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Abetract: A basie is exhibited for the f{iret homology space 0of a sur-
face over a field. Thies basie ia found by extending e baeie of the
boundary cycle spaece of en embedded graph to the cycle apace of the
graph.

1. Introduction

In homology textas, one common exercise is to find the rank of the
first homology group of a surface. 11 the coefficient group ie a8
field, then thie homology group is a vector space. In this work, ve
exhibit a basis of this vector epace, from vithin s baasis for the cycle
apace of a graph embedded in the surface; this finds the dinenelon‘o!
the howmology space in a nev vay. Ve proceed using the theory of embed-
ded graphas developed by Hoffman and Richter (3) and the cycle space of
a graph over an arbitrary field K.

Let g:G -> L be an embedding of a connected graph G in the surface
L 8o that each face is homeomorphic to the open unit diac. Let G-
denote the geometric dual of G. I1f d is a subset of the edge set E of
G, then 7d denotes the set of edges of G* that are dual to those edges
of G in d. (Precise definitions vill be given in the next section.)

Let Z(g.K) denote the cycle space of G and let 0i{g,X) denote the
subspace of 2Z(g.K) spanned by the boundary cycles. In (7), the

folloving resulte are established.
Theorem 1: a) If T 16 s spanning tree of G, thea there 15 3 subget T°

of E-T such that 1T- 1s a spanning tree of G°.

b) For a spenning tree T of G, let T ¢ E-T be such that *T* 18
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A apunning tree of i*. For ¢ € T, let Z.e denote the fundamentsl cycle
of e wvith respect to T. If q ia any baeie for Qlg,Z,}), then q U
(Z,e | @ € E-(TUT*)) ta a basia for Zlg.Z,), vhere Z, ie the aet of

integere modulo 2.

Part (b) of Theorem 1| asserte thet the cosets Z,e »~ Q, for e € E-
(TUT*) form a beaie for the firast homology epace H = Z/Q, vhen the

underlying field ie Z,. Here, ve generalize (b) ae follova.

Theorem 2: Let G, G°, T and T* be a6 in (b)) of Theorem 1 and let K be
an arbitrary field. Orient the faces of G @0 that if ¢ € T*, then e is
travereed once in each direction. Let E” denote the eubset of E-T
conaisting of all edges traversed both times in the gseme direction.
Let q be any besie for Q(g,X). Then:

(a) If either E~ = @ or K has chearacteristic 2, then q U (Z:e | e
€ E~(TUT*)) ie a basis for Z(g,K).

(b} Otherviae, for any member e of E°, q U {Z/,e | e € E-

(TUT*U(e*})} is a basia for Z(g, K).

In Section 2, the necessary notation and definitions are given.
Section 3 developa the bsagic results concerning chain spaces and boun-
dary maps; vith these the cycle and boundary cycle spaces are defined.

Section 4 18 devoted to the proof of Theorem 2.

2. Notation and Definitions

W Aatuume the resder hses a basic femiliarity vith graph theory. we
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whall uvae the terminolugy of (1); loops and multiple edgea are alloved.

A surfuce 1e a compect, cunnected 2-dimensional manifold vithout

boundary; it may be non-orientable.

For s set A, 2* denoleo the aet of ell gubsete of A. For a sub-
epace A of a topologicel space B, cl(A,B) denotes the closure of A in

B.
An  embedding of a greph G in a surface [ is & function g:(VUE)->2¢

auch that:
1) for x,y € VUE, 1f xfy, then glx)Ngty) = O;

114) for each v € Vv, giv) ia a singleton;

111) for each e € E, gle) 1s homecomorphic to the open interval

(0, 1);

and iv) if e € E has ends v end v, then cligle), L} = gtle,v,v}).

Here, V and E are the vertex- and edge-sets of G, reaspectively.

For aeimplicity, wve ahall wvrite g:G -> £ rether than g:(VUE) -> 2¢,

A face of an embedding 9:G -> L i6 a connected component of L-g(G).

Throughout this vork, every face is assumed to be homeomorphic to the

open unit disc.

For an edge e of G and an embedding g:G->E, it can be shovn that

there is a continuous surjection +:(0,1) -> cltgte),L) sauch that

£,:10,1)->gte) is a homeomorphiem. MNoreover, if e is not a loop, then

£.:(0,1)->cl(gte), [} is a homeomorphiam. (For details, see (6).) Let

v and v be the vertices of G such that £, (0)=g(v) and f,(l)=gl(wv),

Define the head hte) of e to be v and the tail t(e) of e to be v.

From the resulte 1in (3), 1t 16 easily showvn that, for a face F of

an embedding 9:G->L, there 16 a continuous e6urjection h, :B(0O,1)->

cltF, Guch that h, :8¢0,1)1->F 16 a homeomorphiem, vhere BtO, 1) and
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e, 1 wre .tespectively, the aopen end closed unit diace (n the plane.
Ve parameterize the plene vith polar coordinates (r,8), u0o that, for
exumple, B(O, 10 = (0,1)x(0, 2n). Rotate h., if necessary so that h. (1,60}
€ gtV

Let O # 6o < 8, < ... € 6. = 2n be those sngles 8 for vhich h. (1,8)
€ gtVv). For j=0,1.,....n, let h,(1,8,) « glv,). It can be shovn that
there io an edge e, ouch that he:(1)Ix(0,.,,0,)->gle,) 16 8 homeomor -
phiem, 3=1,2,....N. (See (3).) Thus, (Ve,CieViecsse®asVo) 18 closed
valk of G, called the boundary valk of G induced by h..

Note thet h°:B(0,1?) -> clt(F,L) defined by h°ir,8) = h,(r,2n-08)
induces the inverse of the above valk.

Consider the edge e¢ = e,. The function £.°'h, :11)x(0,.,,0,)->(0, 1)
is a homeomorphiam; in particuler it is either an increasing or a
decreasing function of 6. Define €te,h.) to be € (e ,h.? - € le,h. ),
vhere €+ ia the number of indices k for vhich ¢ = e. end f.°'h. is
increesing on (8,.,,6.) and €- ie the number of euch k for vhich the
composition is decreasing.

Observe that €(e,h,)} = -€(e,h*), € (e he )+€-te,h,) € (0,1,2),  for
any edge e .and any face F. Moreover, if D is the set of faces of g,
then Esee (€E° (e, ho )€ (e, he)) = 2, for every edge e.

we conclude this section by describing the qeometric dual of the
embedding g:G->L. This ie the graph G* whose vertices are the faces of
g end, for each edge e of G, there is an edge e of G°. The ends of <we
ere the tvo faces of g in vhose boundaery valke the edge e appears. If
e occurs tvice 1n some boundary valk, then e is a loop. We shall use

the followving fact in this vork.

Lemma 3: Let g:G-»>[L be an embedding of a connected graeph G 1n a eur-
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Another vay to etate Leama 4 1o to andert that Imtb, ) ¢ Kerth, ).
The ¢ycle apace Z2(g.K) 1o deftned to be Ker|b.’-;ndvthe boundary cycle
apace Q(g,K) 1e defined tao be Imib.?. The homology epace is the quo-
tient apace Hig,K) = Z(g,K1/0Q(g, K).

Evidently, the cycle apace depends only on the oriented greph and
not on the particuler embedding. In Chapter 12 of (1) 18 an exposition
of the basic facts about the cycle apace of a graph. We summarize the
relevant points here.

For = spenning tree T of G and an edgé 'e' ¢ T, Tee* containe a
unique polygon P. Let P be the set of edgee from P vhose orientations
agree with that of e° in P and let P- be the remaining edges of P. It
ias readily verified that L.ec.@ - L.ev-e l8 in i = 2(g;Kl. This cycle
1ie the fundamental cycle of e° with reepect ko T and ia denoted Z.e°.

It can be shovn that (Z,e | e € T) ia a basie for Z and 1f z = L a, €
e

ie in Z, then 2z = [ a.Z+e. Thus, dim(Z) = |E|-|V|~1.
e€T

pl =12 S LI LL S

4. Proof of Theorem_ 2

For this section, let g:6 -> L be a fixed embedding of 8 connected
graph G. Let T be a spanning tree of G and let T* ¢ E-T be such that
«T* 16 e spenning tree of the geometric dual G* of g. It 1s essily
ghovn that there ere orientations (h, | F € D} of the feces of g 6uch
that 1f e € T*, then L[.€te.h.? = O, Fix thege orientatione.

Let E” = le € E-T L. €te. he? s 221, eo E~ t1e the subset of E-
(TUT*) consisting a¢ those edgea trevereed both times in the Aame

direction by the Lournddazy valks 1nduced by the he ‘e {Note that the
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wurince | 1a arlentuble 11 snd only 1{ ve can orleatl the facen wu that,

for esch edge e, fo€te,h,d + O It te atreightforvard to usce that
thin 1 cquivalent to ET = 0.1

We nov reatste Theorem 2 in e slightly different form. We vrite 2

for 2(g9.X) and O for Qtg, Kb,

Theorem S: 1) 1If either E* = @ or K haa characteristic 2. then dim(Q)

:+ |D] - 1 and (Z.e - Q | €€ E-(TUT*)) 1o a banise for Hig,I).
2) If E- # @ and K doea not have characteristic 2, then dim(Q)

s |D= end, for eny e* € E7, (Zye + 0 | e € E-(TUT*Ule*))} ie a basis

for H(g,L).

This result ie proved in Propositiona 7 end 8. Firet, ve require

the folloving resgult.

Lemma 6: I1f LeeoarF € Kertbed, then there is sn a such that a. = ¢« for

all F € D.

Proof: If by (L, a F) = O, then L, as (E.€Ete, hs Ye) = O. Reversing the

order of summation., this is the same as £.(Cra.€te. b, ))e = O. But E is

a basis for C,, 80 ve must have L. a,€te,h, } = 0 for each edge e. If e

€ T, then there are distinct faces F and F* such that €te,F) = 1 and

€te, F*) = -1, For every other face F*, €le,F") = 0O, 80 ar = Gs..

Since this 16 true for every edge of T*. end T* is e epenning tree of

G*. the reault follovs. ¥

Nov 1or the dimension statements of Theorem 5.
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Proposition_7: 1" 11 etther E° ¢ @ aor K hau characterantic 2, Lhen

dim(Q) = D) - 1.

2) Othervioe, dimtQ) = ID'.

Proof: Suppoae L. a,F € Kertb,). By Lemma 6, there 1le an o auch that
as * a, for all F. Hence, L,a.F * aL,F end eitther a = 0 or L, F €

Ker (b, ).

Now be (L F) . L (L €Ete,he e = b o (L _€te,ho )12y e =
F e F e€T F

tees_(tFG(e.h.&)Z.e. aince e € TUE™ implics KFE(e.h.D = 0.

For e € E~, L, €E(e,h.) = 22, 80 b (E,F) = O 1f and only if either E~
= @ or K has characteristic 2. It follove f{rom Lemma 6 that if E~ 7 ©
and K does naot have characteristic 2, then (b.(F) | F € D! is a basis
for Q. Othervige, the only dependency among the b.(F) i@ L, be(F) = O,

vhich implies thet (b, (F) | F € D-(F*}) is a basie for O, vhere F* is

any member of D.l

Finally, ve prove the assertions about the basis for H.

Proposition 8: Let q be any basis for Q. Then:

1) 1f either E- = @ or K has characteriatic 2, then q U (Z.e [ e €

E-(TUT*)) 18 a basis for Z.

2) If E- ¢# @ and K does not have characteristic 2, then q U (Z,e |

e € E-(TUT*Ule*))) ie & basis for Z, vhere e° is any member of E~.

Proof: Using Proposition 7, ve aee that in each case the indicated set
has 'E'-[V;-I elements, so (t eufficea to prove that it spans Z. To
thie end, let 2 = L.o.e € 2
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Cluim: There ste fl, € K asuch that, tor euchh ¢ € T, L0, €te, b, ) -

Proof: Let Azta. .} be the ¢!1D!-11%D| matrix vhose rove ure
indexed by the edgeae in T and vhose columna sre indexed by the (faces
of g, such that e, ,, = €te,hs). The set-up la auéh that each rov of A
haes exactly tvo non-zero eantries, one of vhich ie 1| and the other 1ie
-1. Thua AL = 0, vhere L and Q are the vectore of all 1°s and O's
reaspectively.

Lemma 6 implies Ker(A) = tal ‘ a € X}, so that A has rank lD[-l.

Thus, if @ = (a,) i@ the given t|D|-11x1 vector, there 1s a solution 8

to Ax = @, am claimed.

To P ition 8, observe that z - b (L A, FY = [ c, e -
prove Propos n 2 Epfe eCE

G, P )& =

T p.e), for some p. € F. Thus., 2z c 3
. e€T*

a,e * L
e€T" eeT

be (E B, F) = (o.-p.1Zse + Be(E_A.F), vhich proves (11.
* e (TUT-) oW *tp P

To complete the proof of (2), ve knov that b.(EFF)

-1
c (C_ Ete,he))Zve. Therefore, Zye* =+ (L €te*,he)) (b (E F) -
e€E” F F

c (C €Ele,h.))2v e}, Plugging thise into our previous expresaeion
e€E~-(e*) F

for z shove z to be a linear combination of the elementas Z:e, for e €

E-({TUT*U(e" })) and members of q. as requlred.l

S. Concluding Remarks

The decomposition of L described i1n Sections 2 and 1 ohove . Lo be

a normel CwW-complex of dimcnaion 2 teee [(4)). Since the homoloqy of
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CV-complexes 1o the uame an simplicial or wingular homology, the Hpace
Hig, K fta  the firut homoloygy spsce of [; it 1e Lndependent (up to
isomorphinm) of the choicea of g and G.

Since [ 18 orientable 1f and only 1f E” = @, 1f K does nol have
characteriestic 2, then dim(H) diaetinguishee betveen the orientable and

non-orientable aurfeces having the ssme Euler characteristic IME

I€1-0}-
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