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ABSTRACT

The integrity of a graph, J(G), is given by I{G) = mins(|S|+m(G -
S)) where S C V(G) and m(G — S) is the maximum order of the com-
ponents of G — S. It is shown that, for arbitrary graph G and arbitrary
integer k, the determination of whether I(G) < k is NP-complete even
if G is restricted to be planar. On the other hand, for every positive
integer k it is decidable in time O(n?) whether an arbitrary graph G of
order n satisfies J(G) < k. The set of graphs i = {G|I(G) < k} is
closed under the minor ordering and by the recent results of Robertson
and Seymour the set O, of minimal elements of the complement of G

is finite. The lower bound |Oy| > (1.7)* is established for k large.

1. INTRODUCTION

The concept of integrity of a graph was introduced in {1] after examining other
measures of the “vulnerability” of a graph, i.e., its resistance to fragmentation into
components of small order by removal of a small number of vertices.

The integrity of a graph G, I(G), is defined as follows. I(G) = mins(|S|+m(G -
S)) where S C V(G) and m(G — S) is the maximum order of the components of
G — S. The set S is called an I-set of G. In [1] the concept of edge-integrity of
a graph was also introduced. In this paper, we are concerned only with vertex
integrity.

Given k and S C V(G) it is easy to decide whether |S| + m(G — S) < &, so

determining the integrity of a graph is in NP. In the next section we will show
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that the vertex integrity problem is NP-complete but that for each fixed value of
k it is decidable in time O(n?) whether an arbitrary graph G of order n satisfies
I(G) < k. This last result is obtained by a simple application of the powerful results
of Robertson and Seymour on graph minors (see the references of [6]; also, see Wilf
[7] for a brief exposition of Robertson-Seymour’s main theorem).

All graphs considered in this paper are simple, without loops or multiple edges.
A simple graph H is a minor of the simple graph G iff H can be obtained from G

by a sequence of operations of the following two kinds:

(a) replace a graph by a subgraph of itself or

(b) contract an edge uv (i.e., replace u and v by a single vertex w adjacent

to those vertices to which u or v was adjacent).

It is important to note that the literature contains several variant definitions of
contraction and minor. In particular, the results of Robertson and Seymour are es-
tablished for general graphs (allowing loops and multiple edges) and for the minor
operation with the contraction operation defined topologically. (The topological
contraction of an edge may create loops or multiple edges.) For simple graphs the
combinatorial minor ordering defined above coincides with the topological defini-
tion.

We see that all minors of a graph can be obtained by deleting edges, contracting
edges and deleting isolated vertices. If G # K, isolated vertices play no role in
determining J(G) and so may be ignored in discussions of the integrity of minors of
a graph. If the minor H of G satisfies H # G then H is a proper minor of G.

We will use the following result of Robertson and Seymour [6].

Theorem A (Robertson and Seymour). Let F be a minor closed class of graphs
such that some planar graph is not in F. Then there is an algorithm to determine
membership of G = (V, E) in F with running time O(|V [?).

We will also need the following result from [2]. Here P, is the path on n vertices
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and |z] and [z] are the greatest integer and least integer functions, respectively.
Theorem B. (Barefoot, Entringer and Swart) If T is a tree of order n then I(T) <
I(P) = [2/a 1] -2.

We will generally use the notation and terminology of Bondy and Murty [3] but
require the following additional notions. A suspended path of a graph G is a path
of G all internal vertices of which have degree 2 in G. The graph resulting from the
contraction of an edge e will be denoted by G - e and (V') will denote the subgraph
of G induced by the subset V' of V(G).

2. THE COMPUTATIONAL COMPLEXITY OF INTEGRITY

Consider the following decision problem.

VERTEX INTEGRITY

Input: A graph G = (V,E) and an int_eger k.
Question: Is I(G) < k?

Theorem 1. VERTEX INTEGRITY is NP-complete, even for input restricted to
planar graphs.
Proof. The problem is clearly in NP since it is easy to verify, given § C V, that
|S|+m(G - S) <k

To show that VERTEX INTEGRITY is NP-hard we reduce from the following

decision problem which is known to be NP-complete [4].

VERTEX COVER

Input: A planar graph G = (V, E) and an integer k.

Question: Is there a set V' C V with |V'| < k such that every edge of

G is incident with some vertex of V'?
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We can assume k& < |[V| — 3. (Indeed, by the Four-color Theorem G has an
independent set of at least 1|V vertices and so a vertex cover with at most v
vertices.)

Given G and k we describe how to compute in polynomial time a graph G' and
integer k' such that I(G") < k' if and only if G has a vertex cover of cardinality at
most k.

Let W denote the wheel with 2|V | — 2 spokes. The order of W is then 2|V| —1.
The graph G' is obtained from G by adding to each vertex v of G an edge to all
the rim vertices of a copy of W. An example is shown in Fig. 1. Let k' = 2|V |+ k.

The graph G' is planar, since G is planar.

G

Figure 1. The construction of G' from G and W.

Suppose G has a vertex cover § C V with |S| < k. Since every edge of G is
incident with some vertex of S, G — S has.no edges and m(G' — S) < 2|V|. This
implies I(G') < k+2|V|=k'.
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Conversely, suppose I{(G') < &¥' = k + 2|V|. Then, for some set §' C V',
|S'| + m(G' — 8') < k+ 2[V|. In particular, |S'| < k + 2|V| < 3|V| s0 some
component C of G' — §' has order at least 2[V| — 2. This, in turn, implies that
|S'l € k +2 < |V| and so, in fact, some component C of G' — S’ has order at least
2|V| which implies |S'| < k.

If any component C of G' — S’ contains two or more vex:tices of G (considered as
a subgraph of G') then C has order at least 4|V |—k > 2|V|+k, a contradiction. We
may conclude that G’ — S’ contains no edge of G. But this implies that G - (§'NV)
has no edges, i.e., S'NV is a vertex cover of G of no more than k vertices. B

In contrast to this result our next theorem shows that it is easy to decide where
an arbitrary graph of order n has integrity at most k, for each fixed value of k.

We first must show that the class of graphs §, = {G|I(G) < k} is closed under
the minor ordering. We remark that this is not true for the class of graphs with
edge-integrity at most k.

Lemma 2. §, is closed under the minor ordering.

Proof. It was observed in {1] and [2] that if H is any subgraph of G then I(H) <
I(G). It suffices then to show I(G -¢) < I(G) where G - ¢ is the resulting graph
after contraction of the edge ¢ = uv of G.

Choose § C V(G) such that I(G) = |S| + m(G — S). I {u,v} C S then
I(G - ¢) < I(G) while if {u,v} NS = @ then u and v lie in the same componeent
of G — S so that I(G-¢) < I(G). Finally,ifu € S and v € S we have I(G - ¢) <
IS|+m(G-S-v)<I(G). m
Theorem 3. For every positive integer k it is decidable in time O(n?) whether an
arbitrary graph G of order n satisfies I(G) < k.

Proof. By the lemma, we can set F of Theorem A equal to §; since, by Theorem B,
PngGuform>k/a+k m
This proof is nonconstructive because the proof of Theorem A establishes that

the complement §, of G has a finite but unknown number of minimal elements in
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the minor ordering. Theorem 3 becomes constructive when these are identified.

3. OBSTRUCTIONS
Let O, denote the set of minimal elements of §; in the minor ordering. We will
refer to the set of graphs O, as the set of obstructions to integrity k or, briefly, as

k-obstructions. We summarize some of the more important properties of 0.
(i) O: is finite,
(ii) If I(G) > k then some minor of G is in O;.
(i) If H € O and H' is a proper minor of H then I(H') < k.
(iv) If H € O, then I(H) = k + 1.

Property (iv) follows immediately from (iii) since v € V(H) and H € O, implies
I(H — v) < k and hence I(H) < k+1.

It is easy but tedious to identify Oi for small k; we do so for k < 3 presently.
First, let us note that H € O, iff I(H) = k+1 and both I(H—¢) < kand I(H-¢) < k
hold for all e € E(H). '

So that we may systematically determine O; we define 0, ; to be the subset of O,
consisting of those graphs H of O, satisfying min{|S|: I(H) = |S|+m(H—S5)} = .
I I(H) = k+1 =[S+ m(H - S) for some § C V(H) and |S| = k + 1 then
m(H — §) = 0 so that £k + 1 = |V(H)|. But this implies min{|S| : I(H) =
|S|+m(H — S)} = 0since S = 0 is allowed in the definition of J(H). Consequently,
we have Oy =0 for i > k.

Theorem 4. The sets O, 0 <4 < k < 3, include those displayed in Table 1.

Proof. Any candidate H for membership in O,; can be constructed as follows.
(i) Let {(S) be any graph of order s,

(ii) Let H — S consist of a arbitrary number of components each of which has

order at most k + 1 — ¢ and at least one of which has order k +1 —s.
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D J 0 1 2
0 |K,
1 |K,
2 (K3 PUP;
3 |K, PRUC, Cs
P;UP,
KsUK, 3
P,UP;UK,3

"
><
"V ik
kﬁ.

Table 1. Members of the classes 0,;,,0< i<k < 3.
(iii) Add edges e to (S) U (H — S) so that exactly one end vertex of e is in S.

Entries of Table 1 can be progressively determined by identifying those graphs
H constructed according to (i), (ii) and (iii) which satisfy I(H) = k + 1 and for
which deletion or contraction of any edge of E(H) decreases integrity and which do
not belong to O, for j < i. Let us, for example, determine the members of 0z,:.

We have (S) = K, with, say, vertex v. Then, for an arbitrary candidate H for
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membership in 0;; we see that H — S consists of some number, a, of copies of K
and some number, b+ c, of copies of K3, exactly ¢ of which form a triangle with v.
We first note that b+ ¢ > 0 since I(K;a-1) < 3.

If ¢ > O then H has a triangle, say uvw, and, since K3 € Oz, v is adjacent to
some vertex z ¢ {u,w}. But J(H - uz) > 3 since H - uz contains a triangle. We
conclude that b > ¢=0.

Now I(P,) = 3 so that H cannot contain P; as a subgraph. Thus b = 1 and,
since I(P;) = 2, we must have a > 1. We cannot have a > 2 for then H contains P
as a proper minor so that H is not an obstruction. We conclude that H = P,. B

Certain of the graphs of Table 1 suggest the following infinite classes of obstruc-
tions.

Theorem 5. The following graphs are obstructions as indicated:
i) Kiy1 € Or, k20,
i) Uy Ko € Ok k211,
iii) P € Opay/i71)-s for k=m? or k=m(m+1), m > 1and

iv) K € Ok, k > 1, where K is the complete graph with vertex set {vy,... Uk}

together with the vertices u;, 1 <t < k and edges w;v;,, 1 < i< k.

Proof. i) It is known [1] that J(K;) = k. It is vacuously true that any minor of
K, has integrity O; we assume & > 1 and let ¢ = uv be any edge of K;. Since
Ky e = Ki_y we have I(Ky - ¢) = k — 1. Also, letting S = V(K,) \ {u,v} we see
that I(K; —¢)=k—1.

ii) Let G < UL, Ky, Itis easily seen that J(G) < k + 1. Now let S be a minimal
~ I-set for G and recall, from [1], that S contains no end vertex of G. Label a center
of K, as v,,1 < r <k, and let j be the largest index such that v; € § (if no such
index exists then I(G) = k +1). Then m(G — §) > j+1 and |S| > k — j so that
I{G)=k+1.
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Let G’ be the graph obtained from G by contracting or deleting an arbitrary edge
of Ky for some ¢, 1 < ¢ < k. We set § = {vi41,%42,...,v:} and have m(G—S) =1

so that I(G') < k.

iii) In [?] it was shown that I(P;) = [2vk + 1] — 2. But for any edge ¢ of P we
have I(P, - ¢) = I(Pi-y) = [2vE] -2 < [2vE +1] - 2.

Again, let ¢ = uv be any edge of P; and let S be an I-set for P;-e. In P, -e let
z denote the identification of u and v. f z & S then m(P, —e— S) S m(Pp-e~ S)
and I(P, —¢) < |S|+ m(Pi-e—S) < I(P). fz €S weset S'=5)\z and have
m(P,—e—S') < m(P;-e—S)+1. Thus I(Py~e¢) < |S|-1+m(Py-e—8)+1 < I(P).

iv) Let S be a smallest I-set for K;. Then v; € S,1 < i <k, and m(K; — S) =
2(k — |S]) so that 2k — |S| = I(K;) < k+1. Thus |S| > k—1. If|S|=k~-1
then m(K; — S) = 2 while if |[S| = k then m(K; — S) = 1 so that, in any case,
I(K;)=k+1.

If any edge u;v;, 1 < ¢ < k, is contracted or deleted from K, to form a graph G
then, taking § = {v1,...,Vi-1,Vi41,...,Vi} We have m(G—S) = 1 so that I(G) < k.

If any edge viv;, 1 < ¢ < § < k, is contracted or deleted we argue as in the proof
of i) that the i'ntegrity of the resulting graph is strictly less than that of K. ®

It follows from results of [?] that J(Pa-3) = I(P,) unless n = m? or m(m + 1)
for some m > 2. Thus the paths described in iii) are the only obstructions that are

paths.

4. A LOWER BOUND FOR ||

In this section we will show that |O;|, although known to be finite by the results
of Robertson and Seymour, is at least an exponential function of k.

In [2] we showed that of all trees of order n the path, P,, has maximum integrity.
The key idea of the proof was contained in the proof of Lemma 4 there and is
exploited again in the proof of the following result.

Lemma 6. Let v,v;_; and v, v, be two edges of a graph G for which G —v,v;_; —
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ViVs41 = Pyy UG, UG, for some graphs G, and G and path Py_; = (vv3 -+ vp_y)
with vx € V(Gy) and vy41 € V(G,) (see Fig. 2). Then I(G) < I(G—vrvi41+v1V41)-
Proof. Set H = G ~vv341+v,v34) and let S be on I-set for H. If SN{v;,vp 44} # 0
then I(G) < I(H) since G — vg4; = H — vp4; and G — v, is a subgraph of H — v;.
Furthermore, we may assume v, and v4, are in different components of H — S, say
H; and H,., for otherwise we obviously have I(G) < I(H). Thus there must exist
VigseorVimym 21, in Swithl1 <) <--- <1, <k-1.

Let S' be § with vi; replaced by vij4s—ipm, 1 S 5 S m. U m(G - S') < m(H - 5)
we have I(G) < I(H). Thus we may assume m(G — S') > m(H — S). But this can
hold only if the (path) component v; - - - v;, 4x-im-1 of G — S has order greater than
m(H - 8S),ie, i1 +k—ip,—-12>2m(H~-S5)+1.

G vl( -1 vk +1

e
@ T®

Figure 2. The construction of the graph H.

Let h be the number of vertices in Hy4, that are not in the set {v;,...,v;,.1}
and note that
1<h<m(H-S)-(1—1)<k—in—1.

Finally, let S* be the set S with v;; replaced with v;;44,1 < j < m, and consider
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the components of G — S°. By the constructions of S and S* all components of
G — §°, with the possible exceptions of those containing v or v; (and so vi41),
have at most m(H — S) vertices. But the vertex set of the component of G — S*
containing v, is obtained from the corresponding vertex set of H— S by deleting the
h vertices of Hy4y —{v1,...,v;,-1} and appending the vertices v,,.. ., v, +s-1 for no
net change in the number of vertices. Similarly, the vertex set of the component of
G — S° containing v, is obtained from H, by deleting the vertices Uipm+1s- -« Vim+h
and appending the h vertices of Hyyy — {v1,...,v;,—1} again for no net change in
the number of vertices. Thus I(G) < [S°| + m(G — S*) < |S| + m(H - S§) = I(H).
]

We note for use in the next result that neither G; nor G; was required to be
connected in the lemma.

Theorem 7. If T isatreeof order n = m*orn = m(m+1), m > 1, a;nd
I(T) = I(P,) then T € O3 /msq)-s-

Proof. By Theorem B, for any such tree T we have I(T') = I(P,) = [2y/n+ 1] -2
and for any edge e of T, I(T'-¢) < I(Pa-1) < [2y/n + 1] -3 where the last inequality
follows as in the proof of part iii) of Theorem 5. Hence if the theorem is not true
it is only because there exists a nonempty set T of trees T' of order n for which
I(T) = I(P,) and I(T - ¢) = I(P,), also, for some edge ¢ in T. Let T be a member
of T that has maximum diameter, say d, and note that, by part iii) of Theorem 5,
T ¢ P,.

Let v,v; -+ - vg4; be a longest path of T and let k be the smallest index for which
d(v) > 3. Since 1 < k < d 4+ 1 there are subtrees T; and T; of T containing
v; and vg,;, respectively, such that T — vi—30; — 34y = Py U Ty U T3 where
Py =(v1---vp_y). Weset H =T —vyvpy4q %v,v,,.n and note that H has diameter
greater than d so that by our choice of T and Lemma 6 we have I(H) > I(T) = I(P,)
and I(H - ¢') < I(P,) for all ¢' € E(H).

Since T — vptnqy = H — v1v54) we have I(T — e) < I(P,) for e = vpvper. I
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¢ is an edge of T} or T; we apply Lemma 6 to T — ¢ and have I(T —¢) < I(P,)
in this case also. Finally, suppose e = v;_1v; for some i, 1 < 1 < k. We relabel
the path v4,v4:¢-v; as vv;---vg4; and apply the above arguments to conclude
I(T - ¢) < I(P,) in this case also.
Consequently T = 0 and the theorem follows. B

Corollary 8. If Tisatree of ordern =m?orn=m(m+1),m>2,and T has a
suspended path of length at least n — vn + 1 + % then T € Opymvq)-s-

Proof. In view of Theorem 7 it suffices to prove I(T) = I(P,). We label T so that
uv -+ wz is the suspended path with d(u) # 2, d(z) # 2 and T,,(T,) is the component
of T — v (T — z) containing u(z) (respectively). We define T} = T — uv + zu and
note that, by Lemma 6, I(T) > I(T;). Now consider the tree T, defined in [1]
where k = [V(T,)| + |[V(T:)| < Vn+1 ~ £ (see Fig. 3). We label T,,; 5o that z is
the vertex satisfying d(z) > 3, v-..z is the longest path in T,; with z as an end

vertex and z is adjacent to k end vertices. We next show that I(T}) > I(T,.).

vertices

Figure 3. The graphs Tp;.

Let S be an I-set for T} and let S’ be the set of those vertices of S that are on
the path v---z. If S\ S' = 0 then m(Ty — S) > m(Tns — S) so that I(T) > I(Tnp).
IfS\S'#0set S"=(S\S')U{z} so that now m(T, - S) > m(T,, — S") and
again I(T}) 2 I(Tas). But, by Fact 5 of (1] we have I(Tax) = [2v/n +1] — 2 s0
that I(T) = I(P,) and T € Op3m7i)-s- B
Corollary 9. O] > (1.7)* for all sufficiently large k.
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Proof. Fix k and define

m? ifk=2m-2
{m(m+1) ifk=2m-1
so that, in both cases, k = [2y/n+1] — 3. Let v---z be a path P of length
[n—vn+1+ %] and let T" be any tree rooted at z but otherwise disjoint from P
and havingorder r=n—[n—vn+1+ %] so that the tree T formed by P and T"
has order n. From Corollary 8 it follows that T € 0.
Now
'=l\/n—+——§J={m-2 ,n=m? ={k/2 Jk=2m-2
4 m—1 ,n=m(m+1) (k+1)/2 ,k=2m-1
so that, in any case, r > k/2 — 1.
Otter [5] has shown that if A, is the number of nonhomeomorphic rooted trees of

order r then A, ~ 0.4399237(2.95576)"r~%2. From this it follows that |O;] > (1.7)*

for sufficiently large k. W
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