CIRCUIT CHARACTERIZATIONS OF UNIONS OF GRAPHS

E. J. Farrell' and J. M. Guo**

Abstract
It is shown that unlike the chromatic polynomial , which does
not characterize unions of non-trivial graphs , the circuit polynomial
characterizes the unions of many families of graphs . They include unions
of chains , cycles and mixtures of these .graphs . also unions of complete
graphs . It is also shown that in geheral , if a hamiltonian graph is
characterized by its circuit polynomial , then so also is the union of the

graph with itself .

1. Introduction
‘ The graphs considered here are finite and contain no loops nor

multiple edges . Let G be such a graph . We define a circuit (cycle) with one
and two nodes to be an isolated node and an edge respectively in G .
Circuits with more than two nodes will be called proper circuits . A
circuit cover (or simply a cover) of G is a spanning subgraph in which
every component is a circuit .

Let us associate an indeterminate or welight w, with every

circuit with r nodes , and the monomial w(S)=IIw, with every cover S ,

where the product is taken over all the components of S . Then the circuit

polynomial of G is
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C(G:w) = Iw(S),
where the sum is taken over all the covers of S , and W is the vector

(wq, wo, weWp ) of indeterminates . We define the circuit polynomial of

the null graph ( the graph with no nodes) as 1 .

If we restrict the components of the covers to be nodes and
edges only , then the resulting polynomial is called the matching
polynomial of G - denoted by M(G;w) . In this case , W= (wq, Wo) .

The circuit and matching polynomials are special F-polynomials
. and were introduced in Farrell [3] . The basic properties of circuit
polynomials are given in Farrell [1] and the introductory paper on matching

polynomials is Farrell [2].

Definitions

Let G be a graph and P(G) a polynomial associated with G . We
say that P(G) characterizes G if and only if for any graph H , P(H) = P(G)
implies that H =G . In the case where P(G) is the circuit polynomial of G ,
we also say that the graph G is circuit unique .

it is of interest to determine whether or not a given polynomial
characterizes a given graph . If it does , then the polynomial can be
regarded to be a code for the graph- or as a representation of the graph .
Such information can be useful for classification of graphs , among other
things .

it has been shown (see Farrell and Guo [5] , [6] ) that many
tamilies of connected graphs are characterized by their circuit
polynomials . The problem of characterizations of disconnected graphs has

not been looked into .
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it is well known , f(om Read"s "overlap * theorem (See Read [9] ),
that for any graph G with non-trivial components , G4 and G, ,3 a graph H
(not isomorphic to G) consisting of an isolated node and a component
obtained by identifying a node of Gy with a node of G, , such that G and H
are co-chromatic (i.e. G and H have the same chromatic polynomial) . It is

therefore not interesting to investigate the characterizations of
disconnected graphs by the chromatic polynomial .

In the material which follows , we show that unlike the
chromatic polynomial , the circuit polynomial characterizes many
non-trivial families of disconnected graphs . These include unions of
chains (trees with nodes of valencies 1 and 2 only ) , unions of cycles,
unions of chains and cycles , unions of complete graphs and certain unions

of hamiltenian graphs .

Since the same weight is used throughout the paper , we

denote C(G;w) by C(G) . Also , the graph G consisting of components Gy, Gp,
- Gy is denoted by GquUGUGg ...uG) . The valency of a node v in G is
denoted by d(v) and the valency sequence of G , by II(G) ( in which a'
denotes a, a, ...a (r-times)) . If for all nodes v; and Yi inG, | d(v) -d(v,-) ]

< 1, then we say that G is nearly regular . We denote the circuit with r

nodes and the chain with r nodes , by Z, and P, respectively . Upper and

lower limits of summations will be omitted when they are obvious from

the context of the summand .
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2. Some Preliminary Results

The following lemmas were established in [1] (Theorems 2 , 4,
and 7) .

Lemma 1 (The Fundamental Edge Theorem)

Let G be a graph and xy an edge in G . Let G' be the graph
obtained from G by deleting xy , G" the graph obtained from G by removing
nodes x and y and G* the graph G with the restriction that in every cover ,
xy must be part of a proper cycle . Then .

C(G) = C(G') + woC(G") + C(G") .

Lemma 2
Let G be a graph consisting of components G4, Go, ....Gy . Then
C(G) = ﬂ C(G‘)
jai
The following Lemma is immediate from the definitions .
Lemma 3

Let C(G) be the circuit polynomial of a graph G with p nodes
and q edges . Then
(i) The highest power of wy in C(G) is wyP and this occurs with

coefficient 1 .
(i) The coefficient of wiP2is q.
(iii) The coefficient of wp is the number of hamiltonian cycles in G .

(iv) The coefficient of w, 1" W, oo .w..k is the number of spanning

2 ’
subgraphs of G consisting of the disjoint cycles Z,1 , 2'2' - Z.,k .
The following lemma was proved in [6].
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Lemma 4
Let G be a nearly regular graph and H a graph such that
C(H) = C(G) . Then H is also nearly regular and II(H) = I1(G) .
The circuit polynomial of the chain Pp coincides with its
matching polynomial . The following result was established in [2] .
Lemma §
L2
. p-k \, P2k k
C(P) > Wy W,

ke O k
The following result is given in Farrell and Grell [4] .

Lemma 6

€6 .Y e
- =2 cGz) .

where Z. is a cycle with r nodes , G-Z, is the graph obtained from G by
removing the nodes of Z, and the summation is taken over all such cycles
inG.

3. Unions of Chains
It has already been shown ( [6] ) that the circuit polynomial

characterizes the union of two chains . We will not repeat the proof here.
The interested reader can consult [6] . This result is stated formally in the

following theorem .
Theorem 1
The circuit polynomial characterizes Ppqu , for all

non-negative integers p and q .
For any positive integer s , we denote s copies of the graph G by

uS G . We will show that the circuit polynomial characterizes usPr . But

first of all , we prove the following lemma .
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Lemma 7

Let C(G) = C(Py U Py

2u UPrs)' where r; > 0 (i = 1,2,...,8) . Then

(i) G is the union of s chains .
(i fG= Pt1u Ptau V) Pts ,where ;i =2;r then the number of

even (odd) elements in the set { t4, t, -..tg } is equal to the number of
even(odd) elements in the set {r{,ro, ..fg }.
Proot

(il LetH= P, 1\) P, 2u uP . Then H is nearly regular . By

Lemma 4 , G is also nearly regular and TI(G) = II(H) = (128,225 ) | where
n=3X;r.ltis clear that C(H) does not contain any term in w, , for n2.
Therefore C(G) (=C(H)) does not contain any term in w, , for r>2 . Hence G
has no proper cycles . It follows that G is a forest with nodes of valencies
1 and 2 only . = G is a union of chains . But from [1(G) we see that G has
2s nodes of valency 1 . Therefore G is a union of s chains ,
(if) Let G = Pt1u Pt2u RV Pts (tg > 0) . Without loss in

generality, we assume that the integers rq , fa, ..., g (1 <sk<s)are odd ;

also that t4, t, ..ty (1 s m < s) are odd .The monomial containing the

highest power of wy in C(H) is w1k wo® , where

a-—rf_'.(r-m ]

lu»i

In C(G) , the monomial with the highest power of wy is wq "‘waa, where

-—[2«, e t]

im1 i=me
But C(G) = C(H) . Therefore wqK wo® = wy™woP .= m = k . Hence the

result follows . 0
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Theorem 2
LetH = USP, . Then C(H) characterizes H , for all non-negative

integersrand s .
Proof

Let G be a graph such that C(G) = C(H) . Then , by Lemma 7,
G= Pt1u Ptzu -V Pts (tg > 0) , where Zi ti=rs . Also , if r is even , then

all the tj's are even and if ris odd , all t's are odd .

Case 1 (r - odd)

Let r = 2m+1 , for some non-negative integer m . From Lemma 5 ,

the term with the highest power of wy in C(P,) is (m+1)wywo™ . it
follows that the term in C(H) containing the highest power of wy is
(m+1)Sw,Sw,MS. The comparative term in C(G) is ITj(n;+1)w4 ssz , where
ti= 2n;+1, and N=Z; n; for non-negative integers n; (i = 1, 2, ...,s)
It follows that

(m+1)S = IT; (n; + 1) w (1)

andNems. = (Mel)s = I;(n;+ 1), (2)
It can be easily wverified ( by elementary algebra ) that these

simultaneous equations have the unique solution n; = m, for i=1,2, ...,s .

Hence 2m+1=2m+ 1. =oti-r.fori-1,2,.....s.

Case 2 (r-even)

Letr=2mand t; = 2n; , fori =1, 2, ... ,s . From Lemma 5, the
term in w2 in the polynomial C(P,) is Qna+1)w12w2m'1. It follows that
the term in w12 in C(H) is s(m+1) Wy 2w2m5‘1. By comparing coefficients

2

, we get
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4 s(néﬂ) =2 @;1) .
= [ s(m+1)(m) V2 = 1/2[ nq 2, n22 + . +n32 4 Nq + Not+ .. + Ng ] 3)
But I; j=2Z ;nj=rs=2ms. = Z;nj=ms. e (4)
Therefore Equation (3) yields

z;n2 = sm2. | . ()

Equations (4) and (5) have the unique solution nj=m, fori=1,2,..,s.

=>ti-2m-r.fori-1.2.....s.

Thus , in both cases ,
G sPt UPt v.uPy = v P, =H. Hence the resulit follows .
1 2 S

4 Unlons of Cycles
Theorem 3

The circuit polynomial characterizes the union of any finite
number of cycles .

Proof
LetG=2Z, 1u anu e an (nc21). Let Hbe a graph such that

C(H) = C(G) . Also, letp = £;n; . Now, the circuit polynomial of the cycle

Z, contains the term wni arising from the cover consisting of 2"i itself . It

n
follows that C(G) contains the term [I; w“i . Therefore C(H) has the term

ni‘”n; . Hence H contains a cover consisting of the disjoint cycles z“i (i =
1, 2, .. , k) . Also , the coefficient of w4 nj -2 wo ( from Lemma 4(ii) } in

C(Z,‘) is nj. = the coefficient of wq P‘2w2 in C(G) (= C(H)) is p . Therefore

-H has p edges . But the cover Zn1U Z, v..uZ, of Hhas p edges .

02 nk

Therefore H = Zn1uZ V... uan . Hence the result follows . 0

n2
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Whenn; =1 ,fori=2,3, ..,k ,we obtain the folowing corollary .
Corollary 3.1
The circuit polynomial characterizes the union of a cycle
together with any finite number of isolated nodes .
The following is the analogous result for matching polynomials.
Theorem 4
Let G be a graph consisting of the cycle Z, ( n > 1), together with

an isolated node i.e. G = Z, U Z; . Let H be the graph consisting of the chain
P, with an edge attached to a node of valency 2 which is adjacent to an

endnode of P, . Then M(G) = M(H) i.e. G and H are comatching .
Proof
Apply Lemma 1 to G by deleting an edge of Z, . This yields

M(G) = wyM(P) + wqwoM(P o) .
Apply Lemma 1 to H by deleting the edge incident to the node of valency 3 .
This yields | '
M(G) = wyM(P) + wywoM(Pp o)
Therefore M(G) = M(H) . 0
Theorem 4 implies that matching polynomial does | not

characterize the union of a proper cycle and an isolated node . Corollary

3.1 shows that the circuit polynomial does .

5. Unions of Mixtures of Cycles and Chains
In this section , we show that the circuit polynomial characterizes

all disconnected graphs whose components are either cycles or chains .

Theorem §
Let G =2y, UZp, 0 U Zp, P, (n21andr21). Then C(G)

characterizes G .

169



Proot

Let H be a graph such that C(H) = C(G) . It can be easily verified ,
by using Lemmas 3 , 4 and 5, that

() Ghasp= X n +jr nodes
(i) G has q = X n; + j(r-1) edges
(i) TI(G) = TI(H) = ( 12, 2P-2) .
From the component Theorem we have
CG) = [CPYITI* C(Z,) . e (B)
Therefore , by taking the term in w,' from the j polynomials C(P,) and the

spanning cycle term w,, from each of the k polynomials C(Z,‘) , we get that

C(G) contains a term in \iv4f"vv,,1\;v',2 - Wiy o with non-zero coefficient . It

follows that H has a cover S consisting of jr isolated nodes and the k

cycles Zn1. Z, . an . This cover contains X ni edges . Therefore

ot
i(r-1) edges must be added to S in order to obtain H .

The j(r-1) edges must be added to S , subject to the property
(i) above for G . Clearly then , the edges must join nodes of valency 0 in S
, since H had on nodes of valency 3 . Also , no new cycles should be created
, since this will yield a cover consisting of the k cycles , together with
other proper cycles and C(G) has no term representing such a cover .
Therefore all the new edges must form chains . But [1(H) contains the

parts 12) : Therefore exactly j chains must be formed .
Let the chains be Pt1 . Pt2 o s Ptj . Then

H=Z, 1u Z, 2u V) an v Pt1u Ptzu ...uPti .
Since C(H) = C(G) , it follows from the Component Theorem for H , and

Equation (6) , that .
C( Py, u Py Py ) = O U P). = t=r(i=12 .. j) by Theorem 2.
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Hence H=Z, vZ, u..u an JP, - The result therefore follows .

Ny~ Tng

Corollary 5.1

The circuit polynomial characterizes the graph 2oV P,

It has been shown ( Farrell and Wahid [8] ) , that the graphs
Ponst and Z,, 4 U P, are comatching . Therefore Corollary 5.1 does not hold
for matching polynomials .
6. Unlons of Complete Graphs

It has been shown ([5]) that the circuit polynomial

characterizes complete graphs . It has also besn shown ( Farrell , Guo and
Constantine [7] ) that the matching polynomial characterizes the union of
any finite number of copies of a complete graph ° It is clear from the
definition of the matching polynomial , that all the terms of M(G) belong to
C(G) ., for any graph G . Therefore any graph that is characterized by its
matching polynomial is also characterized by its circuit polynomial . We
therefore have the following result .
Theorem 6

The circuit polynomial characterizes uS$ Kp.forallrs20.

7. Unions of Hamiltonian Graphs
In this section , we will prove the general result that the

circuit polynomial characterizes the union of any hamiltonian graph with
itself . First of all , we establish the following lemma .
Lemma 8

Let G be a graph with 2p nodes and containing t(>1) p-cycles
(cycles with p nodes ) . Then

(i) if t is even i.e. t = 2n , for some positive integer n , then the
2n p-cycles can form at most n2 (-t2I4 ) pairs of disjoint p-cycles ; and
this maximum is attained if and only if there are exactly n p-cycles
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spanning the same p nodes of G and exactly n other p-cycles spanning the
remaining p nodes of G .

(ii) If t is odd i.e. t=2m+1 , for some positive integer m ; then
the 2m+1 p-cycles can form at most m(m+1) [-(t2-1)/4] pairs of disjoint
p-cycles ; and this maximum is attained if and only if there are exactly m
p-cycles spanning the same p nodes of G and the remaining p-cycles ,
spanning the remaining p odes of G .

Proot

We will prove the result by induction on t . For t=2 , the two
p-cycles can from at most one pair of disjoint p-cycles ; and this can
occur if and only if the two p-cycles span disjoint sets of p nodes in G .
Therefore the result holds for t=2 .

When t=3 , m=1 . There are two possibilities .

(1) All three p-cycles share a set of common nodes .
(2)3 a ;fair of p-cycles with no nodes in common .i.e a disjoint pair .

In Case(1) , the three p-cycles form 0 (<2) pairs of disjoint p-cycles .
( Note that the three p-cycles form exactly 2 pairs of disjoint p-cycles if
and only if exactly one p-cycle is disjoint from the other two .) . In

Case(2) , let the disjoint p-cycles be Cpm and Cp(a) . Then G consists of
two disjoint subgraphs with p nodes ; Hy containing the spanning cycle
Cp(“ and Hp containing the spanning cycle Cp(z) . The third cycle Cp(s)
must either be (i)v a spanning subgraph of Hy or a spanning subgraph of Hy
or (i) containing nodes or both Hy and Hy . In Case(i) , there will be two

pairs of disjoint p-cycles , which is the maximum possible . In case (ii) ,
there will be 1 (<2) pair of disjoint p-cycles . Hence the result holds for

te3 .

172



Let us assume that the result holds for all t< k . We show that
it also holds for t«k . Suppose that no pair of the p-cycles is disjoint .
Then obviously there will be 0 pairs of disjoint p-cycles and the result
follows trivially as in Case (1) above . We therefore assume that there is
at least one pair of disjoint p-cycles . In this case , G will be of the form
described in Case (2) above .

Case 1 (k-even)
Let k=2n , for some positive integer n . Clearly , if there are n

p-cycles in Hy and n p-cycles in Hy , then G has n2 pairs of disjoint

p-cycles .
Suppose that there are aq p-cycles in Hy , ap in Hy and ag with

nodes both in Hy and Hy ; where ay 21 ,a521,a3 20and a; +as+ ag =k.
Since ag < k , by the induction hypothesis , the ag p-cycles form at most
[ag2/4 ) (if ag is even ) or [ (ag2-1)/4) ( if ag is odd ) pairs of disjoint
p-cycles . Since aq and a, p-cycles are disjoint , the total number of pairs
of disjoint p-cycles is  h < [ajap +ag2/4 , it ag is even
{a1 ap + (ag? -1)/4 ,if ag is odd .

Suppose that ag is even. Then
n2-h 2 (1/4)(ay+ag+ag)? - (ayap+ag2/d) = (1/4)[(ay-ap)2+2ag(aq,a)] 20 .
Also , the second equality holds if and only if aq = ap and ag =0 ( since aq
and a, are positive) .
When ag is odd,
n2-h 2 (1/4)(ay+ap+ag)? - (ajap+(ag2-1)d) =

(14){(ay-a5)2+2ag(aq +ag+1)] > 0 .
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Therefore we conclude that h = n2 it and only if aq =ap =n; otherwise
h < n2 . Hence the result holds if k is even .
Case 2 (k-odd)

Let k=2m+1 , for some positive integer m . Suppose that m
p-cycles are in Hy and m+1 are in Hy . Then the number of pairs of disjoint
p-cycles is m(m+1) = (k2-1)/4 .

We now consider the difference [(k2-1)/4] -h.

When ag is even ,

(1/4)(k2-1)-h = (1/4)[(a4 +a2+a3)2 -1} - (a4 a2+33214) -
(1/4)[(a4-ap)2+2ag(aq +ap)-1] -

Since k is odd and ag is even , aj+ap = k-ag is odd. = |aq-ap|21 .

(1/4)(k2-1)-h > 0 . Also , the difference is 0 , if and only if | a{-a5 | =1

andag=0.

When ag is odd ,

(1/4)(k2-1)-h = (1/4)[(aq+ap+ag)? -1] - (agag+(ag-1)4) =

(1/4){(aq-ap)2+2ag(aq+ap)] >0 .
Hence we conclude that h=m(m+1) if and only if | a;-ap|=1andag=0;
otherwise , h < m(m+1) . Hence the resuit holds when k is odd . The proof is

therefore completed by the Principle of Induction . 0

Theorem 7
Let H be a hamiltonian graph that is characterized by its circuit

polynomial . Then H UH is also characterized by its circuit polynomial .
Proof
Let G be a graph such that C(G) = C( H UH) = [C(H)]? . Also, let

C(H) = w1p+qw1p'2w2+ « + tWp , where p and q are the numbers of nodes
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and edges respectively in H . By examining the terms of C(G) in accordance
with Lemma 3 , we deduce that G has 2p nodes and 2q edges . Also |, C(G)

has the terms 2tw, pwp and t2wp2 - These terms indicate that G has 2t
p-cycles and 12 pairs of disjoint p-cycles . It follows by Lemma 8 , that G

has two disjoint subgraphs Hy and Hy with t p-cycles in Hy and t p-cycles
in Hz .
Woe will show that no edge of G join a node of Hy to a node of Hy, .

Suppose the contrary , i.e. G is connected . By using Lemma 6 , we get

8C(G) =2 CG2Z") =2t (WeqW2w, 4+ st ) .. ()
awp im1 P ! 1 2 P

Since G is connected , the removal of the nodes of any p-cycle

in Hy will not only remove all the edges of Hy , but also all the link edges
which join the nodes in Hy to the nodes in Hy . The same is true for the
removal of a p-cycle in Hy . Therefore the number of link edges is

2q-] E(G-Zp(i)) | +1 E(G-Zp(j)) | » where Zp(i) and Zpa) are p-cycles in Hy
and H, respectively and E(G) is the edge set of G .

= 29> | E(G-zp(‘)) | +1E@G-Z,0)) |, for every pair of disjoint pcycles = It
follows that 22! | £G-2,()) | < 2qt .

Therefore the coefficient of w, p'2w2 in $2t C(G-Zp(i)) #2qt.
This contradicts Equation (7) . Therefore G is not connected and has two

components .
Let the components of G be Hy and H, . Then

C(G) = C(H;) C(Hy) = [ C(H))2. . (8)
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‘From Equation (7) , we get

2 cez") - 2 C(H - Y. 62" + > c@2)

=1 e e H
P 1 P 2

= t C(Hp) +t C(Hy) -
= 2C(H) = C(Hp) + C(H4) .
= C(Hp) = 2C(H) - C(Hq) .
By substituti:ng for C(Hp) in Equation (8) , we get
C(Hy) [2C(H) - CH)) = [ C(H) 12 .
= [C(H)]2 - 2C(H{) C(H) + [C(H2 = 0.

= [C(H) - C(Hy) 12 = 0 . = C(H) = C(H) .
Hence C(H4) - C(Hp) = C(H) . But (by data) H is characterized by its circuit
polynomial . Therefore Hq = Hp = H.Hence G=HuUH . This completes the

proof . 0 |

In [5] , it is shown that the complete graph K, , the regular

complete bipartite graph Kp and the wheel W, are all circuit unique .

Since these graphs are also hamiltonian , we obtain the following

corollary .
Corollary 7.1
For all pesitive integers n ,

Knv Kn Kn'n v Kn.n and W, v W,

are characterized by their circuit polynomials .
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