10.31,G11.6 —G11.8, G12.3, G12.4) Will not be depicted. If such
a graph is generated more than once (which will be frequently the case in
the following), then its vertices are labeled according to its first occurrence
in this generation process.

We now distinguish seven cases.
Casel. n=8

By the hypothesis of the proposition, the cycle Cs contains a chord.
Since G is claw-free, it contains a 2-chord or a 3-chord. Among all chords
of Cs choose an i-chord (2 < i < 3) such that ¢ is minimal. Choose a

1For 4 € n < 7 it can be easily verified that all counterexamples are given by the
graphs in Figure 4. :

121



labeling vy,v2,...,vs of the vertices of Cg such that ({vjv;41|]1 € j <
7} U {vgvy, v1vi41}) C E(G).
Case 1.1.i=2 :

Then G contains C3, C7 and Cg. If there is a 3-chord and a 4-chord then
G is pancyclic, since a 4-chord gives a Cg and a 3-chord gives C; and Cg.
If there are only 4-chords then there is a pair of a 2-chord and a 4-chord
that are crossing, since G is claw-free and has no 3-chord. Thus G has
Cs, Cs, Cs, Cy and Cs. If there is also a pair of a 2-chord and a 4-chord
which are not crossing, then G is pancyclic. Otherwise we obtain the only
counterexample Gg ; having only 2-chords and 4-chords. If there are only
3-chords then G has Cjs, Cy4, Cs, C7 and Cg. Now each pair of a 2-chord
and a 3-chord whether they are crossing or not, leads to a Cs and thus G
is pancyclic, or we obtain counterexample Gs g.

Hence we may assume that G has only 2-chords. Suppose first that there
are no crossing 2-chords. Since G is Pr-free, there are at least two vertex
disjoint 2-chords. If, for example, vv3,v4ve € E(G), then G is not deer-
free. Thus the only counterexample with two 2-chords is given by Gg . If
there are three 2-chords, for example v, v3, v3v5 and vgvg, then G is not deer-
free. Thus the only counterexample with three 2-chords is given by Gs 3.
If G has four 2-chords, then vsuvs, vsv7, v1v7 € E(G) and G is pancyclic.

Next suppose there are crossing 2-chords. If, for example, v1v3,vovy,
vavs € E(G), then G is pancyclic. Hence we may assume that among every
five successive vertices of Cg there occur at most two 2-chords. We may
assume that vovg € E(G).

If there is a pair of 2-chords with vertices from {vq4,vs,...,vsv1} which
are not crossing, then G is pancyclic. Hence, we may assume that there
is either a pair of crossing 2-chords or there is at most one 2-chord with
vertices from {vs4, vs, ..., vs, v1}. This gives the counterexamples Gs 4, Gs5, -
Gs.6, Gs.7 and Gg. 0.

Case 1.2. i=3

By (A) we also have v,v5,v4v3 € E(G). Thus G has C3, C4, Cs, Cs and
Cs. If vgug € E(G) then we obtain a C7 by (D). Hence we may assume
that vgvg ¢ E(G), and thus vsvg € E(G) by (B). Now every additional
edge gives a C7 and G will be pancyclic. Thus the only counterexample in
this case is given by Ggs.

Case 2. n=9

If we successively replace the edges of Gg ; we obtain the graph Gy 42 (4
times), which is pancyclic, and the graph Gy 43 (4 times). The graph Gg 43 is
only missing a C4 and contains an induced deer G[{vs, v1, v3, vo, vs, vs, v6}]-
Any additional (possible) edge adjacent to vg gives a Cj.

For Gg 2 we obtain Gy 12 (4 times) and Gy 13 (4 times). The graph Gy,12
is only missing a Cs, which can be obtained by adding one of the edges v4vy,
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V59, Vgla, U7Ug OF vgvg. If none of these edges is present, then vsvg € E(G),
since G is claw-free ({vs, v1, vg, v3}), and we obtain the counterexample Gy, ;.
The graph Gy.;3 is missing a C; and a Cs which can be obtained by adding
one of the edges vvg, v2v9, vevg, U7V OF vgvg. If none of these edges is
present, then vsvg € E(G), since G[{ve, vs, va, V9, v3,v1,vs}] is an induced
deer. Thus, we obtain counterexample Gy 2.

For Gs.3 we obtain Gy 14, Ga.15, Go.16 and Gy,17 (each of them 2 times).
The graphs Gg.14, Go.15 and Gy j6 are pancyclic, and Gy.;7 contains an
induced deer G[{vs, s, v+, v9, Us, v1, ¥2}], and is missing only a Cj, which is
obtained by adding one of the edges v;vg, v2vg, v3v9, v4vg, VsV OF VgUg.

For Gg 4 we obtain Gg 3 (2 timw), Gg.18 (4 times), and Gy 19 2 tim&s).
The graph Gy 3 is only missing a Cs, which can be obtained by any ad-
ditional edge adjacent to vg. The graph Gy s is pancyclic and Gg.19 is
missing only a Cs. However, Gy 19 is not claw-free ((v,vs,vo,vs) and
(w2, ve, v4,vs)). Thus, vavg € E(G) or vsvg € E(G) which gives a Cs.

For Gs 5 we obtain Gg 20, Go.21, Go.22 and Gy (each of these 2 times).
In this case Gg 20, Go.21, and Gg 22 are pancyclic, and counterexample Gy 4
is only missing a Cj, which can be obtained by adding one of the edges
v1U7, U2U7, U3U7, UsU7, OT vgu7. Thus vsug can be added and we obtain
counterexample Gg s.

For Gs¢ we obtain Gg a3, Go.24, Go.2s, Go.2, Go.26, Go.27, Go.2s and
Go.20. The graph Gy 23 is pancyclic, and Gy 24 and Gg 25 contain an induced
deer (G[{vS, Vs, U7, V8, V1, 021'"9}] and G[{'U5: Ve, U7, V8, V1, '03)09}]): and are
missing only a Cs, which is obtained by adding any edge adjacent to vg.
Counterexample Gg 2 is only missing a Cs, which can be obtained by adding
one of the edges v,vg, vavg, v3vy, U7y, OF vgvg. Thus vevg can be added
and we obtain (once more) counterexample Gg 4. Also, Gg.26 contains an
induced deer G[{vs,vs,vs,vg, 6, v7,vs}] and is missing only a Cs, which
can be obtained by adding one of the edges v,vg, vavg, vave, Or vgvg, OF
by adding v4vg and vsug. Thus either vyvg € E(G) or vyvg € E(G), and
we obtain (once more) counterexamples Gg4 and Gg3. The graph Gg.27
contains an induced P; (G[{vs,v1, v2,v4, v5,v6,v9}]) and is missing only a
Cs, which can be obtained by adding one of the edges v;vg, v2vg, v3vg, V49,
or vgug. Thus vsvg € E(G), and we obtain (once more) counterexample
Gy.3. By the same arguments Gy 23 and Gy 29 can be handled to obtain in
both cases counterexample Gg 5. ‘

For Gg 7 we obtain Ggao, Go.31, Go.26, Go.ss Go.32, Go.33, Go.ar, and
Go.34. The graph Gg 3o is not claw-free ({v1,v2,v9,74) and (vy,vgvs,vs))
and is missing only a Cs, which can be obtained by adding any edge adjacent
to vg. Both Gg 3; and Gg 34 are pancyclic. Counterexample Gy ¢ is missing
only a Cs and is a subgraph of counterexample Gg 4. The graph Gg 32 con-
tains two induced P7 (G[{‘vg, U7, Vg, V1, V2, V4, 1)5}] and G[{'vg, V7, Vg, V1, V3,4,
vs}]) and is missing only a Cs, which can be obtained by adding one of the
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edges vivg, vavg, V3vg, V4, OF Usvg. Thus vsvg can be added to obtain
counterexample Gg 7. A repeat of the previous argument handles Gg a3.

For Gg g we obtain Gg s (4 times), Gy 35 (2 times), and Gy 37 (2 times),
which are all pancyclic.

For Ggg we obtain Gggs (2 times), Ggag (2 times), Gg 40 (2 times),
Gy.41, and Gg ;. Both Gy 40 and Gy 4; are pancyclic, Go.39 contains an in-
duced P; (G[{vg, v2,v1,vs, 7, vs,vs}]), and Gg 3g contains an induced deer
(G[{va, v, v2, vg,v1, v8,v7}]). Both are missing only a Cs, which can be ob-
tained by adding any edge adjacent to wg, except for vivg in Go 39 and vavg
or vgvg in Gy ag, which leads to counterexamples Gg 5 and Gy g or Gy 7, re-
spectively. Counterexample Gg ; can again be extended to counterexample
Go.7.

For Gs. 10 we obtain Gy 44 (2 times), G 45, Go.46 (2 times), Gg 47 (2 times)
and Gy 48, which are all missing a Cs and a Cs. Moreover, all of them have
an induced claw, an induced deer or an induced P;. Adding edges adjacent
to wg, these induced subgraphs disappear and we obtain counterexample
Gy in the case of Gg 44 and Gg 45, counterexample Gg 10 in the case of
Gy.46 and G 47 and counterexample Gy 1; in the case of Gy a7 and Gg 4.
Case 3. n=10

The graph Gy is only missing a Cs, which is obtained if we replace
one of the edges v4v5, vsvg Or vgu7 by a triangle. Otherwise, Gjg.32, G10.9
and G1o.10 are obtained (each of them 2 times). Also, Gyo.32 contains an
induced P; G[{vs,vs,v7,vs,v9,v1,710}] and is missing only a Cs, which
can be obtained by adding one of the edges wsvi0, V410, VUsv10, VsV10,
V7910, OF Usv10. Thus vgvyg can be added to obtain counterexample Go.;.
The graph G109 contains an induced deer G[{vs, vg, v2, ¥10¥3, V4, v5}] and is
missing only a Cs, which can be obtained by adding one of the edges v,v0,
V510, VeV10, V7V10, VsV10, OF Vg¥30. Thus wauio can be added to obtain
counterexample Gio.2. Using the same argumentation vpv;o can be added
in G1g.10 to obtain G1g.2.

The graph Gy, is only missing a C5, which is obtained if we replace one of
the edges v4us or vgur by a triangle. Otherwise, G1o.11 (2 times), Gio.12 (2
times), G10.13 (2 times), and G)¢,14 are generated, each of them missing only
a Cs. The graph Gjo.11 has an induced deer G[{vs, vs, v7, vs, v9,v1,v10}],
and any additional edge adjacent to v gives a Cs, Also, Gi.12 has an in-
duced Py G[{v10, v, va, Vs, V7,9, v1}], and a Cs can be obtained by adding
one of the edges vyv)0, vsv10, Y6V10, U7V10, VsV10, OT Ygv10. Thus vavip can
be added to obtain G1p2 (once more). By the same argument vov;o can
be added in G013 to obtain G10.2. Also, Gio.14 contains an induced deer
G|{v10, v6, v7,v8, ve, v1v2}] and any edge adjacent to vy gives a Cs.

The graph Gg3 is only missing a Cs, which is obtained if we replace
one of the edges vaus, v4vs5, vevy Or vsvg by a triangle. Otherwise, Gi9.15
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(2 times), Gio.16 (2 times) and Gjo.3 are generated. Now, G1o.15 has an
induced P; G[{vs,vs, vs,v7,v9,%1,7%10}], and every additional edge vy
gives a Cp, except for vsvyg, which leads to counterexample Gyg4. Also,
G'10.16 has an induced deer G[{vs, v7, 9, v1, ¥2, v3,v1}] and every additional
edge v;v10 gives a Cs. The same holds for counterexample Gyp.3.

The graph Gy 4 is only missing a Cs, which is obtained if we replace one of
the edges vy vg, voua, vsv,s Or vsvs by a triangle. Otherwise, Gh0.17, G1o0.18,
G10.19, G10.20 and Go.3; are generated. Both Gig.17 and Gio.18 are not
claw-free ({vg,v1,v10,v3) and (vs,vs,v10,%6)), and every additional edge
vv10 gives a Cs. In G119 and Gio.20 every additional edge v;v10 gives
a Cs except for vgvio in Gip.19 and wvevio in Gyo,20, Which both lead to
counterexample Gio.5. In G10.31 G[{v10, v9, v2, U3, v5,v6, v7}] is an induced
Py,

The graph G is only missing a Cg, which is obtained if we replace one
of the edges vyvs, v4vs, vsvs, Vevr, OF U7vg by a triangle. Otherwise, Gyo.2,
G10.21, G10.22 and G'.23 are generated. In counterexample Gy, every edge
v;v10 gives a Cs, except for vgu,0, which leads to counterexample Gio5. The
graph 10,21 is not C-free ({v2,v3,v1,vs)), and adding vpvig O vsvi0 gives a
Cs. Also, G922 has an induced Pr G[{vs, vs, v4, v2,v1, %9, ¥10}}, and Gyo,23
an induced deer G[{vs,vs, v, v10,%1,v2,v3}]. Every additional edge v;v10
gives a Cy except for vy in Gy 22, which leads to counterexample Gy 4,
and except for vowyo and vsvyp in Gio.23. Adding both edges gives a Cj,
whereas adding only one edge leads to,counterexamples G195 and Gio.4,
respectively.

The graph Gy ¢ is missing only a Cs, which is obtained if one of the edges
v4vg OT vgvy is replaced by a triangle. Otherwise, G10,24 (2 times), G10.25 (2
times), G0.26 (2 times), and Go.27 are generated. Both G10.24 and Gio.25
are not C-free ({vg,v),v10,v3) or lvy,v10, U3, v4)), and adding only vav,g or
v,v30 gives no Cs, and leads to G196, which has an induced P;. The graph
G1o.26 has an induced deer G[{vg,v1,v3,v10,v4,v5,v7}] and Gjo.27 is not
C-free ((v4,vs,v10,v7)). In both graphs each additional edge v;v10 gives a
Cs.

Also, Gy.7 is only missing a Cs which is obtained if we replace one of
the edges v vq, v4vs, Usvg, veUr OF vsvg by a triangle. Otherwise, Gig.28,
G105, Gio.7, and Gy 29 are generated. The graph Gyo.05 has an induced
deer G[{vs, v1,v2,v10,v3, v4, v5}}, and every additional edge v;v10 gives a Cy
except for vqvyo, which leads to counterexample Gio.5. Every additional
edge wyvyo also gives a Cs in the other three graphs except for wavyo in
G10.6, Which leads (again) to counterexample Gio5. The graph Gjo7 has
an induced P;.

The graph Gg g is also only missing a Cp, which is obtained if we replace
one of the edges v, v, v3vy, v4Vs, VgU7, V7V OF Uy, by a triangle. Otherwise,
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G10.30 is generated (3 times), in which every additional edge v;vyo gives
a Cs.

The graph Gy g is only missing a Cg, which is obtained if we replace one
of the edges vyvq, vavs, vsvg, OF vgu; by a triangle. Otherwise, all generated
graphs are not deer-free and we obtain counterexamples G1o.¢ and G1o.7.

The graph Gg.10 is missing a Cs and a Cs. Moreover, all of them have
an induced claw, an induced deer or an induced P;. Adding edges adjacent
to vy, these induced subgraphs disappear and we obtain counterexamples
G10.6 and Gro.s. _

Finally, the graph Gy.1; is only missing a Cs and a Cs. A repeat of the
previous arguments this time leads to counterexamples G197 and Gio.s.
Case 4. n=11

The graph Gjo.; is only missing a Cg, which is obtained if we replace
one of the edges vyvp, vsvs, vsvg, VsV7, Vg¥10, OF Viov1 by a triangle.
Otherwise, Gy, is generated (4 times). Also, Gy;¢ has an induced deer
G|{vs, v, v2,v1,v3,v4,vs}), and every additional edge v;v;; gives a Cs, ex-
cept for vqvy, which leads to counterexample G115,

The graph Gg.2 is only missing a Cs, which is obtained if we replace one
of the edges v,v2, v3vs, v4vs, veUs OF Vg7 by a triangle. If we replace vaug
(by a triangle), we obtain a graph that is not claw-free, and every-additional
edge v;v;; gives a Cs. Replacing vzug or vgvg we obtain two graphs that
are not D-free. Every additional edge v;v;; gives a Cs except for vgvy; or
v7vy), respectively, which leads (in both cases) to counterexample G.2.
Replacing vgvyg or v1v10 we obtain two graphs that are not C-free. Every
additional edge v;v;; gives a Cs except for vjv1; or vwgvyi, respectively,
which leads (in both cases) to counterexample G1.;.

The graph G0.3 is only missing a Cs, which is obtained if we replace one
of the edges vv2, v4vs, vgv7, OF vgvyo by a triangle. Otherwise, G119 (2
times) and G); 19 (4 times) are generated. Both of them are not C-free and
every additional edge gives a Cs.

The graph Gl04 is only missing a Cs, which is obtained if we replace
one of the edges vjvq, vau3, v4vs, Vev7, V¥, Ug¥10, OF V11 by a triangle.
Replacing vavs or vzug we obtain a graph, which is not C-free, and every
additional edge gives a Cs. If we replace vsvg, we obtain counterexample
G11.2, and every additional edge v;v;; gives a Cs.

The graph G105 is only missing a Cs which is obtained if we replace one
of the edges v1va, v3va, v4vs, UsUs, VU7, Vsly, OF vvyo by a triangle. Re-
placing vov3 or vgvyo we obtain two graphs, which are not C-free, and every
additional edge v;vy; gives a Cs. Replacing vyvg we obtain counterexample
G11.3, and every additional edge v;v;; gives a Cs.

The graph G.6 is only missing a Cs which is obtained if we replace one
of the edges v,v;, vpv3, v3uy, O v4us by a triangle. Otherwise, all generated
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graphs have an induced claw, an induced deer or an induced P;. Adding
edges adjacent to v;;, these induced subgraphs disappear and we obtain
counterexamples G11.4, G11.5 and G11.6.

Also, the graph Gyo.7 is only missing & C and can be treated like Gyo.6.
We this time obtain counterexamples G115 and Giy.7.

Finally, the graph G108 is missing a Cs and a Cs. Replacing successively
edges by a triangle, we obtain graphs which have an induced claw, an
induced deer or an induced P;. Adding edges adjacent to v;3, these induced
subgraphs disappear and we obtain counterexamples G11.5 and G1;.6.
Case 5. n=12

The graph G1.; is only missing a Cs, which is obtained if we replace
one of the edges v v2, vovs, v4vs, VsVs, VeUr, U7V8, V10¥11, OT V171 by a
triangle. Otherwise, G12.3 and G12.4 (2 times) are generated, and G123 is
not C-free and Gja 4 is not deer-free. Every additional edge v;v;2 gives a
C’s except for vyov;2 in G12.4, which leads to counterexample G12.1.

The graph Gy, .2 is only missing a Cs which is obtained if we replace one
of the edges vovs, v4us, vsve, s, ¥7, V7, Vs, Uslg, OF Vo1 by a triangle.
Replacing v1v2, vsvs, vovio OF v1o¥11 We obtain graphs that are not C-
free and every additional edge v;v12 gives a Cj, except for v11v12 OF vav12
in the cases of vjuy or vyvy, respectively. This leads (in both cases) to
counterexample G2 ;.

The graph G;;3 is only missing a Cs which is obtained if we replace
one of the edges v1vs, vavs, V4Us, VsUs, VeU7, Vgv10, OF V111 by a triangle.
Replacing wova, w7us, Usvg Or vyov11 We obtain graphs that are not C-
free and every additional edge v;v12 gives a Cj, except for vgvi2 or vyv;e
in the cases of vyvg or wvgvg, respectively. This leads (in both cases) to
counterexample Gj2.2.

The graph G134 is only missing a Cs which is obtained if we replace
one of the edges v,vp, vov3, V3v4, V4Us, VgVe, Vgl10, V10V11, OF U310 by a
triangle. Otherwise, three graphs are generated which are not deer-free.
Then every additional edge vy2v; gives a Cg or we obtain counterexample
Giaas.

Also, the graph Gy, 5 is only missing a Cg which is obtained if we replace
one of the edges vyvp, vous, v10v11, OF U111 by a triangle. Otherwise, all
generated graphs have an induced claw, an induced deer or an induced P;.
Adding edges adjacent to v, these induced subgraphs disappear and we
obtain counterexamples G2.3 and Gi2.4.

Also, G116 is only missing a Cg and can be treated like G;;.5. We this
time obtain counterexample Gj2.3.

Finally, G1;.7 is only missing a Cg and can be treated like Gy 4. We this
time obtain counterexample Gj2.4.
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Case 6. n=13

Both Gj2.1 and G272 are only missing a Cs. Replacing an edge by a
triangle gives a Cs except for vzvs and vgvyo in Gi21 and v3vs and v,vy2
in Gi2.2. In all four cases we obtain graphs that are not C-free and every
additional edge v;v;3 gives a Cs.

The graph Gi23 is only missing a Cg which is obtained if we replace one
of the edges vous,...,vsvs, U7vs,...,V10v11 by a triangle. Otherwise, all
generated graphs have an induced claw, an induced deer or an induced P;.
Adding edges adjacent to v;3, these induced subgraphs disappear and we
obtain the counterexample G;3.

Finally, G12.4 is only missing a Cg and can be treated like G2 3.

Case 7. n=14

The graph Gi3 is only missing a Cg. Replacing an edge by a triangle
gives a Cg except for vgvr. In this case the generated graph is not deer-free
and every additional edge v;v14 gives a Cs. 0
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