On Covering Pairs by Quintuples:
The Cases v = 3 or 11 modulo 20
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ABSTRACT

Let C(v) denote the least number of quintuples of a
v-set V with the property that every pair of distinct elements
of V occurs in at least one quintuple. It is shown, for v = 3 or
11 modulo 20 and v > 11, that C(v) = [(v—1)/4] with the
possible exception of v € {83,131).

1. Introduction.

A (k,t) cover of order v is a pair (V,F) where V is a v-set and F is a
family of k-subsets, called blocks, of V which has the property that every
t-subset of V occurs in at least one block. If C is a particular family such
that no other (k,t) cover of V has fewer blocks, then we define the number
C(t,k,v) to be |C|, the number of blocks in C. (Clearly this number is
independent of the v-set V' chosen). The numbers C(2,3,v) were deter-
mined by Fort and Hedlund [4], and the numbers C(2,4,v) by Mills [15],
[16]). In addition Mills [17] determined the numbers C(3,4v) for all y =7
mod 12, and the numbers C(3,4,v) for v = 7 mod 12, v large, were deter-
mined by Hartman, Mills, and Mullin (8]. Lamken, Mills, Mullin, and Van-
stone [11] determined the values of C(2,5,0) for v = 2 mod 4 (with two
possible exceptions), and for v = 1 mod 4 for v large. In this paper we lay
the foundations for the case v = 3 mod 4; in particular we determine for
v = 3 and 11 modulo 20 covers of a specific type, which we call star cov-
ers, which appear to be fundamental to determining the numbers C(2,5,v)
in the remaining congruence classes of the case v = 3 mod 4.

2. Star Covers.

For convenience, we henceforth abbreviate C(2,5,v) to C(v) since we
will consider only (5,2) covers. It is also convenient to define
B(v) = [v[(v-1)/4] /5], where [z] denotes the greatest integer not exceed-
ing 2. It is well-known that C(v) > B(v). Let v be an integer greater
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than three which satisfies either v = 3 modulo 20 or v = 11 modulo 20.
Then a star cover D of order v is a pair (V,F) where V is a v-set and F is
a set of quintuples and one triple from V with the property that every pair
of elements from V occurs in at least one block of D. We also admit one
block consisting of the three elements of a 3-set as a star cover of order 3.
A star design of order v is a star cover of order v in which there are
B(v) — 1 quintuples (and one triple). Let C’ = {v:3 a star design of
order v}. Clearly if v >3 and v €C’, then C(v) = B(v). A star cover
D'= (V') is a sub-cover of a star cover D = (V,F) if V'CV and
F' C F. (Subdesigns of designs are defined analogously). Let C = (V,F)
be a (5,2) cover of order v. The ezcess graph E = E(C) of C is a loop-
free multigraph whose vertex set is V and whose edge set is defined as fol-
lows: the pair {z,y}, = # y, is an edge of multiplicity ¢ — 1 in E' if the
pair zy occurs in exactly e blocks of C. The excess graph E(D) of a star
design is defined analogously.

A star graph is a loopless multigraph in which three vertices are of
degree zero, and the remaining vertices are all of degree two.

Lemma 2.1. Let E = E(D) be the ezcess graph of a star cover D. Then
D is a star design i f and only if E is a star graph.

Proof. Let D be a star cover of order v whose excess graph is a star
graph. Since star designs are only defined for v =3 or 11 modulo 20, we
have v — 1 = 2 modulo 4. Let z be any point of D. First assume that z
is a point of degree zero in E. Then z occurs with all other points exactly
once in the blocks of D. Since we have v — 1 = 2 modulo 4, this implies
that 2 occurs in the block of size 3 and in [(v—1)/4] — 1 quintuples of D.
For any point z of degree 2, a similar argument shows that z occurs in
precisely [(v—1)/4] quintuples and no quadruples. Thus adding the fre-
quencies f(z) with which the points = of D occur in quintuples, we obtain

3 7(z) = vi(v-1)/4] - 3.
zeD

Thus the number of blocks of size five in D is N = (v[(v—1)/4] — 3)/5.
Since we have either v = 3 modulo 20 or v = 11 modulo 20, we have
N = B(v) — 1; so D is a star design. Conversely, if D is a star design, it
is easily shown that E is a star graph. O

We use definitions of group divisible designs, transversal designs, bal-
anced incomplete block designs, as given in [29], and definitions of flat and
resolvable balanced incomplete block designs, as given in [25].
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Lemma 2.2. Suppose there ezists a group divisible design G with

groups of size g,,g,,...,9,, and blocks of size 5 and that there exists an

tnteger w such that Jor each i satisfying1 < ¢ < &1 there exists a star

design of order g; + w which contains a star subdesign of order w. Sup-

pose also that there exists a star design S of order q, + w. Let
[

v=w+ Y g;. Then there exists a star design D of order v. If S con-
fml

tains a subdesign of order w, then D contains subdesigns of order w and

g+ w,i=12_ 8.

Proof. Let G,,G,,...,.G, denote the groups of G of size 91,92;---,g, Tespec-
tively. Let W be a set of cardinality w such that W N G =@,
§ =12..s. For each group G;, { = 1,2,...6—1, form a star design D; on
S; = WU G; such that D; contains a star subdesign D; on the set W.
Let D"; denote the set of blocks complementary to the block set of D'; in
D;. Now form the set of blocks consisting of the following three types.

Type 1. The blocks of G.
Type 2. The blocks of D";, § = 1,2,....6—1.

Type 8. The blocks of a star-design on the point set G, UW.
It is clear that the above blocks form a star cover of the points of
L]

WU |JG:. Consideration of the associated excess graph shows it to be a

=] )
star-graph, and thus the star-cover is in fact a star design. O

Henceforth, we use the notation GDD(g%,g52 - - - g K ), (where
91:92)+-19s, @),8,...,a,, are integers and K is a set of positive integers) to
denote a group divisible design with a; groups of size g, ¢t =12,..8, and
blocks of sizes in K. If K contains only one element k, we abbreviate {k}
to k.

Unlike many recursive constrictions we cannot use w = 0 in the
above, since the null design is not (a degenerate) star design. However
every star design clearly has a subdesign of order 3.

8. Some Small Star Designs.

In this section, it is shown that there exist star designs of orders
three, eleven, twenty-three and thirty-one. The design of order three is
trivial, and a star design of order eleven is shown below.
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A star design of order 23 can be constructed as follows. Let P denote the
projective plane of order 4 defined on the set {1,2,...,21}. Clearly P con-
tains three non-concurrent lines which, without loss of generality, can be
assumed to be the lines {1,2,3,4,5}, {5,8,7,8,9}, {9,10,11,12,1}. Delete these
lines from P to obtain a configuration P’. Take the lines of P/ as blocks,
and adjoin two points {22,23} and the blocks

(22,2,34,5),  {13,14,15,22,23},
(1,234,283},  {(16,17,18,22,23},
{(5,6,7,8,23},  {19,20,21,22,23},
- {22,6,7,8,8}, {1,5,9).
{9,10,11,12,23},
{22,10,11,12,1},

The resulting configuration is a star design of order 23.

The following star design of order 31 was found by E.S. Kramer.
Let S = {1,2,..,28,00,00,00}, and let o denote the permutation
a = (1,2,...,14) (15,16,...,28) (09,00) (003). Let B denote the set of blocks
(1,9,11,1417}  {1,8,19,20,00}
{2,15,17,25,26})  {1,8,15,22,00}
{oa,00,00}-

Then the distinct images of the above blocks under powers of « yield the
required star-design. :

The following star designs of order 63 and 71 were found by W.H.
Mills.

136



v = 63. C(25,63) = L(2,563) = 202. We use the triple (00,00,00) and
the following 201 quintuples:

(0,0) (3,1) (6,1) (9,1) (12,1) mod (15-), period 3
02) (32 (62 (92) (122) mod(15:), period 3
©1) (1L,1) (02 (1.2) (04) mod (15,)
(0,1) (211) (012) (5:2) (814) mod (15,-)
(0,1) (4:1) (1112) (5;4) (13!4) mod (15,-)
(01) (510) (03) (1,3) (33) mod (15,)
©1) (7)) (9,3) (44) (104) mod (15,)
01 (22 (92 (83) (143) mod(157) .
(01) (82) (10,2) (43) (123) mod (15,)
02 (42 (73) (14) (114) mod (15;)
(0,2) (8'3) (1.3’3) (4)4) (6’4) mod (15:')
(0,3) (4;3) (314) (614) (714) mod (151')
o (011) (6'2) . (613) (11'4) . mod (153')
o . (Orl) (12!2) (713) (7!4) mod (15:')

v=171. C(2571)=L(25,71) = 256. We use the triple (09,00,0%) and
the following 255 quintuples:

(031) (l»l) (3’1) (0:4) i (514) mod (17»’)
©1) (41) (02 (1,2) (114) mod (17,)
(1) (1) (02) (22) (1,4) mod(17,)
(01) (81) (42) (03) . (124) mod (17,)
(01) (7,1) . (10,2) (53) - (154) mod (17,)
(0,1) (8:1) (3:3) (9,3) (16»3) mod (17»')
(011) (7:2) (11:2) (1313) (1413) mod (17t‘)
(02) (32) (11,2) (64) (7.4) mod (17,)
. (0)2) " (5:2) (5:3) (1413) (14)4) mod (17")
(013) (2,3) (0,4) (314) (7v4) mod (17:')
(03) (53) (24) (11,4) (13,4) mod(17)
9 (01) (52) (43) (3,4) mod(17,)
oy (0:1) (812) (6'3) ) (10;4) mod (17)') ’
o (01) (92) (28) (94) mod(17y)

4. Star designs of order less than 200.

In this and subsequence sections, we require many transversal designs
(or equivalently, sets of mutually orthogonal latin squares). Unless other- .
wise stated, the reference for the existence of these is Brouwer [1]. In
addition, in the proof of lemma 4.2, we use the fact that there is a group
divisible design with six groups of size eight and blocks of size 5 (see [2]).
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Lemma 4.1. Let M, T and U be integers satisfying u >3 and
0 < T < M. Suppose that

(i) there exists a star design of order 4M+U which contains a star sub-
design of order U,

(i) there exists a star design S of order 4T+U, and
(iii) there exists a transversal design TD(6,M).

Then there exists a star design S’ of order 20M+4T+U which contains a
star subdesign of order 4T+U. Moreover, if S also contains a star sub-
design of order U, then S’ can be taken to have subdesign of order U.

Proof. Deleting a point from a projective plane of order 4 and an affine
plane of order 5 yields group divisible designs P and A respectively, with
blocks of size 5 and five and six groups of size 4 respectively. By deleting
M-T points from one group of the TD(6,M) one obtains a group divisible
design with blocks of sizes 5 and 6 having 5 groups of size M and one
group of size T. Using Wilson’s Fundamental Construction [29], from the
above ingredients one obtains a group divisible design with five groups of
size 4M, one group of size 4T and blocks of size 5. Replacing the groups
with star designs in a fashion analogous to that of lemma 2.2 establishes
the result. O

Corollary 4.1.1. Suppose that m and t are tntegers aats"s fying
0<t<m. If the.re ezists a TD(6,m) and if {4m+3,4t+3} C C°, then
20m + 4t + 3€C.

Proof. Apply the above lemma with U = 3. O

Lemma 4.2. Suppose that m and t are integers satisfying 0 S‘ t<m,
If there ezists ,a ID(6,m) and if {8m+38t+3}€C’, then
Om+ 8 +3CC .

Proof. The proof is that of the lemma 4.1 using the fact that there are
group divisible designs with blocks of size 5 and six and five blocks of sige
8, respectively. (The design with five groups follows from the fact that
there exists a TD(5,8) (see [2])).

Lemma 4.8. Let v be an integer which satisfies v = 3 or 11 modulo 20

and 0<v<200. Then v€C’, with the possible ezception of
v € {83,91,131).
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Proof. For v < 31, the result follows from section 3. By applying Lemma
2.2 to the group dmsnble desxgns used in Lemma 4.2 and the star design of
order 11, we have {43,51} C C’. Since there is a 7D(6,5), by applying
Corollary 4.1.1, we have {103,111,123} C C°. Since there is a TD(6,7), we
have J143,151,163,171} C C°. It remains to show that 183 and 191 belong
to C°. Since the star design of order 43 above contains a subsystem of
order 11, and since {23,31} C C’ and there exists a TD(6,8), we have
{183,191} C C° by Lemma 4.1. O

5. Star Designs of order less than 1200.

In this section, we require incomplete transversal designs. An incom-
plete transversal design /TD(n,k,s) is a quadruple D = (V,G,H,B) where
V is an nk-set; G is a partition G,,G,,...,G} of V, where |G; | = n, (the G;
are called groups of the design) ¢ = 1,2,...k; H is a collection H,,H,,....H,
of s-subsets such that H; C G;, ¢ = 1,2,....k; and B is a collection of
k-element subsets (called blocks) of V which satisfies the following condi-
tions

() Each block meets each group in precisely one point.

(i) Let x; and z; denote any pair of points of V which occur in groups
G; and G, of D, where ¢ # 5. If z; € H; and z; € H;, then no block
contains both z; and z;; otherwise there is a unique block in B which
contains the pair z;z;.

Clearly an incomplete transversal design is equivalent to a set of

k — 2 mutually orthogonal latin squares which is missing a set of common

subsquares of order 8, or equivalently an incomplete array in the sense of

[8].

The following construction is due to D.R. Stinson.

Lemma 5.1. Suppose that m and t are positive integers satisfying
0<t <m — 2. Suppose that there 18 a star design of order 4m + 3
which contains a subdesign of order 11, and that 4t + 3 is in C°. Sup-
pose further that there exists an ITD(m 6,2). Then there ezists a star
design of order 20m 4+ 4t + 3 which contains subdesigns of order 43 and
4t + 3.

Proof. The proof involves a modification of Wilson’s fundamental con-
struction [29]. Let D = (V,G ,H,B) be the ITD(m,6,2), and let P and A
denote a GDD(4%5) and GDD(4%5). In D delete m — t points from the
group G,, including both points of H,, to obtain a new system D' which
contains blocks of sizes 5 and 6. In analogy with Wilson’s construction,
inflate the points of D' by a factor of four to obtain a configuration D"
with one group G') of size 4t, and five groups G';,Gs,...,G's, of size 4m,
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(each having a distinguished subset H' of size 8), and blocks of size 5. Note
that D" contains all pairs of element from different groups except for
those both-of whose members come from distinguished subsets. Replace
the groups G';, i = 2,3,...8, by star design covers S; on the sets G,uw
(where W is a three-element set disjoint from the groups G';, i = 1,2,...6)
in such a fashion that S; contains a star subdesign T} of order 11 on the
set H'; UW. Replace the group G'; by a star design S, on the set
G'; U W in such a fashion that tbeeblock T, of size 3 contains the elements

of W. Now replace the blocks of UT: by a star design of order 43 on the

o fm]
set WU | JH'";, again in such a fashion that the block of size 3 contains

(L]
the elements of W. It is easily verified that the resulsting'set of blocks is a
star design of order 20m + 4t + 3 on the set W U |JG"; with subdesigns

¢
on WU | JH'; and W U G',. This establishes the lemma. O
i=2

Lemma 5.2. Suppose that there exists a star design of order 4m + w
which contains a subdesign of order w, and that there ezists a transver-
sal design TD(5,m). Then there ezist star designs of order 20ms + w
and 20ms + 4m + w which contain subsystems of orders w and
4m + w, forany s > 1. '

Proof. It is well-known [7] that there exist BIBDs with k =5, \ = 1,
v =208 + 1 and 20s + 5, 6 = 1,2,.... Deleting a point from such designs
yields a GDD(4%,5) or GDD(4%*5). Inflating these by the transversal
design yields a GDD(4m®,5) or a GDD(4m™*'5). Applying Lemma 2.2 _
establishes the lemma. O : ' ‘

Cor?llary 5.2.1. {1008+3,1006+23,l408+3,l408+3l,1608+ll,1608+43}
CC, foranys >1.

Proof. Apply Lemma 52 with the pairs (4m+w,w) in the set
{(23,3)(31,3)(43,11)}. O

Lemma 8.3. Suppose there ezists a resolvable BIBD(20s+5,5,1), and a

star design of order 4t+3, where 0 < t < 5s. Then there exists a star
design of order 80s + 4t + 23.
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Proof. Let D denote the resolvable BIBD. Then D contains 5s +1
resolution classes Ro,R,,...,R5. Let X = {09,00,...,09)} be a set of ¢
points disjoint from the point set of D. Adjoin oq to each block of R;,
¢t =12,.¢t, and a block By= X. Taking the blocks of Ry and By as
groups, the result is GDD(5**1¢',(5,6}). Inflating with the GDD’s P and
A of Lemma 5.1 and applying Lemma 2.2, we obtain the result. O

Lemma 5.4. Suppose there ezists a BIBD(v,6,1) with a flat of order s.
If there ezists a star design of order 4t + 3 where 0 <t<s -1, then
there ezists a star design of order 4(v—s+t) + 3.

Proof. By replacing the flat of order s by a single block B, (if it is not
such initially), one obtains a pairwise balanced design D with all blocks of
size 6 with the possible exception of the distinguished block By. Let oo
denote a fixed point of B. Let X = {B — {od}: B is a block of D which
contains od}. Delete 8 — ¢ — 1 further points of By from D. Then the .
remaining part of B, together with X form the groups of a GDD with
blocks of size 5 and 8. Proceed as in Lemma 5.3. O

In most applications of the above, the flat in question consists of a
single block. As a source of BIBD(v,6,1) we use Mills [19], [20]. Hen-
ceforth

B(k) = {v: 3a BIBD(v,k,1)}.

Lemma 5.5. There exist star designs for v € {411,431,443,471,483 611).
Proof. From [20], {106,111,156} € B(6). Apply Lemma 5.4. O

Lemma 5.8. There exist star designs for v € {303,311,323,331,403,423,
451,491,683,871). '

Proof. Use Corollary 5.2.1. Consider the following equations.

303 = 3100 + 3 423 = 4'100 + 23
311 = 2:140 + 31 451 = 3-140 + 31
323 = 3100 + 23 491 = 3-160 + 11
331 = 2160 + 11 683 = 4-160 + 43

403 = 4100 + 3 871 = 6-140 + 31

These establish the lemma. O
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Lemma §.7. Suppase that, for some integer m > 2, both 20m + 3 and
20m + 11 belong to C". If there ezists a TD(6,5m) and a TD(6,5m+2),
and if 100m <v < 100(m +1), where v =3 or 11 modulo 20 then v
belongs to C°.

Proof. Apply Corollary 4.1.1, using the fact that {3,11,23,31,4351} C C".
a

Lemma 5.8. Suppose the v =3 or 11 modulo 20. If 200 < v < 1100,
thenv €C .

Proof. For 203 < v < 231, use Lemma 5.1, noting that Brouwer [3] has
constructed an JTD(10,6,2).

For 243 < v < 291, use Corollary 4.1.1 withm = 7.
For 303 < v < 331, use Lemma 5.6.

For 343 < v < 391, use Lemma 5.3, noting that there exists an
RBIBD(85,5,1) (see [12]).

For v = 403 < v < 491, v # 463, use Lemmas 5.5 and 5.6.

For v = 463, note that the star design of order 111 constructed in
section 4 contains a star subdesign of order 23. Since there exists a
T = TD(5,88), applying Lemma 4.1 shows that 463 €C’, since
463 = 5-88 4 23.

For 503 < v < 591, use Lemma 5.7.
For 603 < v < 611, use Lemmas 5.5 and 5.6.

For 623 < v < 691, we note that since there exists T = TD(6,31)
and D = BIBD(31,6,1), we obtain a BIBD(186,6,1) with a flat of order 31
by replacing the groups of T by copies of D. Applying Lemma 5.4 yields
the required star designs.

For 703 < v £ 791, use Lemma 5.7.

For 803 < v < 871, apply Corollary 4.1.1 with m = 40.
For 883 < v < 891, use Corollary 4.1.1 with m = 37.
For 803 < v < 951, use Corollary 4.1.1 with m = 45.

For 963 < v < 991, star covers can be constructed as follows. It is
shown in [12] that there is a RBIBD(205 5,1). Applying Lemma 5.3, not-
ing that {143,151,163,171} C C°, yields the required star designs.

For 1003 < v < 1051, apply Corollary 4.1.1 with m = 40.

For 1063 < v < 1083, apply Corollary 4.1.1 with m = 45.

For v = 1091, the final case of this lemma, proceed as follows.

It is shown in [20] that there exists B/BD(136,6,1) which we denote
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by D. Considering each point of D as a group yields a GDD(1'* 6).
Inflate by a factor of 8 to obtain a GDD(8'%6) and apply Lemma 2.2.
Since 1091 = 8136 + 3, the required star design exists. This completes
the proof of the lemma. O

Henceforth let X = {83,91,131}. The foregoing can be summarized as
follows.

Lemma 8.9. Let v be an integcr congruent to 3 or 11 modulo 20. If
3 < v <1091, then v belongs to C~ with the possible exception of v € X.

8. The covering numbers C(v).

In this section, it is shown there is a star design of order v > 0 for all
v =3 or 11 modulo 20 with the possible exception of v € X. Moreover,
for v 2 11, if v is congruent to 3 or 11 modulo 20, then C(v) = B(v) with
the possible exception of v € X" where X' = {83,131}.

Theorem 8.1. Let v bg positive integer satisfying v = 3 or 11 modulo
20. Then v belongs to C” with the possible exception of v € X.

Proof. For all m > 53, there exists a TD(6,m). For v > 1203, a
straightforward induction (using Lemma 5.7 for m > 12) establishes the
result. O

Lemma 6.2. Suppose that for v =19 modulo 20, C(v) = B(v). Then
C(5v—4) = B(5v—4).

Proof. For s = 18 modulo 20, there exists a 7D(5,5). Let T denote a
TID(5,u—-1). Let oo denote a point which does not occur in T. Replace
each group G; of T by a copy of a (5,2) cover of v points with B(v) blocks
defined on the set G; U {oc}. The resulting set of blocks is easily shown to
be a minimal cover of 5v — 4 points. O

Corollary 6.2.1. C(81) = B(91).

Proof. It is shown in Gardner [6] that C(19) = B(19). The corollary fol-
lows. O

The results of the foregoing are brought together in the following
theorem.
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Theorem 6.3. Let v be an snteger which is congruent to 3 or 11 modulo
20, v>11. Then C(v)= B(v) with the possible ezception of
v € {83,131}. . .

Proof. Recall that, for any v satisfying the above conditions, if v € C”,
then C(v) = B(v). This, combined with the above corollary, establishes
the theorem. O

Star designs form the basis for an investigation of minimal (5,2) cov-
ers for v =3 modulo 4. Results on this problem will be reported else-
where.
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