SYMPLECTIC EMBEDDINGS OF GRAPHS !
Maz Garzon

ABSTRACT. The foundation of an analytic graph theory is developed.

1. Introduction

Graphs are important objects in computer science, in particular, in the areas
of data structures and design of algorithms. The usual encoding of a graph
by its adjacency matrix requires an arbitrary labeling of the graph vertices
by, say, integers between 1 and n and an n X n matrix to represent their ad-
jacencies. This data structure may not be the most efficient, for example, in
case the graph has few edges compared to the number of vertices. Moreover,
verifying whether a graph given by its adjacency matrix has a property which
is nontrivial and monotone (preserved under the addition of edges) requires
0(n?/16) lookups in its adjacency matrix [13] Thus checking connectivity re-
quires O(n?), while it takes only linear time O(n) if the graphs are represented
by their adjacency lists. In general, determining properties of a graph or re-
lations between two graphs given by their adjacency matrices or adjacency
lists (for instance, whether a graph is hamiltonian, whether two graphs are
isomorphic, or whether one contains an isomorphic copy of the other) cannot
be answered easily. Representation of graphs by some sort of data structure is

nevertheless necessary for automatic execution of graph-theoretic algorithms.

There have been various restricted coordinatizations of graphs so that adja-
cency among its vertices is fmplicitely determined by the coordinates assigned
to them. For instance, [3] encodes graph vertices as strings in {0,1}*, i.e. as
vertices of some hypercube, so that two vertices are adjacent if and only if their
Hamming distance does not exceed a threshold value. Although only possi-
ble for trees, the Priifer correspondence encodes trees labeled with integers 1
through n as n-tuples of integers in the same range. In a slightly different
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direction, [14] encodes labeled and unlabeled planar graphs so that encoding
and isomorphism testing of two graphs given by their encodings can be done
efficiently (in time polynomial in the length of the encoding). On the other
hand, [12] has shown that if graphs are encoded in the exponentially succinct
way suggested by [7] using polylogarithmic sized circuits to quickly evaluate
adjacency between two given binary representations of graph vertices (which
is not possible for every graph), various trivial properties of a graph (such
as having a triangle) become NP-complete while ordinarily NP-complete

problems become (time or space) exponentially hard.

The adjacency matrix of a graph can be regarded as a method to encode into
numbers arbitrary adjacencies among vertices in a graph. Thus it is natural
to ask whether one can still have a general "analytic graph theory” in which
arbitrary graphs are encoded as sets of tuples of suitable "numbers,” just
as cartesian analytic geometry encodes arbitrary continuous figures into sets
of euclidean points which are tuples of real number coordinates. Such an
encoding would then allow a uniform representation of graphs in a suitable
»graphical space” and, as its cartesian analog, it would allow the reduction
of graph-theoretical problems to questions about these numerical tuples, and
vice versa, questions about these numerical tuples could be visualized as graph-

theoretic questions.

The purpose of this paper is to propose a graphical coordinate system of this
type. The graphical space is a vector space V over an arbitrary field, although
the Galois field GF(2) of 2 elements is particularly suitable for loopless simple
graphs. A graph on n vertices is represented as a set of tuples — or vectors
of V. No specific adjacency relations are necessary as they can be implicitely
and uniformly encoded by endowing V with a suitable "dot product”, here
denoted [u,v], so that two vertices u,v are adjacent exactly in case u is not
orthogonal to v, i.e., in case [u,v] # 0. Of course, this makes the inner prod-
uct unlike the ordinary one because the length of every vector is [u,u] = 0,
but it is still nice, since with respect to an "orthonormal” basis (here called a

symplectic basis) it takes the form of the ordinary sum of pointwise products
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after a cyclic permutation of the binary coordinates of v. This type of bilinear
form is called alternating and the pair (V, [+, +]) is a classical object known
as a symplectic geometry. For a given even dimension, 2 nondegenerate sym-
plectic space of this type is uniquely determined up to isometry, i.e., up to a
linear isomorphism preserving the bilinear form. This choice of coordinates
naturally makes symplectic geometry a graphical geometry. It makes possible
to reformulate arbitrary combinatorial graph problems as purely ”numerical”
linear problems about points in a space endowed with a geometric structure.
In particular, it is possible to place important graph theoretic problems (e.g.,
graph data structures, graph traversal, graph isomorphism) in a different more

geometric perspective that may prove valuable for graph theory in general.

Various other preliminary results are presented in this paper. For instance,
theorem 3 provides an efficient algorithm that computes the least dimension
of and a symplectic embedding of that dimension for an arbitrary given graph
from any of its symplectic embeddings. Several applications of the approach,

in particular a new general graph isomorphism test, will appear in [6].

2. Basic Constructions

The original motivation for this work was the relationship between group
and graph isomorphism [5]. Later it became clear that the essential necessary
properties of the groups involved lie in their central quotients, which are simply
finite-dimensional vector spaces over the Galois field GF(2) of 2 elements

enriched with a notion of ”projection” (a bilinear form).

For the convenience of the reader basic definitions and results of symplectic
geometry are reproduced whenever necessary. S/he can consult (1], [11] and/or

(8] for further background and proofs of these results.

Definition 1. An alternating (or symplectic) space over a field F is an F-
vector V' space together with a alternating bilinear form [+,:]:VxV SV,
i.e., a two argument function |-, ] satisfying the following three properties
forall z,y,2€V :
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(@) [z +v,2] = [z,2] + [v,2]
(b) [2,9] = —[v 3]
() [=,2] =0

The form |-, -] is regular if only the vector O is orthogonal to every other

vector z € V, that is, if for everya € V,
vz eV, [z,a]=0 = a=0.
More generally, the perp of a subset A C V is the subset A* given by
At:={z €V |Va€ A,|z,a] =0},

so V is regular if and only if its kernel V* = {0}. In particular, the null space

V = {0} is a regular space of dimension 0. O

A bilinear form is completely determined by its values on a basis {z1,..., %4},
i.e., by a matrix (a;;)axa, Where a;; = [z:,2;]. Moreover, an alternating form

is regular iff its matrix with respect to any basis is regular.

Theorem 1. [8, Theorem 1] An alternating form [+5+] on V is regular if

and only if its matrix with respect to any basis of V is invertible. O

Definition 2. Two alternating spaces V,W over a field F are fsometric if

there exists a linear isomorphism ¢ : V. — W such that

Vz,y € V, [z,y] = [o(2),0(y)]-

Any such mapping o of V onto itself is called an isometry of V and the group
of all isometries is called the symplectic group Sp(V') of V, or more precisely,

Sp4a(V), where d is the dimension of the vector space V. O

The symplectic group Sp(V) acts on elements of V by evaluation, and it is
well known that this action is transitive on V — {0} [1, p. 138].
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Theorem 2. (8, theorem 19] Any regular alternating space V' has a basis
01

-1 0]
Therefore any two regular alternating spaces of the same dimension are iso-

whose matrix of inner products is a direct sum of blocks of type

metric and of even dimension. O

This basis will be denoted {u,,.. +2Udf2, V1, ..., Vaj2}, Where [u;,v5] = §;,
[ u;] = [vi,v;] = 0, and will be referred to as a symplectic basis. All vectors
in V will be expressed in relation to this basis as strings of length d over the
alphabet the field of V', unless explicitely stated otherwise. In particular, if
the field has only 2 elements, vectors in V; expressed with respect to a sym-
plectic basis are represented as strings of length d over the binary alphabet
{0,1}. Symplectic bases are obtained from an arbitrary basis of V' through
an orthonomolization process so they can be easily computed. They have the
computational advantage that calculation of the form at two vectors expressed
in terms of symplectic coordinates z = (z;,... »Zq) and y = (y1,...,ya) takes
on a very simple form, which resembles the usual inner product in euclidean

space:
/2

[2,9] := Y (zithisasz — Zivapawi)-

=1

In particular, an alternating form over a finite field can be computed very fast

(in linear time).

3. Symplectic embeddings

Definition 3. A subset X CV is a symplectic embedding of a graph G if G
is isomorphic to the graph with vertex set X and edge set

{(xh’/) EVXV l [zay] # 0}'
In this case, dim(V) is the dimension of the embedding X. O

Thus, dim(G) < d if and only if G is isomorphic to the subgraph of the graph
defined by the symplectic space V; of dimension d induced by some subset of
Va. This means that the vertices of G can be labelled by d-tuples of 0’s and

197



1’s so that adjacency can be determined for two vertices by computing their
inner product. In particular, there is a "universal® graph of given dimension
d, namely Vj, which contains as vertex induced subgraphs all (finitely many)

graphs of dimension d. These spaces (graphs) form an infinite ascending chain
VocVoC---CVyC,

where Vp := 0, and each space will be identified with its image in the next
space in the chain whenever convenient (for instance, in the proof of theorem
3 below). By definition, the isometries o € Sp(Vy) are exactly the bijections of
V, that preserve adjacency, i.e., Sp(Vy) is precisely the automorphism group
of the graph V. Hence a symplectic embedding X of a graph G into a space
V; is far from unique, since the action of any ¢ € Sp(Vy) that does not set-
stabilize X will produce another embedding o(X) of G. And conversely, by
Witt’s theorem|11, 1.1.18], every two embeddings of G of least dimension into
V, are isomorphic by a (partial) isometry of V which can be extended to an
element ¢ € Sp(Vy). Thus, all optimal embeddings of G are equivalent under
the action of Sp(V;) induced on subsets (subgraphs) of V;. This fact can be

used as the basis of a general graph isomorphism test [6].

Lemma 1. Every graph on n vertices has a symplectic embedding of

dimension at most 2n which can be found in O(n?)—time.

Proof. By doubling the number of vertices in a graph G and then connecting
the additional vertices to corresponding vertices of the original graph one
can assume without loss of generality that the adjacency matrix (a;;) of G
is invertible. Given an invertible (a;;) matrix of size n X n, let V be the
alternating space generated by a basis B = {b1,"--,bs} of n elements whose
bilinear form at basis elements is given by [b;,b;] =: a;;. Since A is invertible,
V is regular by theorem 1. Thus, the set of elements in the original basis is a

symplectic embedding of Gin V.

If the original graph G is totally disconnected, the vertices of the extended
graph constructed in the previous paragraph is in fact a symplectic basis of
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V and an embedding has been found. Assume therefore that G is not a
totally disconnected graph. By theorem 2, there exists a symplectic basis
of V. Finding the coordinates of the original vertex set with respect to the
symplectic basis, and thus a specific embedding of G, requires essentially an
orthogonalization process that proceeds recursively as follows (¢f. [8, proof of
Theorem 2]).

Identifying vertices of G and the original basis elements in B so that, say,

[b1,b2] # 0, replace each of the remaining basis elements b; (£>2) by
b: = bt + [bh b?]bl + [bo'a bl]bzy

so that, as is easily verified, all elements b:- (¥ > 2) are orthogonal to both b,
and b;. These operations can be done in linear time and produce the first pair
of vectors u, := b, and v, := b; in a symplectic basis of V. Recursively, find a
symplectic basis of the regular subspace generated by B' := B — {u1,v;} and
join it to u;,v; to obtain a symplectic basis of V. The entire process clearly

takes quadratic time. [J

From now on all graphs on n vertices will be regarded as subsets of some
regular symplectic space V of dimension < 2n. Lemma 1 makes it possible to

define the dimension of the smallest such space over any field.

Definition 4. The (symplectic) dimension of a graph G over a field F,
herein denoted dimg(G), is the smallest dimension of a symplectic embedding

of G into a regular symplectic space over F. O

Although this dimension is defined over any field, from a computational view-
point the inner product and other operations are simplest when F is the field
of two elements GF(2). Therefore, in the remainder of this paper F = GF (2)

and mention of F will be omitted.

The symplectic embedding of a graph G provided by lemma 1 is usually of
dimension > dim(G) since it contains n linearly independent vertices. To
find a more efficient embedding one can substitute a vertex z, € X by a linear

combination y := 3, ., \iz; of the remaining vertices z; so that the adjacencies
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are preserved. This can be done efficiently since such a substitution is possible

if and only if the linear system of equations
[zi, ) = [2i, 2n)s (1 < $ < 1)

in the n — 1 unknowns X;(i < n) has a solution y which is distinct of all the
remaining vertices of X. The result is an embedding containing only n — 1
linearly independent vectors. By repeated substitutions of this.type in the

remaining subset X — {z,} one arrives at linear core of G as defined next.

Definition 5. A linear core of a graph G is an induced subgraph Gg of G of
smallest order such that some embedding X, of Gy generates an embedding
X of G (in the sense that every other vertex in X is a linear combination of

elements in X,.) O

Lemma 2. If G has no isolated vertices, the number of vertices in any linear
core Gp of G equals dim(G) and hence is uniquely determined by G. Moreover,
in any optimal embedding of G into Vy, any linear core of G is embedded as
a basis of V; and dim(G) =dim(Go).

Proof. Let X be an embedding of G, X, any linear core of X, Y C Vy
be an optimal embedding of G of dimension d = dim(G), and f : Y — X
a graph isomorphism. If ¥p := f~!(X,) were linearly dependent then some
of its elements y would be a linear combination of the other elements in Yo.
Substituting f(y) by the corresponding linear combination of the correspond-
ing elements in X, would yield a linearly independent subset of X properly
contained in a linear core of X. Therefore Y} is linearly independent. If Yp
generates a proper subspace of V; of dimension d' < d, this subspace is a
direct sum of its radical R N R!, a subspace of totally isolated vertices, and a
regular subspace R'. Since no vertex in Y; is isolated, Yo C R', i.e., G could
be embedded in a regular symplectic space of dimension ' < d. Therefore Yo

is a basis of V3 with d elements. O

In order to find an optimal symplectic embedding of a linear core it will
be necessary to determine first the structure of the universal graphs Vy of



dimension d, of interest in itself. These graphs can be obtained by means of

a new graphical construction and an auxiliary result given in lemma 3 below.

Definition 6. The s-power of a graph G consists of the union of 4 disjoint
copies of G; of G so that Gy U G; (i > 2) are isomorphic to the cartesian
product K; X G while the remaining pairs G; U G;(2 < i <j < 4) have edge
set E(Gi) U B(G;) U {(=:,4;) | (z,¥) € E(G)}, where z;,y; denote the vertices

of G;, G; corresponding to vertices z,y € G, respectively.

Fig. 1 shows the structure of the s-power of a graph G. Parallel lines indi-
cate incidences of corresponding vertices and cross lines indicate incidences
of vertices of the copies in G and the corresponding nonadjacent vertices of

the other copy of G. Thus, V; consists of a triangle and an isolated vertex.

><@

Fig. 1

Lemma 8. The universal graph Vy;; of dimension d + 2 is (isomorphic to)

the s-power of V; for all even d > 0.

Proof. Let V; be the subspace of Vy,; generated by the symplectic basis
elements except %431, Y4/241- Every element of Vy,, lies in one of the four

cosets Vy, tasg41 + Vi, v4/241 + V3 and ®d/z+1 + Va1 + Vg of Vi It is easily
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checked that, by bilinearity of |-, -], each of these cosets is a graph isomorphic
to V; and that its adjacencies are as required in def. 6. For instance, for all

z,y € Vy,

[ud/2+1+zsud/2+l+y] = [ugyz41, Y]+, vgjz41)+[2, Y] = [T, 4] = [waj21t2, vl

and

[#a/z41 + %, Vap241 + y] = 1+ [2,9] = [vaj241 + T, %a241 + Va201 + y|. O

Theorem 3. Let V be a regular symplectic space. The symplectic dimension
of a graph G of order n given as a subset X C V as well as an optimal embed-
ding of G can be found in time O(n3). Therefore, the symplectic dimension

of a graph given by its adjacency matrix can be computed in cubic time.

Proof. Let X C V; be a symplectic embedding of G of dimension < d (see
lemma 1). If n = 1 then dim(X) = 0 and X' = {0} is an optimal embedding
of X so assume n > 1. First assume, in view of the proof of lemma 2, that G
has no isolated vertices and that G is linearly irreducible, i.e., is its own linear
core . Let v be any nonzero vertex in X. By lemma 2, G must have dimension
|G]. Since Vy is a regular symplectic space, there exists a symplectic basis
element not orthogonal to v. Swapping symplectic pairs if necessary, assume
without loss of generality that [v,u4/s] # 0. Now replace every vertex z € X
by 7(z) := z + [v + uayz, 2} (v + uays). It is easy to check that 7 is an isometry
of Vy, hence 7(X) is another embedding of G in which v = u4y;. Thus assume

with no loss of generality that uaj; € X. Let
X = AU (ugz + B) U (vaj2 + C) U (vay2 + vaj2 + D)

be the decomposition of X induced by the s-power decomposition of V; of
lemma 3, where A, B,C, D C Vy_; are the projections of X into the four cosets
of the subspace V3 of two less dimensions. Suppose we have constructed an
optimal symplectic embedding X' C Vy of theset Y := AUBUCUD, i,
an isomorphism f : Y — X'. The mapping f naturally induces an embedding
¢ : X — Vy,q of X given by



#(X) = f(A) U (va241+ f(B)) U (varjz41+ F(C)) U (var/241 + varjo4a + F(D)).

By lemma 3, ¢(X) is an optimal symplectic embedding of X of dimension d.
Clearly all the operations involved (including those described before def. 5)

produce a linear core of a given embedding in cubic time.

Now, suppose G is not its own linear core, i.e., that another embedding of
G can be obtained by replacing some vertex v € X by a linear combination
220 A2z of the other elements in X. If Y C Vi is an optimal embedding
of X — {v} of dimension d', then Y U {2}, where z := Yoo AzYz and y, is
the vertex corresponding to z € X, is an embedding of G of dimension d’,
whenever 2 is distinct from the remaining vertices in Y. If, on the contrary,
all such linear combinations produce another element of Y, G cannot have
dimension d’. For in that case, an embedding Y’ C Vg of G of dimension d’
with a core Y5’ would extend to an isometry ¢ : Vg — X because Yy’ must be
a basis of Vg by lemma 2; therefore ¢~(v) would be a linear combination of
elements of Y distinct from other elements in Y, so the corresponding linear
combination of elements of X would be distinct from all other elements of X
and could replace v. Therefore G has dimension d’ + 2 since v can be replaced

by 2 + 4241 to obtain an embedding of dimension d' + 2.

Finally, if G has isolated vertices, let X; be the nonempty set of isolated
vertices of X. Find as before an optimal embedding Y of (X —X,) and solve a
system of linear equations to find a subset Z C (X—-X;)t in Vp of cardinality
|X1], where d' = 2[log| X;|]. Clearly Y U Z is an optimal embedding of G. O

We conclude this section with some examples of symplectic embeddings and
dimensions of various graphs. Some of them are easy consecuences of general

facts about the symplectic spaces Vj (All logarithms are taken to base 2).

Examples.

1. The universal d—dimensional graph has order 2% and has largest degree
A(V) =241, Of course,

dim(V) = log|V|.



2. Thus, if G has maximum degree A(G), dim(G) > 1+ log A (G).

3, The structure of the graph V; determines many properties of the graphs
of dimension d. For instance, since Sp(V;) acts transitively on V4 — {0}
(1, p. 138], these vertex deleted graphs are regular of valence 2¢-1 Tt
follows that for any graph G, log|V(G)| < dim(G). In fact,

log([V(G))) < dim(G) < |V(G)| +¢

are optimal bounds on the dimensions of any graph G. The second
inequality is a consequence of the fact that there is an absolute constant
¢ such that any n x n adjacency matrix is a submatrix of an invertible

matrix modulo 2 with n + ¢ columns.

4. The largest totally isotropic subspace of Vy (i.e., satisfying the identity

[z,y] = 0 ) has dimension d/2 and contains 2%/? elements. Therefore

dim(K}) = 2[log n).

5. The s-power decomposition of lemma 2 implies by induction that
dim(K,) = 2|n/2].

This allows an estimate on the size of the largest clique of 2 graph G in

terms of its dimension (see theorem 4 in section 4).

4. Applications

Symplectic embeddings offer the possibilitiy of new algorithms for graph-
theoretic problems. For example, by the results of section 3, all graphs can be
given as subsets of a fixed symplectic space V of dimension d (see theorem 3).

Obviously the symplectic dimension is an isomorphism invariant. Moreover,

Proposition 1. Two linear cores G,H C V are isomorphic if and only if
there is an isometry o € Sp(V) such that ¢(G) = H, i.e., iff they belong to
the same orbit under the induced action of Sp(V') on the power set of V. O



Based on this observation, one can obtain a new algorithm for graph isomor-
phism based on a decomposition theorem of Dieudonné [11, theorem 2.18] for
isometries of a symplectic space. The detailed description and a full analysis

of its complexity and experimental performance will appear in ).

From the constructions and remarks in the previous section one obtains the

following curious result.

Proposition 2. Any graph of order 2¢ and symplectic dimension d is jsomor-
phic to V; and its automorphism group is (isomorphic to) the full symplectic
group Sp(Vy). O

Theorem 4. w(G) < dim(G), i.e., a (largest) clique in a graph G contains at
most dim(G) + 1 vertices. This bound is optimal. O

This is an important estimate since deciding whether an arbitrary graph has
a clique of size at least a given integer m is NP—complete [4, problem GT19).
Since this upper bound can be computed in P—time, it follows that problem
GT19 remains N P—complete even if m is bounded by dim(G) + 1.

There is a number of other features that make this approach to graph the-
oretic problems suitable for practical implementation. On a practical level,
the operations involved —essentially bit manipulation— are very suitable for
automatic execution. On a theoretical level, symplectic spaces and symplectic
groups Spy(V') give rise to one of the classical families of finite simple groups
of Lie type. The virtue of their action lies in the fact that it is the same group
acting uniformly on all graphs of dimension d, and, moreover, on objects with
a linear and geometric structure, which yields global information on a graph
from its local properties such as orthogonality and restriction to a basis. This
action on the set of subsets of V' does not seem to have been considered at all
in the mathematical literature and seems to be a mathematically interesting
problem in itself. Moreover, the above construction can be done over any
field F of char(F) > 2, where the symplectic groups are generated by only 2

elements.



5. Conclusion

Other implicit representations of graphs have been suggested (3], [7],{14},[2],
(10], [9]. They generally apply to restricted classes of graphs or are not uniform
for all graphs, and the labeling does not seem to relate to isomorphism, if it

does at all, by known geometric structures of the type presented here.

The basis for a general, algorithmic analytic graph theory has been developed.
This paper provides a polynomial time algorithm to find a most efficient la-
beling of the vertices of arbitrary graphs into an equal number of strings (over
the binary alphabet) of smallest possible length d (the coordinates of a set of
vectors in a symplectic space V; with respect to a standard symplectic basis).
One of the advantages of this vertex labeling is that adjacency is impliestely
represented by the values of a single bilinear map defined on V; which takes
on a particularly simple form that can be evaluated easily. Furthermore, the
isometries of the host space naturally correspond to graph isomorphism in
the same way that the motions of ordinary euclidean space correspond to the
congruences of elementary geometric figures. This approach makes explicit a
geometric aspect of graph theory that allows the calculation of graph invari-
ants useful in estimates of computationally hard graph-theoretic parameters
(clique size). Further work on this approach is likely to provide not only ef-
ficient algorithms for graph theoretic problems, but also novel approaches to
other problems in graph theory (see [6]).
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