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ABSTRACT. The first serious mathematical study of whist tour-
nament designs was carried out in the 1890s by E.H. Moore. In
this survey I shall outline briefly the subsequent work which cul-
minated in the proof of the existence of whist tournaments of all
possible orders by Baker, Wilson and Hanani in the 1970s, and
then describe some more recent work, mainly by N.J. Finizio,
Y.S. Liaw and the author, on the construction of cyclic whist
tournaments. In particular, triple whist tournaments will be
discussed.

1 A brief history

A whist tournament Wh(4n) for 4n players is a schedule of games, each
involving two players playing against two others, such that

(i) the games are arranged into 4n — 1 rounds, each of n games,
(ii) each player plays in exactly one game in each round,
(iii) each player partners every other player exactly once,

(iv) each player opposes every other player exactly twice.

Conditions (iii) and (iv) are called the whist conditions. We denote each
game by a 4-tuple (a,b, c, d) in which the pairs {a, c}, {b, d} designate part-
nerships, and the pairs {a, b}, {b,c}, {c,d}, {d, a} designate opponent pairs.
It is convenient to think of a, b, ¢, d as the order of the four players round a
table; partners face each other across the table.
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Example 1.1 A Wh(8), with players 00,0,1,...,6.

Round 1 (00,4,0,5) (1,2,3,6)
Round 2 (00,5,1,6) (2,3,4,0)

Round 7 (c0,3,6,4) (0,1,2,5)

The mathematical study of whist tournaments apparently started in
the 1890s. The journal ‘Whist’ first appeared in 1891, and at the same
time J.T. Mitchell [41] published the first edition of his work “Duplicate
Whist”. These, along with Foster’s 1894 book [32] and the second edition
of Mitchell’s book, provide examples of Wh(4n) for all n < 10, most of the
examples being due to Mitchell, Safford, Howell and Whitfeld (see Section
5). Most of them possess the cyclic structure possessed by Example 1.1;
each round is obtained from the previous one by adding 1 (mod 4n —1) to
each non-co element. We shall call such a Wh(4n) a Z-cyclic whist tour-
nament, emphasizing the fact that the cyclic structure is over Z4,_,, the
integers modulo 4n — 1, and not over a Galois field GF(p®) as is often the
case in combinatorial constructions.

In 1896, E.H. Moore, head of the newly founded mathematics department
at Chicago, published his remarkable paper Tactical Memoranda I-III [42]
in which, among many other things, he proved the existence of Wh(4n)
whenever 4n = 3p + 1 (p prime, p = 1 (mod 4)) and whenever 4n =
2%(a > 2). We shall return to Moore’s work later, in Sections 2 and 6.
It remained the only major contribution to the subject for over half a
century. References to whist tournaments (but under the name of bridge
tournaments, contrary to the now-accepted mathematical meaning of that
term) appeared in various books on recreational mathematics; for example
Dudeney, in problem 265 of Amusements in Mathematics [22] asks for (and
gives) a (Z-cyclic) Wh(12), and Rouse Ball [15] gives Z-cyclic Wh(4n) for
n=234.

Closely tied to the definition of a Wh(4n) is that of a Wh(4n + 1). In
a Wh(4n + 1) there are 4n + 1 players and 4n + 1 rounds, and a different
player ‘sits out’ in each round; conditions (iii) and (iv) remain unaltered.
In a Z-cyclic Wh(4n+ 1) there is no player oo; the players are the elements
of Z4n+1 and, conventionally, player O sits out in the first round.

Example 1.2 A Z-cyclic Wh(13).

Round1 (1,8,12,5) (2,3,11,10) (4,6,9,7)
Round 2 (2,9,0,6) (3,4,12,11) (5,7,10,8)

Round 13 (0,7,11,4) (1,2,10,9) (3,58, 6)
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It is not clear who first introduced the idea of Wh(4n+1). The first general
results of which I am aware appear in a short paper by G.L. Watson [46]
in 1954, where it is proved that a Wh(4n + 1) exists (a) whenever 4n 4 1
is a product of primes all of which are = 1 (mod 4), and (b) whenever
g.c.d.(n,6) = 1. Watson’s tournaments in (a) are all Z-cyclic. He also
showed that (c) a Wh(4n) exists wherever g.c.d.(n,6) = 1. These results
seem to have remained unknown to subsequent researchers; for example (b)
reappears in [12].

It was in the 1970s that the existence of a Wh(4n) and a Wh(4n + 1)
was established for all positive integers . This work was carried out by
R.M. Wilson, R.D. Baker and H. Hanani. The ‘prime source’ [14] was in
fact never published, but an account of the 4n case can be found in [13],
while both the 4n and 4n + 1 cases are treated in the theses of Baker [12]
and Hartman [33] and also in the author’s book [1].

The main ingredients of the constructions are the following.

(1) Direct construction of Wh(q) where ¢ = p% is a prime power, ¢ =1
(mod 4), by using a primitive element @ of the Galois field GF(q). If
q = 4t + 1, such a @ has multiplicative period 4¢, and the games

(1, ot, 02t’ 03t), (0, 0!4—1’ 02t+1,03¢+1), . (ol—l' 022—1’ oat—l’ 04‘—1)
ie.
(1,04, -1,-6%) x 1,0,6%,...,0*! (1.1)

form the initial round of a cyclic Wh(p®) over GF(p*).

Comment on (1). Watson’s construction [46] agrees with this in the
special case when g = p, but generalizes that special case in a different way.
Construction (1.1) appears in Baker [12] and Baker and Wilson [14]. Prior
to it, Bose and Cameron [18], in a paper dealing with the simpler problem
when resolvability is not required (i.e. there is no requirement to group the
games into rounds), gave an alternative approach to constructing a Wh(q).
By Mann’s lemma [39), if 4 is a primitive element of GF(q), there exist odd
integers @, 8 s.t. 6%+ 1 = 0#(9> — 1). It then follows that the games

(1,6%,-1,-0%) x 1,6%,6%,...,6%2 (1.2)

constitute the initial round of a cyclic Wh(q).

Note that both (1.1) and (1.2) have, in the initial round, partnerships
of the form {z,—z}. These pairs are said to form a patterned starter in
the additive group of GF(g). Whist tournaments with such partnerships
are studied further by Finizio [25]; on the other hand, many similar con-
structions of Wh(p) with non-patterned partnerships are provided by Liaw
(37].
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(2) Product Theorems. If a Wh(v) and a Wh(w) exist, then a Wh(vw)
exists. ‘
Comment on (2). This is really three results, depending on whether v
and w are = 0 or 1 (mod 4).

Moore [42] also had a product theorem, but it was not so general. With
v and w both = 0 (mod 4), he proved that a Wh(vw) exists whenever a
W h(v) exists and a TWh(w) exists, where a TWh(w) is a particular type
of Wh(v) known as a triplewhist tournament. Triplewhist tournaments will
be discussed in Sections 2, 3 and 6.

(8) Using pairwise balanced designs. These are used as scaffold-
ing on which to combine smaller whist tournaments into larger ones. A
PBD(K,v) is a collection of subsets (blocks) of a v-set, each block size
being in the set K, such that each pair of elements occurs as a subset of
precisely one block. For example, we can take a finite protective plane of or-
der 4, i.e. a PBD({5},21), and from it construct a Wh(21) by constructing
a Wh(5) on each block and arranging the games suitably in rounds. Sim-
ilarly, a Wh(v) can be constructed from a Wh(29) and a Wh(37) for all
sufficiently large v = 1 (mod 4) since there exists [47] a PBD({29,37},v)
for all sufficiently large v =1 (mod 4).

Comment on (3). It was Moore [42] who gave the first example of such
a construction. If we take a resolvable (v,4,1) design where, necessarily,
v =4 (mod 12), we can replace the blocks in each resolution class by three
rounds of a Wh(4) on each block, thereby obtaining three rounds of a
Wh(v).

More recently a lot of work has been done on the construction of eyelic
whist tournaments, in particular Z-cyclic ones. In a series of papers, An-
derson and Finizio {2-10], Finizio [23-31] and Liaw [37] have constructed
many new families of Z-cyclic Wh(4n) and Wh(4n + 1) designs; these con-
structions will be described in Sections 4-6.

2 Some special types of whist tournament

(2a) Directed whist tournaments. For such tournaments we replace
the whist condition (iv) by:

(iv)(D): each player has every other player once as an opponent on his
left, and once as an opponent on his right.

We use DWh(v) to denote a directed whist tournament for » players, and
observe that Baker’s tournaments Wh(p®) given by (1.1) are DWh(p®).
Directed whist tournaments have been widely studied under the alternative
name of resolvable perfect Mendelsohn designs with block size 4. Indeed,
Baker’s construction (1.1) reappears in the context of Mendelsohn designs
in Keedwell’s 1984 paper [35].
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In Baker’s thesis [12] it is proved that a DWh(4n + 1) exists for all
sufficiently large n, and that infinitely many DW h(4n) exist. Following the
work of Bennett [16] it is now known that a DWh(4n+1) exists for alln > 1.
Further, it has recently been shown by Zhang Xuebin [48] that a DWh(4n)
_exists for all n > 85. Recently, Finizio [27] has commenced a study of Z-
cyclic DWh(4n+1), extending Baker’s construction to 4n+1 = pf* ...p2",
where each p; =1 (mod 4). It is stated in [14] that no Z-cyclic DWh(4n)
exists.

We also remark that Baker [12] found a Z-cyclic DWh(33).
Example 2.1 Initial round of a Z-cyclic DWh(33).

(25,27, 14, 32, ), (26, 6, 10, 29), (23,21, 4, 13), (16, 12,7, 15),
(3,2,24,31), (5,17, 20, 11), (30, 22, 28, 9), (18,8, 19, 1).

(2b) Triplewhist tournaments. These go right back to Moore [42]. In
the game (a,b,c,d) we shall say that a,b (and c,d) are opponents of the
first kind, and a, d (and b, c) are opponents of the second kind. We then call
Wh(v) a triplewhist tournament TWh(v) if condition (iv) is replaced by

(iv)(T): each player has every other player once as an opponent of the
first kind, and once as an opponent of the second kind.

The name ‘triplewhist’ tournament arises because from it three whist
tournaments can be derived; for the partner pairs, or the opponent pairs
of the first kind, or the opponent pairs of the second kind, can be taken as
partner pairs of a Wh(v). Example 1.1 is in fact a TWh(8), and Moore’s
Wh(3p + 1) and Wh(4n) were all triplewhist tournaments. Moore proved
that a TWh(vw) exists whenever both a TWh(v) and a TWh(w) exist.
Baker and Wilson [14] established that a TWh(4n + 1) exists for all suf-
ficiently large n, and a TWh(4n) exists for all sufficiently large n # 2
(mod 4). Since then it has been established that a TWh(4n) exists for all
n, except possibly for a tiny set of small values of n; I believe that the
present list of uncertainties is 14,54,62,70. See section 7. In many of the
cases the existence of a TWh(4n) is deduced from the existence of cer-
tain self orthogonal latin squares; this connection is explained in Section 3
(Lemma 3.2).

Recently, Anderson and Finizio have studied Z-cyclic TWh(vw). They
have extended Moore’s construction of a TWh(3p + 1) to obtain Z-cyclic
TWh(v) whenever v = 3p™ + 1 (p prime, p=1 (mod 4)) [4] and whenever
v=3p{" ...pS+1 [6,7] whenever the p; are compatible primes = 1 (mod 4),
i.e. whenever each p; —1 is divisible by the same power of 2. They have also
constructed many other families of Z-cyclic TWh(4n) and TWh(4n + 1);
these will be studied in Section 6.

133



(2¢) Three-person whist tournaments. A whist tournament is said to
have the three-person property if no two games have more than two players
in common, i.e. if each set of three players plays together in at most one
game. This property is first discussed in the context of block designs in a
paper by Mendelsohn [40], and Finizio has used the ideas there to construct
several infinite families of three person whist tournaments [24]. All Z-cyclic
three person whist tournaments with v < 21 are listed by Finizio in [23].
Unfortunately, there does not seem to be a simple method of checking
whether or not a given Z-cyclic Wh(v) has the three-person property other
than by systematic inspection of all blocks. Perhaps the first examples
of three-person whist tournaments in the literature are the Wh(20) and
Wh(32) given by Hartman in [34].

3 Connections with other combinatorial structures

In this section we describe connections between triple whist tournaments,
self orthogonal latin squares with symmetric orthogonal mate (SOLSSOM)
and spouse-avoiding mixed doubles round robin tournaments (SAMDRR).

A SAMDRR(n) for n couples is a tournament involving »n husband and
wife pairs; each game involves two players of opposite sex playing against
~ two other players of opposite sex, and the games are arranged so that
every two players of the same sex play against each other exactly once, and
each player plays with each member of the opposite sex (excluding spouse)
exactly once as partner and exactly once as opponent. A SAMDRR(r) is
resolvable if the games can be arranged into n — 1 rounds with each player
playing in exactly one game per round (if » is even), and with every player
except the ith husband and wife pair playing in the ith round (if n is odd).

Example 3.1 A resolvable SAMDRR(5).

Round 1 H5W3 v H2W4 H4W5 v H3W2
Round 2 H1W4 v H3W5 Hsz v H4W3
Round 3 H2W5 v H4W1 H1W2 v H5W4
Round 4 H3W1 v H5W2 H2W3 v H1W5
Round 5 H4W2 v H1W3 H3W4 v H2W1

Lemma 3.1. If a TWh(v) exists then a resolvable SAMDRR(v) exists.

Proof: Replace each game (a, b, ¢, d) by two games H,W, v HyWy, H. W, v
HiW,. Note that opponent pairs of the first kind give same sex opponent
pairs, while opponent pairs of the second kind give opposite sex opponent
pairs. a

Note that the SAMDRR(v) of Lemma 3.1 has very special properties:
e.g. if H,, Hy oppose each other in a particular round, so do their wives
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Wa, W. So one would not expect the converse of the lemma to be true.
However, the following has proved to be particularly useful.

Lemma 3.2. If a resolvable SAMDRR(n) exists then a TWh(4n) exists.

Proof: The proof depends on whether n is even or odd. Suppose first that
- nis odd. Suppose round ¢ omits the pair (H,, W;), and is made up of games
H;W; v H;W.. Then we obtain from round ¢ the following 3 rounds of the
required TWh(4n):

(i) all games (ilsli‘hjlv k3)$ (1:2» l4:j2’ k4)v and (tlvt2:t3,t4);
(ii) all games (i4sj4:ll)kl)s (‘l:3,j3,12,k2), and (tl;t3)t4y t2);
(iii) all games (ilm k2r l21j]): (":3y k41 l4’j3)r and (tlst4at2rt3)'

This gives 3n rounds. We obtain n—1 further rounds by taking a resolvable
transversal design T'D(4,n) with the jth group, 1 < j <4, consisting of all
elements with suffix j, and with one resolution class consisting of all the
blocks {i1, i2, i3, 14}, i < n. From each of the remaining n—1 classes, obtain
a round of the required TWh(4n) by replacing each block {%1, j2, k3, ls} by
the game (‘il, l4,k3,j2). O

The proof for n even is similar. These results appear in Baker’s work
([12, 13]) although the actual presentation of the proof is a little different,
being given in terms of self orthogonal latin squares (see the next lemma).

It is essentially due to the work of Baker and Wilson [14], Wallis [44]
and Wang [45] on resolvable SAMDRR(v) that the existence of a TWh(4n)
with n = 2 (mod 4) has been confirmed in most cases. This, and related
work, is often presented in terms of Latin squares, because of the following
result, which extends ideas in [19).

Lemma 8.3 [12). A resolvable SAMDRR(n) exists if and only if there
exist a self orthogonal Latin square SOLS(n) A of order n and a symmetric
Latin square B orthogonal to both A and AT, having constant diagonal if
n is even and having the same diagonal as A if n is odd. (B is called a
symmetric orthogonal mate of A.)

Proof: First suppose a resolvable SAMDRR(n) exists with spouse pairs
(Hi, W;). Define A = (aij)nxn by

)i ifi=j
M i
where W, is the partner of H; when H; plays against H;. Then A is a
SOLS(n). Further, define B = (bij)nxn by

i ifnis odd .,
b“___{‘l m bz'j:k (175.7)

n if nis even
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where H; plays against H; in the kth round.

Conversely, given A and B as in the statement of the lemma, relabel
so that a; = ¢ for each i. Then for the games in round k take games
HW v H;W,, (i# j) where b;; =k, a;j =1, aj; = m. (]

It follows immediately from Lemmas 3.1 and 3.3 that if a TWh(v) exists
then N(v) > 3, where N(v) denotes the maximum value of k for which it is

true that there exist k mutually orthogonal latin squares (MOLS) of order
v. But more can be said. :

Lemma 3.4 [12]. If a Z-cyclic TWh(v) exists, v = 1 (mod 4), then
N(v) > 4.
Proof: We certainly have 3 MOLS, A, AT and B. Now construct C
orthogonal to each. If v (or 0) is the player omitted in the initial round, .
define ¢;; = v for each ¢ < v. Now consider 7 # j. There is an unique game
(3, k, 5,1) in which 1 partners 7, and if this is in the (r 4+ 1)th round then it
is in fact the game (i’ + r, k' + r, §' + r,l' 4+ r) where (¢, k’,5’,1') is in the
initial round. Define ¢;; = #'. O
A similar result holds for DWh(v). Baker in fact used his Z-cyclic
DWh(33) (Example 2.1) to establish that N(33) > 4; this remains the
‘world record’ for N(33).

Very recently, Finizio [30] has shown how useful the existence of Z-cyclic
triplewhist tournaments is in the actual explicit construction of SOLS-
SOMs.

4 Z-cyclic Wh(dn +1)

Any discussion of such designs involves the idea of a starter. The pairs
{a1,01},-...,{azn,bon} of nonzero elements of Z,,, are said to form a
starter in Zyn4y if

(@) U2, {ai, b} = Zynt1 — {0},
(B) U2, {*(a: — b))} = Zan+1 — {0}

Similarly, we shall say that the pairs {ay,b1},..., {@4n,ban} of Zgn41 form
a 2-fold starter if

(7) the elements a;, b; are the nonzero elements of Z4,41 each occurring
twice,

(6) the elements *(a; — b;) are all the nonzero elements of Zs,4; each
twice.

If, by convention, we take the initial round of a Z-cyclic Wh(4n + 1) on
Zn+1 to be the round in which 0 does not play, then the condition for

(al,bl,CI,dl),...,(an,bn,cn,dﬂ) (4.1)
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to be the initial round games for a Z-cyclic Wh(4n + 1) are precisely [1]
(e) the pairs {ai, &}, {bi,di}, 1 <i < mn, form a starter,

(¢) the pairs {a;,b:}, {bi, i}, {ci,di}, {di, i}, 1 < 4 < n, form a 2-fold
starter.

The Wh(p) constructed by Baker, and the one constructed by Bose and
Cameron, both use the patterned starter {1, -1},...,{2n, —2n} in (¢), but
there are many other possibilities. We recall the well known Mullin-Nemeth
starter.

Lemma 4.1 [48]. Let p = 2%t 4+ 1 be prime, t odd, and let d = 2!, Let
0 be a primitive root of p. Then the pairs
{6%d+3 g(H+Dd+iy 0<i<t—-1,0<5<d-1

form a starter in Z,.
Liaw [37] has studied Wh(p) arising from non-patterned starters. Con-
sider, for example, the case p =4t + 1, i.e. when k = 2, Then the games
(1, 04e+1’ 6°, 04e+l+b) x 1, 04’ 08, ey 04(t—1)
form the initial round of a Z-cyclic Wh(p) provided
(m) a,b=2 (mod 4) or a=3, b=1 (mod 4),
(i) (6> —1) (6° —1) is a square (mod p),
(k) precisely two of g6+l — 1, gletl — ga gletbtl _ 1 gletbtl _ ga gre
squares. :
Case (a). By choosing e =0, a = b = 2 we get the initial games
(1,6,6% 6% x 1,64,...,°0¢"1)
(in which the partner pairs are the Mullin-Nemeth starter pairs) provided

(from (x)) that 6% + 8 + 1 is not a square in Z,. Now we quote

Lemma 4.2 (Cohen [20]). Let p > 211 be prime and let g(x) be a
quadratic polynomial over Z, not of the form a(z +b)? where a is a square
in Z,. Then g(8) is a non square for some primitive root 8 of p. O

We can thus choose # so that 62+ 0+1 is not a square, provided p > 211.
For p <« 211, such a # can be found by inspection. Indeed, we can take
pairs (p, 8,) given by (13,2), (29,8), (37,5), (53,5), (61,2), (101,2), (109,10),
(149,3), (157,6), (173,2), (181,2), (197,3).
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Case (b). Choose a = b = 2t; we obtain the games
| (1,0%%1, 1, —g%+1) x 1,6%,..., 64D

provided (from (x)) that precisely one of 6*¢~! + 1 is a square. This gives
Bose-Cameron types of tournament.

Case (c). Choose a = b = 2; we obtain initial round games
(1, o4e.+1’ 02’ 04e+3) x 1, 04’ ey 04(t—1).

Here the partner pairs are again the Mullin-Nemeth starter pairs, but this
time they are out of phase. The construction will work if, for example, we
can find e such that

gletl _1=0,60%"1-1£0,0*3 —1£0.

Many such examples exist
Example 4.1 Wh(29). Take § = 2, e = 3 in case (c) to get

(1,14,4,27), (16, 21, 6, 26), (24, 17,9, 10), (7, 11, 28, 15),
(25,2,13,8), (23, 3,5,12), (20,19, 22, 18).

What about Z-cyclic Wh(4n + 1) when 4n + 1 is not a prime? Watson’s
results [46] cover all cases where 4n+1 is a product of primes each of which
is =1 (mod 4). For other cases, Finizio [23] has studied small values of n.
No Z-cyclic Wh(9) exists, but there are many Z-cyclic Wh(21).
Example 4.2 [23] Initial round of a Z-cyclic Wh(21).

(1,4,2,18), (3,12, 5,16), (6, 8, 11, 17), (7, 14, 15,20), (9, 10, 19, 13).

We have already observed (Example 2.1) that a Z-cyclic Wh(33) exists.
Recently Finizio has obtained a Z-cyclic Wh(45) [31] and a Wh(49) [29],
and has shown [29] how to construct a Z-cyclic Wh(g®p$" ...p2) wherever
a Z-cyclic Wh(q?) exists and where p;, ¢ are primes, ¢ =3 (mod 4), ¢ > 7,
p; =1 (mod 4). He also has results relating to Wh(3¢p™) [28].

5 Z-cyclic Wh(4n)

For completeness, we begin by listing early examples of Z-cyclic Wh(4n),
n < 10. In each case the initial round games are given, and the elements
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v (players) are in {00} U Z4p—1.
Wh(4): (c0,1,0,2).
Wh(8): (0,4,0,5),(1,2,3,6).
Wh(12): (c,4,0,5), (1,2, 10,8),(3,6,7,9).
Wh(16): (o0, 5,0,10),(1,4,2,8), (3,12, 11, 14), (6,7,9, 13).
Wh(20): (c0,11,0,12), (3,16,9,1), (4,13, 14,18), (6,5, 8, 2), (7, 10, 15, 17).
Wh(24): (c0,22,0,86),(1,20,15,18), (2,9,5,14), (3,13, 11, 19),
(7,10,8,21), (12,4, 16,17).
Wh(28): (,4,0,5), (1, 6,16, 25), (23,9, 2, 14), (17, 21, 15, 3),
(20, 26, 24, 13), (18, 7,8,10), (19, 22,12, 11).
Wh(32): (o0, 28,0,20), (30,23,12, 3), (27,9, 17, 25), (19, 13, 18, 1),
(29,10, 24, 14), (11,7, 8,5), (22, 6, 16, 15), (2,4, 26, 21).
Wh(36): (o0, 25,0,5),(15,20,10,30), (11,12,9, 8), (14, 18, 6, 2),
(26,7,29,13), (4,33, 16,22), (21, 32, 34, 23), (19, 28, 1, 27),
(17,24, 3, 31).
Wh(40): (o, 26,0, 13), (14, 38,16, 10), (15, 24, 19, 7), (17, 35, 25, 1),
' (21,18, 37, 28), (29, 23, 22, 4), (6, 33, 31, 34), (20, 30, 32, 9),
(27,3,12,5), (2,3, 11, 36).
The Wh(8), Wh(12), Wh(16) above are due to Safford and appear in

[41). The others are due to Whitfeld, as described in the second edition of
Mitchell’s book, apart from Wh(32) which is Mitchell’s own.

In general, if we wish to construct a Z-cyclic Wh(4n) we use {co}UZ4,—y
where 4n — 1 =3 (mod 4). We can write

4n-1=QP (5.1)

where Q consists only of primes ¢ = 3 (mod 4) and P consists only of
primes p = 1 (mod 4). Anderson and Finizio have developed a strategy
which produces a Z-cyclic Wh(QP + 1) from a Z-cyclic Wh(Q + 1). The
main stumbling block so far has been the difficulty in constructing examples
of Z-cyclic Wh(Q + 1). The strategy (an example of which is described in
detail in the next theorem) utilizes the existence of an Z-cyclic Wh(P) (as
in section 4) and a Z-cyclic Wh(Q + 1), and we denote it by the

PQ+1-PQ+1

strategy.

Theorem 5.1 [9]. Let p,q be primes, p = 1 (mod 4), ¢ = 3 (mod 4),
g > 7. Suppose that a Z-cyclic Wh(q+1) exists. Then a Z-cyclic Wh(gp+1)
exists.

139



Proof: On Z,qU {oo} we

(a) construct the initial round of a Z-cyclic Wh(g+1) on {co}U{multiples
of p},

(b) construct the initial round of a Z-cyclic Wh(p) on the nonzero mul-
tiples of ¢,

(c) construct initial round games on the reduced set of residues E (mod pgq).

Note that |E| = (p — 1)(q¢ — 1). Take a common primitive root 8 of p and
g; then ord,0 =p—1, ord,0 =q—1,

ordpsd =lem.(p—1,9-1)= _—(p 1%((;1 -1

where g.c.d.(p — 1,q — 1) = 2e for some odd e. Let

41

H = {+1,49,...,£0%" 1},
Then we can partition F into cosets:
E=20HUxHU---Uze_1H

where the ‘representatives’ z; are chosen to satisfy xo = 1, z; ¢ Uj<iz; H.
Since zH = {*z,+0,...,+z6~1} where 4t > p—1, each z; can be chosen
so that z; =1 (mod 4).

Consider the games
(2, 2:0, —:, —2:0) x 1,0%,6%, ... 642

0<i<e —1. The partner differences are £2z;, £20z; x 1,62, ..., i.e. they
are all the elements of E once. The opponent differences are

+(0 — 1)z, £(0 + 1)z; x 1,6%,...,0%2 (5.2)

(twice). We have only to prove that the differences (5.2) are all distinct.
To achieve this, we choose 8 suitably. By Cohen’s lemma 4.2, if p > 211 we
can choose a primitive root 8, of p such that 02 1#0. Then 6,-1 =67,

Op+1= Of where one of o, 8 is odd. So we choose 0 so that 6 = 6, (mod p)
Then suppose
zi(0 — 1) = £;(0 +1)8°* (mod pq)

for some u. Then
0p—1=%(0, +1)62* (mod p)ie 63° =62 (mod p)

where o — 8 is odd. Since p =1 (mod 4), this is impossible; so the differ-
ences (5.2) do indeed give every element of E once.
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For p < 211 we can check that there indeed exists §, such that 62—1 5 0O,
except when p = 13; this case is dealt with by a separate construction. O

For application of Theorem 5.1 we need primes ¢ = 3 (mod 4), ¢ > 7, for
which a Z-cyclic Wh(g+1) is known to exist. The cases q = 7, 11, 19, 23, 31
are “classical”; apart from these the only cases known so far are ¢ =
43,47,59, due to Finizio [31].

A more general result of P,Q + 1 = PQ + 1 type can also be obtained.

Theorem 5.2 [9]. Let q,p1,...,pm be primes, g =3 (mod 4), ¢ > 7. If
there exists a Z-cyclic Wh(q + 1) then there exists a Z-cyclic Wh(gp" ...
o +1).

We make a few remarks about the proof of Theorem 5.2. Let N =
gp? ...p%= and, for convenience, denote ¢ by pf'n';‘fi‘ where apmy1 = 1.
Partition Zy into ‘layers’, one layer being the set P, of multiples of p;, and
the remainder being of the form '

I(B2,....Bm+1)={x€ZNn: s ,(z;pf‘[x,pi"“ fr if B; < o}, '

where (Ba,...,Bm+1) is an m-tuple satisfying 0 < B; < a; for each i,
2 < i £ m+ 1. Then a collection of games is constructed on each
I(B2,...,Bm+1) such that the partner (opponent) differences give every
element of I(fa, ..., Bm+1) once (twice). We then take all of these games,
along with the games of the initial round of a Z-cyclic Wh(N/p; + 1) on
Py U {c0}, to obtain the initial round of a Z-cyclic Wh(N + 1). For full
details see [9]. This decomposition into layers is also used in {6, 7, 8, 10].

All of the above examples have 4n — 1 = PQ where Q = g > 7. The case
g = 3 has to be treated separately (since one of # % 1 is not in the reduced
set here). Z-cyclic Wh(3p™ + 1) are constructed in [4], but we will return
to this when constructing triple whist tournaments in Section 6. Recently
some progress has been made with other Q. Anderson, Finizio and Odoni
[11] deal with the case Q = ¢?q; in a forthcoming paper. The method is
quite general, but is limited at present by the lack of many examples of
Z-cyclic Wh(q + 1) and Wh(g?).

6 Z-cyclic triplewhist tournaments

Triplewhist tournaments TWh(v) were defined in Section 2; here we con-
sider Z-cyclic TWh(v)

For a Z-cyclic TWh(4n + 1) we have to find an initial round
(al, b1, c1, dl)a ceey (am bna Cn, dn)
such that

(i) the partner pairs {a;,¢;}, {bi, di} form a starter in Z4n41;
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(ii) i:he first opponent pairs {a;,b;:}, {c, d;} form a starter in Zpn41;
(iii) the second opponent pairs {a;,d;}, {b;, c;} form a starter in Z4n 1.
Example 6.1 [Baker [12])

(i) Initial round of a TWh(29).

(1,2,9,27), (16, 3,28, 26), (24, 19, 13,10), (7, 14,5, 15,),
(25,21, 22,8), (23,174, 12), (20, 11, 6, 18).

(ii) Initial round of a TWh(37).

(1,2,17,4), (16,32, 13,27), (34, 31,23, 25), (26, 15, 35, 30), (9, 18, 5, 36),
(33,29, 6,21), (10, 20, 22, 3), (12, 24, 19, 11), (7, 14, 8, 28).

Until recently these were the only Z-cyclic TWh(p) in the literature.
Finizio [23] has verified that there is no Z-cyclic TWh(p) for primes p < 29,
although there exist Z-cyclic TWh(21), TWh(25), TWh(33).

Example 6.2 (Finizio)

(i) TWh(21) [23] (1,12,2,15), (5,6,3,18), (4,7,11,20), (8,13,19,17),
(14, 10,9, 16).

(ii) TWh(25) [30] (5,3,1,14), (9,17,16,20), (15,6,21,7), (10,4,8,13),
(2,12,19,22), (11, 18,24, 23).

(iii) TWh(33) [28] (1,3,5,20), (4,17,28,29), (31,25,26,2), (9,12,22,30),
(13,27,24,19), (6,16,7,23), (32,11,18, 14), (15,8,21, 10).

The set of values of n for which a Z-cyclic TWh(4n+-1) is known to exist
has been considerably expanded by recent work of Finizio [26], Anderson,
Cohen and Finizio [2] and Liaw [37]. We illustrate with the case p =4t +1,
t odd, i.e p = 5 (mod 8). For such a p, let # be a primitive root, and note
that

0%*=—-1 (modp), 2t=2 (mod4).

Construction A. Take initial round games
(1,0,-6,072) x 1,6%,6°,...,6%¢"1)

The partner differences are pairs (0 +1), £072(6® —1) x 1,64,..., and so
the partner pairs form a starter provided (6% —1)(8+1) # O. Similarly the
first kind opponent pairs form a starter provided (6% + 1)(8 — 1) # O and
the second kind opponent pairs form a starter provided 62 —1 # O (here we
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use the fact that 2 is a nonsquare since p = 5 (mod 8)). So Construction
A yields a Z-cyclic TWh(p) provided

?-14#0, °+0+1=0, 2-0+1=0. (6.1)

Alternatively, we can use
Construction B. (1,8, -8, -0*)x 1,64, ..., 641, This works provided

' +14#0, 2+0+1=0, ?°-6+1=0. (6.2)

Further, we could use
Construction C. (1,6,6%, -6%) x 1,64,...,60%-1)_ which works pro-
vided
’-1=0, ¢ +1=0, ¢-1=0. (6.3)

Now @ remains to be chosen suitably. Using character sums we can show
(2] that, except when p = 61, there exists a primitive root 8 of p > 29 such
that

?+0+1=0, ®-0+1=0.

Choose such a 8. If 82 — 1 # O, use Construction A. If 62 — 1 = O, then
08 —1=(62-1)(62-0+1)(62+0+1) = O and so we can use Construction
Cif 6* +1 = O. Finally, if 8 + 1 # O, we use Construction B. We deal
with p = 61 separately.
Example 6.3 [26]. The games (1,2,35,4) x 1,24,28, ..., 256 are the initial
round games of a Z-cyclic TWh(61).

Thus we have

Theorem 6.1. If p =5 (mod 8) is prime, p > 29, there exists a Z-cyclic
TWh(p).

We note that Baker’s examples of TWh(29) and TWh(37) given in Ex-
ample 6.1 are in fact
(1,2,27,2%) x 1,24, 28,..., 2%
and
(1,2,21°,-2) x 1,24, ...,232,

The following is also proved in [2].

Theorem 6.2. If the primes p; are all = 5 (mod 8), p; > 29, then there
exists a Z-cyclic TWh(p{" ...p2").

The cases of p = 25t + 1, ¢ odd, k > 2 have been studied by Liaw [37].
First consider k =3: p =8t + 1, t odd, ¢t > 3. Consider the games '

(1,0,-0,0%),(6% 63 —6% 6% x 1,68, ..., 68C— D) (6.4)
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It is straightforward to check that the starter conditions are satisfied pro-
vided 62+1, 6% -1, 62+ 041, 62 — 0+ 1 are either all squares or all non-
squares, i.e. provided 8* -1 =0, (6*-1)(8+1) =0, (*+))(0-1)=0. It
follows from the ideas in [20] that such a @ will exist provided p is sufficiently
large.

Example 6.4 A Z-cyclic TWh(89). 89 = 8.11 + 1. Take 8 = 6 to obtain
initial round games

(1,6,83,38) x 6%+% (0<i<10,0<5<1).
The construction (6.4) does not provide solutions for p = 41 or 73, but
appears to work thereafter. The case p = 73 falls to a generalization of this

method: see Example 6.6 below. We can deal with p = 41 by many similar
constructions, e.g. the following.

Example 6.5 A Z-cyclic TWh(41). Take @ = 7 to obtain initial round
games o
(1,7°, -7, 7)) x 7% (0<i<4,0<5<1).

ie.
(1,13, 34,25), (8,22,26,36) x 1,37,16, 18, 10.

We can generalize (6.4) to deal with all primes p = 2t +1, k > 3, ¢ odd,
t > 3. The games

(1,6,-6,0'%) x 6%+ (0<i<t-1,0<j<n) (6.5)

where d = 2¥, n = 2¥=2 — 1, from the initial round of a Z-cyclic TWh(p)
provided

(i) a=2%"1~1 (mod 2¥),
(i) e+t -1=0,
(iii) (0 +1)(6°-1)=0,
(iv) (6 —1)(6*+1)=0O.
By this approach, Liaw has obtained the following result.

Theorem 6.3 [37]. If p is a prime, p = 1 (mod 4), 29 < p < 1000,
p # 257, there exists a Z-cyclic TW h(p).

Example 6.6

(i) A Z-cyclic TWh(73). 73 =23.9+ 1. In (6.5) take § = 31, a =11 to
obtain initial round games

(1,31,42,65) x 31%+% (0<i<8,0<j<1).
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(ii) A Z-cyclic TWh(97). 97 = 25.3 + 1. Take 8 =7, a = 79 to obtain
initial round games

(1,7,90,62) x 73%+%  (0<i<2,0<5<7).

(iii) A Z-cyclic TWh(113). 113 = 2%.7+ 1. Take 8 =21, a = 7 to obtain
(1,21,92,64) x 21'%*% (0<i<6,0<5<3)

We now consider Z-cyclic TWh(v) where v =0 (mod 4). The first such
designs were the TWh(3p + 1) obtained by Moore [42].

Example 6.7 Moore’s TWh(16).

Round1  (00,5,0,10) (1,4,2,8) (6,13,9,7)  (11,12,3,14)
Round 2 (o0,6,1,11) (2,5,3,9) (7,14,10,8)  (12,13,4,0)
Round 3 (00,7,2,12) (3,64,10)  (8,0,11,9)  (13,14,5,1)
Round4 (,8,3,13) (4,7,511)  (9,1,12,10)  (14,0,6,2)
Round 5 (0,9,4,14) (58,6,12)  (10,2,13,11) (0,1,7,3)
Round 6 (00,10,5,0) (6,9,7,13)  (11,3,14,12) (1,2,84)

Round 11 (00,0,10,5) (11,14,12,3) (1,8,4,2) (6,7,13,9)

Round 15 (c0,4,14,9) (0,3,1,7) (5,12,8,6) (10,11,2,13).
Example 6.8 Moore’s TWh(40). Initial round is

(c0,0,13,26), (1,8,25,5), (2, 16,11,10), (4, 32, 22, 20), (14, 38, 18, 21),
(15,24, 23, 29), (17, 35, 33, 6), (27, 31, 34, 12), (28, 36, 3, 37), (30,7, 19, 9).

Anderson and Finizio extended Moore’s method to obtain Z-cyclic TWh
(3p™ +1) for all p =1 (mod 4) in [4], and then later [6,7] obtained TWh
(3p$* ...p3~ +1) whenever the p; are compalible, i.e. whenever each p; —1
is divisible by the same power of 2. The resulting TWh designs all possess
a remarkable property shown in Example 6.7. Note there that the elements
of B ={1,4,2,8} are all distinct mod 5, so that this block, along with its
translates B + 5, B + 10 can be taken as other blocks in the initial round;
they are permuted so as to cause the partner differences in B to become
first opponent differences in B + 10 and second opponent differences in
B + 5. Rounds 6 and 11 contain the same blocks as round 1, but arranged
differently. Thus if we take only the first 5 rounds, we obtain a 1-rotational
resolvable (16,4,1) design in which the resolution classes are translates of
the first class. This all goes through in the general case of 3p{* ...pS" +1,
so we obtain:
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Theorem 6.4 [7]. If the p; = 1 (mod 4) are compatible, then there exists
a cyclically resolvable (3p" ...p3" + 1,4, 1) design.

In the case when the p; are not compatible, Liaw [36] has shown that a
1-rotational design still exists (although not necessarily resolvable).

We now consider the P,Q + 1 — PQ + 1 strategy for triplewhist tour-
naments when Q # 3. The success of such a construction will of course be
governed by the availability of Z-cyclic TWh(q + 1) designs when ¢ = 3
(mod 4) is prime. So far only a handful of such designs are known. In
Example 1.1 we dealt with ¢ = 7.

Example 6.9 Initial rounds for Z-cyclic TWh(q + 1), ¢ = 19,23,31. All
are due to Finizio.

(a) TWh(20) [23] (00, 13,0,17), (8,2,10,1), (3,18,15,4), (7,12,16,9),
(11,14,5,6).

(b) TWh(24) [10] (co,22,0,10), (14,20,7,12), (19,18,15, 8), (4,6,13,9),
(11,3,17,5), (21,1,16,2).

(c) TWh(32) [10] (oo, 18,0,25), (124,2,5), (6,28,9,20), (23,11,8,24),
(15,13,29,19), (1,14,3,10) (17,16,22,27), (21,7,30,26).

Theorem 6.5 [10]. If a Z-cyclic TWh(q+1) exists and a Z-cyclic TW h(p)
exists, g =3 (mod 4), p=1 (mod 4), ¢ > 7, then a Z-cyclic TWh(qp +1)
exists.

Proof: The proof is similar to that of Theorem 5.1. For the reduced set of
residues take the games (z;,z:0, —z:0, —:0%) x 1,62, ...,0%~4. The proof
goes through provided we choose = 6, (mod p) where 6p is a primitive
root of p such that 2(02+ 1) is a square in Z Once again, Cohen s theorem
guarantees the ex1stence of such @, for p > 211 for p < 211 we can find a
suitable &, in each case.

Note that the existence of a Z-cyclic TWh(36) cannot be confirmed by
this theorem since no Z-cyclic TWh(5) exists. Finizio [30] has however
constructed Z-cyclic TWh(36) (and TWh(28)).

Example 6.10 Z-cyclic TWh(36).
(c0,16,0,32), (28,14, 3,27), (31,13, 4, 2), (20, 24, 34, 33), (26, 1,19, 6),
(7,12,8,15), (17,23, 21, 29), (18, 9, 30, 11), (22, 10, 5, 25).
The proof of Theorem 6.5 can be generalized along the lines of Theorem
5.2,

Theorem 6.6 [10]. Let q,py,...,pn be primes, p; = 5 (mod 8), ¢ = 3
(mod 4), ¢ > 7, p; > 29, and suppose that a Z-cyclic TWh(q + 1) exists.
Then a Z-cyclic TWh(gp{* ...p + 1) exists.
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The natural generalization of this result to the primes p; of Liaw’s The-
orem 6.3 can also be established [37].

7 Existence of TWh(4n)

According to the survey [17] by Bennett and Zhu, a resolvable SAMDRR(n)
exists for all positive integers n except possibly for » € {10, 14, 46, 54, 58, 62,
66,70, 74,82, 98,102, 118, 142, 174, 194, 202, 214, 230, 258, 278, 282, 394, 398,
402,422,1322}. The SOLSSOMs in (38] and [49] do not appear to have
mates with the properties required in Lemma 3.3. Thus a TWh(4n) cer-
tainly exists for all n except those listed above. Many of the remaining val-
ues of n can be dealt with by the results of this survey: e.g. 40 =3.13+1,
184 = 3.61 +1, 232 = 8 x 29, 264 = 8 x 33, 328 = 8 x 41, 776 = 8 x 97,
1688 = 7.241 + 1. However, very recently B. Du [21] has shown that the
above list of values of n can be reduced to {10, 14,46, 54, 58, 62, 66, 70}. As
a result, it appears that the only values of 4n for which it is not known if
a TWh(4n) exists are 56,216,248,280.

8 Some open problems

(1) Find a method of constructing Z-cyclic Wh(q + 1) for primes ¢ = 3
(mod 4), ¢ > 67.

(2) Find a method of constructing Z-cyclic TWh(g+ 1) for primes ¢ =3
(mod 4), ¢ > 43.

(3) Find a Z-cyclic TWh(257).

(4) Construct Z-cyclic TWh(3p$* ...p2" + 1) when the primes p; — 1
(mod 4), are not compatible.

(5) Find (not necessarily Z-cyclic) TWh(56), TWh(216), TWh(248),
TW h(280).

(6) Find a method of constructing Z-cyclic Wh(g®) where ¢ = 3 (mod 4)
is prime.
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