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ABSTRACT

An undirected graph of diameter D is said to
be D-critical if the addition of any edge decreases
its diameter. The structure of D-critical graphs
can be conveniently studied in terms of vertex
sequences. Following‘on earlier results, we est-
ablish, in this paper, fundamental properties of
K-edge-connected D-critical graphs for K> 8 and
D>7. In particular, we show that no vertex sequ-
ence corresponding to such a graph can contain an
"internal" term less than 3, and that no two non-
adjacent internal terms can exceed K-[2/K]+l1. These
properties will be used in forthcoming work to show
that every subsequence (except at most one) of
length three of the vertex sequence contains exactly
K+1 vertices, a result which leads to a complete
characterization of edge-maximal vertex sequences.
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1. INTRODUCTION

All graphs considered in this paper are finite, loop-
less and have no multiple edges.. Terminology is generally
as given in [1]. A graph G of diameter D is said to be
D-critical if the addition of any edge results in a graph
having diameter less thah D.

In (5] Ore characterizes general D-critical graphs on
n vertices which for fixed n and D contain a maximum number
of edges: we refer to such graphs as edge-maximal (or
simply maximal). Ore characterizes edge-maximal D-critical
graphs which are in addition constrained to be K-vertex-
connected, and shows that thgy have a very simple structure.
He does not, however, consider the problem of the structure
of maximal D-critical K-edge-connected graphs. This
oroblem is the subject of the present paper.

In [2], we presented a summary of Ore's main results,
and provided a characterization of maximal D-critical K-
edge-connected graphs G for each of the following cases:

(i) 2 5
(ii) 1<K<7;

(iii) for D > 6, K > 8, provided that the order

n of G ié in a certain sense "minimal",

In.
Ia 1A

In

consistent with diameter D and edge-
connectivity K.

Even in these special cases, we find that the struct-
ure of the maximal graphs is much more varied than that of
the maximal X-vertex-connected graphs studied by Ore. In
this paper, we prove fundamental properties of maximal
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D-critical K-edge-connected graphs; in fortﬁcoming work, we
shall make use of these properties, first to derive a
characterization of such graphs [3], and then to provide a
means of calculating, for given n, D, and K, the precise
arrangement of their vertices and edges [4].

Section 2 reviews the main ideas and results for D-
critical graphs conveniently expressed in terms of vertex
sequences; we then state a sequence of Lemmas which easily
yield Ore's main characterization theorem [5]. The new
properties concerning maximal D-critical K-edge-connected
graphs are established in Section 3.

2. D-CRITICAL GRAPHS

Let G be a graph of diameter D having vertex set V.
Then a vertex ueV is said to be peripheral if there exists:
another vertex veV such that d(u,v) = D. Imagine now that
the vertices of G are arranged in levels L, = L, (v),
i=0,1, ..., D, where Lihn consists of the vertices dist-
ance exactly i from u. Then a vertex sequence SD = sDun is
given by

SD = (Ngy Nyy ooy nD) (2.1)
where n, = Hq(u)l, i=0,1, ..., D. Subsequences of S, of
length k>1 are referred to as k-tuples; in particular, for
k = 2 and 3, as doubles and triples, respectively. A k-tuple
) is intermal if 1<i<D-k, and a term n,

(rys g gr oo B
of SD will be called terminal if i = 0 or D. The structure
of D-critical graphs can, as noted in [2], be conveniently
studied in terms of vertex sequences. The following results

are due to Ore [5]:
Lemma 1. A graph G is D-critical if and only if every

peripheral vertex gives rise to a vertex sequence (2.1)
such that
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(a) n0=nD=1;
(b) every vertex in L, i =0, 1, ..., D-1, is adjacent
to every other vertex in Li and Li+l . 0

Lemma 2. Suppose (2.1) is a vertex sequence for a D-
critical graph G, and consider any 4-tuple 0\-1'"1’“i+r
n, ,,) of (2.1), where n,>1 and 1<i<D-2. The transformation

(ry_ps Mgs Mg Pyup) = (g o my=1y g 41, 0y 0)

changes the edge count by n -n

i+2 i-1° 0

Let G, (n, D, K) (G (n, D, K)) denote the class of D-critical
K-edge- (respectively, K-vertex) connected graphs on n
vertices. A graph Ger(n, D, K), x=e, v, is said to be edge-
maximal (or simply maximal) if no other graph in Gx(n,D, K)
has more edges than G. Similarly, the vertex sequence of a
maximal graph is called a maximal vertex sequence (or simply
a maximal sequence).

A consequence of Lemmas 1 and 2 is that for a maximal
vertex sequence it may, without loss of generality, be
assumed that

The next result follows immediately from Lemma 1 and the
definition of connectivity.

Lemma 3. Let SD = (Ngy N3y see, "D) be a vertex sequence of a
D-critical graph G. Then

(a) GeG (n, D, K) if and only if:

(i) every triple of S contains at least K+l
vertices;
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(ii) the product of the terms of every double of
SD is at least K.

>K for 1<i<D-1. |

(b) GeG(n, D, K) if and only if n,

Let GeG xhu D, K), x=e, v, be a graph with vertex sequ-
ence S. We say that a vertex u of G is removable if
G-chx(n-l, D, K). The sequence T(S) = (n§, n{, ..., “b) is said
to be a transformation of S if ni21 for each i and
ny + n} + == +r% =n. T(S) is said to be feasible if the graph
G' realized from it is a member of Gth D, K). That is, in a
feasible transformation the criticality and connectivity
properties are preserved; only the edge count can change.
When writing down a transformation, we specify only those
terms which change. An important property of maximal vertex

sequences is given in the following lemma.

Lemma 4. Let Gxecxhu D, K), x = e, v, be a maximal graph with
peripheral vertex u. If veLion and wdj(u) are removable

‘vertices in G, then ji-jl<1.

Proof: Let S =(n.,n|,...,nD) be the vertex sequence of Gx
and suppose that |i-jj>1. Then the transformations

T,: n,~n.-1 and n —n_+1
i i j j
and
T,: ni—'ni+1 and nj—’nj—l ,

are feasible and alter the edge count by:

(n,

+ N, + N -n -n, =-n,
j-1 J

and
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respectively. Hence, the edge count can be increased, contra-
dicting the fact S is maximal. This proves that |i-jl<1. [

Corollary 1. No maximal vertex sequence of cx“” D, K), x= e,v,
contains two non-adjacent terms greater than K. Moreover,
there exists a maximal vertex sequence having at most one
term greater than K. ]

This Corollary together with Lemma 3 (b) yields Ore's
main classification theorem:

Theorem 1. A graph cecvon D, K), D> 4, is edge-maximal if and
only if it has a vertex sequence

(ly Kr Nzy, N3y eeey nD_zr Kr 1)

with ny = K for all i>2 except possibly one or a consecutive

pair. 0

3. PROPERTIES OF MAXIMAL VERTEX SEQUENCES
Throughout this section § = (1, ny, nay «vuy mp 4y 1)

will always denote a vertex sequence corresponding to a graph

Gcce(n, D, K), where D>7 and K>8. A triple (ni ) of s

is said to be a minimum triple if

-1 M Mia

i-1 + ni + ni+1 =K+1,

achieving the lower bound allowed by Lemma 3(a); otherwise
we shall call the triple fat. Observe that a fat triple
does not necessarily include a removable vertex; for example,
no vertex of the fat triple (1, K, 1) is removable.

Lemma 5. Let GeG(n, D, K), D>7, K>8, be an edge-maximal
graph with vertex sequence S = (1, n;, n;, ..., n 1). If

n, </K for some i, 3<i<D-3, then

D-1’
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ni<min {ni-Z’ ni4-2} (3.1)

Proof: Suppose that (3.1) is not true and that

min {ni-2’ ni+2} = n.-x, x>0 .
Without loss of generality, we may suppose that N T M Xe
S clearly contains the subsequence

(ni-l’ Ny eees ni+3) = (I'K/n1'|+a, ns [K/ni]+b, R, =X, fK/(ni-—x)]+c)
where a, b and ¢ are non-negative integers.
Since

n, < ['K/ni]
and
2ni+['l(/ni]+b-le(+l , (3.2)

it follows that the triples (n; ;, n,, n, ,) and (n; ,, B 5, 0, 4)
are both fat. Hence, if b>0, the transformation

)—(n,

1+1-1'

+1)

('ni+1' M2 Mie2

is feasible and increases the edge count by

[Kl(ni—x)]+c-ni>0 .

Therefore b=0 and so, since n 2K, x=0. Now the only

n
ivl 142
possible way (3.2) can hold is for "i=l’ Lemma 4 then
implies that at least one of a or ¢, say a, is zero. But
then the transformation

( s N,y ceey ni+3) =(K, 1, K, 1, K+c)—(K, 2, K-2, 2, K+¢c)

i ) i
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is feasible and has an additional
2K + ¢ -3

edges, contradicting the fact that S is maximal. Hence,
(3.1) must be satisfied. ]

Remark 1. The above argument can be used to establish that
if n, <7k, then n,>n,.

Remark 2. If ni=[K/ni1(this is so when K = n;), then the
above argument can be used to prove that na> Ny unless

( ) is a minimal triple.

Pie1r M0 M
Lemma 6. No internal term of an edge-maximal vertex sequ-

ence is one.

Proof: Suppose on the contrary that S is a maximal vertex

sequence with an internal term n, = 1. Lemma 3 (a) together

with Corollary 1 implies that

min{nt } =K.

-17 "i41
First we consider the case 3<i<D-3. Lemma 5 implies

that n >1 and "i+2>1' Hence the transformations

i-2

T,: ni-l—mi-l-l and ni—'nid

and

Tz: n, ,~*n -1 and ni—>ni+1

ivl i+l
are feasible and alter the edge count by (n, , - n, ,) and
(

ni—ZZ"i«rl and ni+21ni-l' Thus

ni.y - "y,2)s respectively. Hence, since S is maximal,
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("1-2’ Ny eee n1+2) =(K+a, K+b, 1, K+c, K+ d)
with a>c>0and d>b>0. It follows from Corollary 1 that
b=¢=0 and wmin{a,d} =0 .

Without any loss of generality, we take a = 0. Then the
transformation
2) = (K, K, 1, K, Ked)

(ny 20 By gr Oyr My By,

—(K, 2, K-2, K+1, K+d),

is feasible and increases the edge count by K +d - 2>0.

This proves that

n1>1 for 3<ig<D-3 .

Consider next the case n, = 1. Because of symmetry,
this is the only remaining case. Now we must have n,2K,
since n, = K and the transformation

n,~—ny+1 and ny—n,-1

is feasible and alters the edge count by K- n,. Without any
loss of generality, we may take

(ng, ny, ..., n,) = (1, K, 1, K, Kea)
with a>0. Observing that n,=1, consider the sequence
$' = (ny, ny, ..., ﬂD. n,, ng)

formed by a rearrangement of S. This sequence is also
edge-maximal. By Lemma 5, n, ,>1. Since the transformation
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(np_gs Mp_y» B 0y) = (np o, Ky 1, K)~(np_,, k-1, 2, K)

is feasible and alters the edge count by K'"D-Z’ we must have

n. ,>K. Now for D>7 the transformations

D-2

T,: n,—*n,~-1 and nD_2—+nD_2+l
and

Ty: ny—n,+l and nD_i—*nD_z-l

are both feasible, since nD_3>1. Hence, the edge count can
be increased, contradicting the maximality of S. The only
remaining case is D=7. 1In this case S can, without any loss
of generality, be taken to be

S =(1, K, 1, K, K, K+b, K, 1)
with b>0. But the sequence

(1, K, 2, K-2, K, K+b+l, K, 1)

yields a graph with more edges, a contradiction. This
completes the proof of the lemma. . ]

Remark 3. For the above result, we need D>7, since for D=6

the sequence
(1s K, 1, K, K+a, K, 1)
will in fact be haximal for sufficiently large a.

Our next result establishes a lower bound of 3 for the
internal terms of an edge-maximal vertex sequence.
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Lemma 7. No internal term of an edge-maximal sequence can be

two.

Proof: Suppose on the contrary that S is an edge-maximal
vertex sequence with an internal term n, = 2. We may further
suppose that nj>2 for 1< j<i-1. We distinguish two cases
according to the value of i.

Case 1. i =2,

Here ny = [4K]+a, with a>0 and, by Remark 1, n,>2. If
ns = 2, then n,>[%] and ns2[4k]. In such a case, we may in
fact assume, without any loss of generality, that S contains

the subsequence

(ny, Nz, -.., ng) = (K, 2, [¥K1, [4K], 2, [5K1+b)

with b>0. But then the transformation

T,: n,—~n,+1 and n,—n,-1 (3.3)
is feasible and increases the edge count. This contradic-
tion establishes that ns>n, = 2. Hence (n,, n,, ng) is a fat
triple and so the transformation (3.3) is feasible and
alters the edge count by K-n,. Therefore, since S is max-
imal, n,>K. Now since ng>2, we may take a = 0 and so

(ny, nzy «oey, ng) = (K, 2, [5K], K+ b, ny)

with b>0. If ns<K-2, then the transformation

n,=—n, + ng + b and n,—K-ny

is feasible and increases the edge count by 2(ns + b). Hence
ng = K-1 +¢c, ¢>20. Now since D>7 and the transformations
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(nlu ns)_’(nbtll ns:l)

are feasible, we must have ng = [5K]. But then the trans-

formation

(ny, Nay ooy ng)=(K, 2, [¥K], K+ b, K-1+c, [5KD)

—'(Kr K+b+c, r’éK], 2, K-1, [%K])

is feasible and increases the edge count by K+b+c-2>0. This
proves that n;>2 and also (because of symmetry) that nD_2>2.

Case 2. 3<i<D-3. .
Since D> 7 and we could consider S in reverse order, we

may take i<D-3. We must have

L [4K1+a and LI [5K1+b ,

with a, b>0. Lemma 5 implies that

>2 and n, ,>2 .
i+2

Ri-2
Since, by assumption, nj>2 for 2<j< i-1, the triple (ni_3,
ni—Z’ ni-l) is fat. Hence the transformation

ni_l—'ni_l—l and ni—'ni-vl
is feasible and alters the edge count by (“i+1 -n; 5. We
must therefore have

ni_2 =[] +c ,

with c>b.
We now prove that "i+33-3' Suppose that n. 3¢ 3. Then,

since i<D-3, n 3= 2 and hence

i
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(ni, g o ni+4) = (2, f%K:h»b, [3K]+ x, 2, ”{K]*-Y)

with x, y>0. Without loss of generality, we may take b = 0.
Now if x>0, the transformation

—+n +x and nLoTny

-X .
i+2

i-2  i-2

is feasible and alters the edge count by
x(ni_3+a+c-2).

If i=3, then a=[%]. Hence, since n; 323 for i>4,
n,ata+c >2 and so x = 0. But then the edge count can be
increased via the transformation

(ngs my,00 Pyp0 By,3) = (20 T3KT, (4K, 2)

—(3, [%1-1, [3k1-1, 3).

This proves that n >2 and hence that ("i+1’ni+2'"i+3) is a

i+3
fat triple.

Now the transformation

—*n -1

ni—’ni+1 and ni"_.1 i1

is feasible and alters the edge count by ("Ld "H+2)' We
must therefore have

0, = [¥K]+d ,

with d>a. Since n
is b = 0. Thus

1,323, we must in fact have n  , =[%1; that
+3 i+l

( Y = ([5kT1+¢c, %K) +a, 2, [4K], [4K)+d) .

fio20 "gopr vt Moo
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Our next task is to prove that a =0. If a>0, then
since ("1-3'"1-2'n1-1) is a fat triple and d>a, the edge-
maximal graph G corresponding to S would have removable
vertices in levels i-1 and i+l, unless (“i+2'"i+3,"i*a) is a
minimal triple. Hence ("i+2’“i+3"ﬁ+4) must be minimal. We
must therefore have

(ni+2' ni+3’ “i+4) = (r§K]*dr 2+e) r%x]-f) 1)
with e>0, £>0 and
e+d-f = K-2[%K1-1 .
Note that
f>e +d . (3.4)

Now the transformation

(n;_1» 05 0y ) = (T4K1+a, 2, [5KT)
~([%K1+asf-e, 20, [KI-£)
is feasible and increases the edge count by
(f-e)(c+f) + £(a~d)
> d(c+f) + f(a-4d)
= dc + fa
>0. (by (3.4))

This proves that a=0.
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In fact, the above argument shows,that’hu+z,ni*3,ni#a)
is a fat triple. An analogous argument shows that for i2> 4
("i-a’"i-3'"i-2) is a fat triple. But then, since n;, ;>3
and "i+333’ our edge-maximal graph G has removable vertices
in levels i-2 and i+ 2, a contradiction. This establishes
the lemma for i>4.

The only remaining case is i=3. Since ni+333 and

("i+2’"1+3’“1+a)is a fat triple, our graph G has a removable

vertex in level i+2. Hence n, ,<n. .. Let
i+6 i+l

n =2+e, ni+4=[951(]-f,

i+3

with e>1 and £>0. Further, let

t = 2[¥K])+d+e-f+2-K-1 ., (3.5)

Then G has

r = min{d+ 1, t}

removable vertices in level i+2f The transformation

—n - T

n, .—/n +r and n
i+2

i-1 i-1 i+2
alters the edge count by

r(l4K]-d-e+r)<0 .
Hence
e+d-r>[5K] . (3.6)

If D=7, then Nie3 = K and the edge count can be increased via

the transformation
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(1, K, [‘EK]) 2, r¥K]’ r%K]*d) K, 1)
(1, K, [%K1-2, 3, [%K], [%K1+d+1, K, 1) .

Therefore D> 7. We now consider two subcases according to

the value of r.

(a) r=1t<d+1
Equation (3.5) gives

d-t+e-f = K-2[%1-1<0 .
Therefore, since t<d, e<f. .The transformation
(na, ny, ..oy ng) = ([5KT, 2, [3K], [4K1+ d)
| —([%k1+f+t-e, 2+e, [5K1-£, [BK1+d=1)
is feasible and increases the edge count by

(t+f-e)([3K)+ E+t) - d(t+£)

> (d+1)(L3¥K]+ £+¢t) - d(c+£)

Consequently t2>d+ 1.

(b) r =d+1
Then, by (3.6)

no3 = 2+e2[4K]+3 .

Consequently, we can take

ni3 = [¥K1+ x ,
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with x>3. Now since “1¢432' our graph G has removable
vertices in level i + 3 whenever ("i+3’"1+4'"i+5) is a fat
triple. We may therefore, without loss of generality,
assume that (“i+3'“1*a'"i+5) is a minimal triple. Then

n,5 = [51l-g, g>0,
Pie62 143 (3.7

and
x-f-g=K+1-3[%] . (3.8)

.

In view of (3.7), we may assume that LYVA is as small as
possible. That is

([3K1- £-1)([3K1-g+1)<K .

52K, it thus follows that f£>g and hence

Since n, , n,
i+ is

(K- g)([4K1+ x) 2 K
Thus the transformation
(has mas ees me) = (TSK1, 2, (361, (515 0)
—([4K1+ 2, [5K1+x, [5K])- £, [3K]-g)
where
A=degs £-[5K1-x+2
>d+1, (by (3.7))

is feasible and increases-.the edge count by
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(g+d+ £)(A=-£)+ ALEK]
> A(A+ |3K]-£)>0 .
This contradiction completes the proof of the lemma. [J

We recall now some useful notation introducted in [2].
For given K> 8,

a=|'2/l-('l .

Let a, be the least-.integer >3, such that a(e-a,)> K, and
let a;=a-a,. Then a is the least order of a double compat-
ible with K-edge-connectivity. Further, defining K’ = K+1
and Kk‘ K’ - x- we observe that every permutation of the min-
imum triple (Ku’°"°*) satisfies K-edge-connectivity. Our
next result establishes an upper bound for the internal
terms of an edge-maximal vertex sequence. This upper
bound is more refined than that giveﬁ by Corollary 1.

Lemma 8. No two non-adjacent terms of an edge-maximal ver-
tex sequence can exceed Ka.

Proof: Suppose on the contrary that S is an edge-maximal
vertex sequence with

where a>0,b>0, |i-j|>1, 2<i<D-2 and 2< j<D-2.

Our graph G corresponding to S cannot have removable
vertices in each of the level sets i and j. Suppose with-
out any loss of generality that G has no removable vertex
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in level i. Then at least one of the following conditions
must hold:

(i) (ny_5» my_ys ) is minimal;
(ii) (n,_4» nys n;,;) is minimal;
(iii) (ns g 0o n,,,) is minimal;
(iv) {min LIRY ni+1} = rK/(Kn4»a)] .

Condition (i) cannot hold since it would imply that

n +n La-a

i-2 i-1

and hence

Mg My <K

Similarly, condition (iii) cannot hold. Now suppose (iv)
is true. It suffices to consider only the case when

Let

n <n

i-1 i+1°

K
f(K, a) =K +a-1-

Now for fixed K, f(K, a) attains its maximum value at a = 1.
We have

n < f(K, a)< f(K, 1) »
and hence, by Lemma 7
f(K, 1)>3 .

That is

K<% (f2/K1-1} .
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This inequality does not hold for any K>8. Hence condition
(iv) cannot hold.

The only remaining possibility is condition (ii). 'Siﬁce
(i) and (iii) are not possible, we have

>n

2”7 M4

and

Mie2” Mot

The transformation

ni_l-*ni_1+ 1 and ni—*ni- 1
is feasible, since (iv) is not satisfied, and yields a higher
edge count. This contradiction completes the proof of the
lemma. 0

4. DISCUSSION )

Many of the proofs of Section 3 are unfortunately
lengthy and detailed. However, the properties themselves
are simply stated and will be seen in [3] to be important
for the characterization of the edge maximal graphs of the
class Ge("’D’ K). The property stated in Lemma 8 in partic-
ular allows us to assert that, for fixed D and K and suff-
iciently large n, '"additional' vertices will all belong to
the same level set; but in order to show that this result
holds also for values of n close to the "minimal" values
considered in [2], it will be necessary essentially to
establish the following:

Lemma 9. In an edge-maximal vertex sequence, every internal
fat triple contains a removable vertex. 0
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This property is the subject of forthcoming work [3]). From
it one may immediately establish the main characterization
theorem:

Theorem 2. The vertex sequence of an edge-maximal graph
Gece““ D, K), D>6, K>8, takes the form

(1, K, N2, Nyy veey “D-Z’ K, 1)

with every internal triple, except possibly one, being
minimal. The exceptional triple contains n, or Ny - ]
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