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ABSTRACT
Let T(n) be the set of all trees with at least one and no
more than n edges. A T(n)-factor of a graph G is defined to be a
spanning subgraph of G each component of which is isomorphic to
one of T(n). If every K, , subgraph of G is contained in 2 T(n)-
factor of G, then G is said to be T(n)-factor k-covered. In this

paper, ve give a criterion for a graph to be a T(n)-factor

k-covered graph.

1.Introduction

Consider a finite connected graph G with the vertex set V(G)
and the edge set E(G), which has neither multiple edges nor loops.
For any SGV(A),wve denote by G-S the subgraph of G obtained by
deleting the vertices of S together with their incident edges, and
by A(G) the maximum degree of G. We denote by I(G-S) the set of
isolated vertices of G-S, and put i(G-S)=|1(G-S)|. The neighbour
set of S in G is denoted by Nc(s). In this paper we always suppose

that n is an integer and n > 2.

For a set JF={A,B,. . . ,C} of graphs, an {A,B,. . . ,C}-

subgraph of a graph G is a subgraph M of G each component of which
is isomorphic to one of the subgraphs in the set (A,B,. . . ,C].
Moreover, if M is a spanning {A,B,. . . ,Cl-subgraph, then M is

called an {A,B,. . . ,C}-factor of G. An {A,B,. . . ,C}-subgraph M
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of G is said to be maximum, if G has no {A,B,. . . ,Cl-subgraph M'
with |[V(M*)]| >[V(M)].

In particular, if {A,B,. . . ,C}=S(n)=[RI’1:1$i<n], then an
{A,B,. . . ,C}-factors of G is also called a star-factor, or an S(n)-
" factor. If {A,B,. . . ,C}=T(n), the set of all trees with at least one
and more than n edges, then an (A,B,. . . ,C}-factor of G is also

called a tree-factor, or a T(n)-factor.

A graph G is {A,B,. . . ,C}-factor k-covered, 1¢ks< AlG), if for

every subgraph Kl kof G there exists an {(A,B,. . . ,C}-factor of
.
G containing it.

In {4) Little introduced the concept of an factor-covered graph.

This is a graph G vith the property that for every edge e €E(G) there
exists a 1-factor containing e. He gave a criterion for classifying
t-factor covered graphs. A defect d-matching in G is a matching
covering all but d vertices of G. Little, Grant and Holton in [5)
generalized Little's result to defect-d matchings, and showed that

a graph G is defect-d covered if and only if it has a defect-d
matching and each subset S of V(G) vith |S|+d odd components in G-S,
is an independent set. In this paper wve generalise this idea and
consider k-covered graphs. These are graphs with the property that

for every subgraph K which they contain there exists a star-factor

1,k
containing it. We will give a criterion for a graph to be tree-
factor k-covered. This is a generalization of the result by Amahashi
and Kano inllll. They showed that a graph has a tree-factor if and
only if G-S has at ‘most n|S| isolated vertices for every subset S

of V(G).

All notations and definitions not given here can found in [2].
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2. Characterization of tree-factor k-covered graphs.

The following two theorems are proved in [1] and [3] respectively.
Theorem A (Amahashi and Kano[1]): Let G be graph. Then G has

an S{n)-factor if and only if i(G-S) £n|S| for every S<V(G).

Theorem L (Las Vergnas[3]): Let G be a graph. Then G has a

[1,n]-factor if and only if i(G-S)<n|S| for every S cV(G).

From Theorem A and Theorem L, we can easily derive the

following result.

Theorem I. The graph G has a T(n)-factor if and only if

i(G-S) €n|S| for every S<cV(G).

The above theorem gives a criterion for T(n)-factors in a graph.
So, if we want to characterize the T(n)-factor k-covered graphs, we
need only to add more conditions to this. In order to do so, we
will require some more definitions and lemmas.

Let G be a graph and A¢cV(G). 1f there exists a T(n)-subgraph
of G which spans A, then A is called T(n)-saturated. Let M be a
T{n)-subgraph of G, and let x,y €V(G)(xpy). If x and y belong to thg

same component of M, then we say that x matches with y under M.

For a graph G, d(G)-;mg:‘t'(g:i)(G-S)-nlsll is called the defect of
G. Put D(G)={S:ScV(G) and i(G-S)-n|S|=d(G)}. Clearly, d(G)> 0 for

any graph G, and G has a T(n)-factor if and only if d(G)=0.

We will need the following three auxiliary lemmas.
Lemma 2([5)). For every maximum S(n)-subgraph M of a graph G
|viM) = |V(G)}[-d(G).

Lemma 3. For every maximum T{(n)-subgraph M of a graph G

Jv(M) |=]Vv(G)|-a(G).

213



Proof: Given a maximum T(n)-subgraph, we can delete edges to

get an S(n)-subgraph on the same number of vertices. The S(n)-
subgraph is maximum as if not any larger S{n)-subgraph would also

be a larger T(n)-subgraph. {]

Lemma 4. Let G be a graph without a T{n)-factor, and Soe D(G).
Then there exists a set V,,V,c1(G-5;), with ]volcd(c). such that
G-V, has a T(n)-factor.

Proof: As Sy, €D(G), then i(G-Sy)=n|Sy|+d(G). Thus, tor any
T(n)-subgraph of G, each vertex in Sy matches with at most n
vertices in 1(G-Sy). Therefore, for any T(n)-subgraph of G, there
exist at least d(G) unsaturated vertices in 1{G-Sp).

Let M be a maximum T{n)-subgraph of G, and V, be the set of
all vertices in I(G-S;) unsaturated under M. Then |Vg|2 d(G). But
by Lemma 3 d(G)=|V(G)-V(M)| > |Vy] »4d(G) and so |Vol=d(G). Thus Vv,
is the set of all unsaturated vertices of G under the maximum

T(n)-subgraph M. So G-V, has a T(n)-factor M. ]

The folloving theorem is fundamental to the proof of our main
theorem. .
Theorem 5. Let G be a graph, and K a Kl.k subgraph of G, where
12k < min{A(G),n).Then has a T(n)-factor containing K'if and only if
(1) i(G-s)&n|s] for every S €V(G), and
(2) i(&-5)<n|5|+(n-k) for every S&V(G), where G=G-V(K).
Proof: We first prove the necessity of the conditions.Suppose
Let M be a T(n)-factor in G which contains K. Denote by C the
component containing K in M. Let A=V(C)-V(K). Since C&€T(n), wve
have |V(C)|< n+1. Moreover |V(K)|=k+1, thus |A|<& n-k. Set G=G-V(K).
Because G-V(C)=G-A has a T(n)-factor,then by Theorem 1 we have
i(G-A-S) < n|S| for every SSV(E)-A. Let §SV(G). Then S-ACV(G)-a

and i(G-A-(5-A)) €n|S-A|. Therefore
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i(G-S)< i(G-A-(S-A))+|A] €n|S-A}+]A] <n[S]+(n-k).
Consequently, condition (2) holds.

It novw remains to prove the sufficiency of the condition. We
will give an augmenting path procedure to construct a T(n)-factor
containing K. Suppose that condition (1) and (2) hold. It follows
from condition (1) that G has a T(n)-factor.

1f G has a T(n)-factor F, then FUK is a T(n)-factor of G
containing K.Suppose then that G has no T(n)-factor. From the
conditions ve have n-k 2d(G)> 0. Let SOED(E). Then i((-;-so)-nlso|-d(a).
It follows from Lemma 4 that there exists a set V,, V,c1(G-S,), and

/]
T(n)-factor in G-V(K)-v_,

|vo|=d(a). such that G-v_ has a T(n)-factor My; that is , Mg is a

Suppose that N.({v})NN(K)# $ tor every veV,. For each veV,
choose a vertex v'(-Nc({v})nV(K), and let E,y be the set of edges
(v,v'). so |E |=d(G) and T,=G[E,UE(K)] is a spanning tree
containing K in G[VOUV(K)]. Since

|B(To)|=d(§)*|E(K)|‘(n-k)*k=n,
'ro is a T(n)-factor containing K in G[V(K)Uvol,and Mo u'ro is a
T(n)-factor of G containing K .
Otherwise, there exists a vertex v, vevo,such that Nc(v)nV(K)=<P.
For every AcS . put Nl(A)=NG(A)f\I(E-So). and let N (A) denote

(1]
the set of vertices which A matches under M_.

0
Set S ={x: xes , and (x,v) €E(G)}
={x' xeS\S , and N ((x))ﬂN (S ITX:)] .

=(x- xes, \(S US ), and N ({x])ﬂN (Sz)vqﬂ

s

m-1
s‘-lx: 'eso\‘}f. sj), and "x”"'m"n.,(s.-x“‘“’
Observe that Sl#¢ .

- ™
Since S € D(G), the subset U S, of S_satisfies [N, ( U S )|=
0 n 0 Mg =1 4

n| G S |. Thus, if N U 3 )nN (V(K))=9 ,then i(G- U s.)2
i=1 J My izt ) 3
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-
n| 'Ul 3 ‘|o||vl|, vhich is contrary to (1). Therefore there exists
’" /

a vertex hey (lh (S,_)-Sl)ﬂ N (VK)).

Let X be the vertex matching Y, in Sy and y ., be a vertex
vhich is adjacent to X, in ul(sH) (i=2,...,1). Let x, be a vertex
matching Y, in S .Set

1

Mo-l(l,.)',).---.(!,.y,)lUl(x,.v). (X 0¥ oeeeolny oy, )},
and V‘-'(vo-{v})U[y!].Then. from the construction of SJ, M, is a
T(n)-factor in E-Vl.

1f Nc((ul)n V(K)#¢ for every u€V,, then the proof is
finished by the earlier argument. Othervise, for any vertex in V
vhich is not adjacent to V(K), we again apply the argument just
given. Eventually, ve reach a vertex set vp and a T(n)-factor Mp

in G-V o’ so that every vertex in V is adjacent to V(K), or

N ({v})(\v(x)ﬁk for all vev . Thzs complete the proof. []

Corollary 6. Let G be a graph and 1g¢ksn. If i(6-S) < n|S|-(n+1)k
for every SSVI(G),then G is T(n)-factor k-covered.
Proof: It is obvious that condition (1) of Theorem 5 is satisfied.
For any' given Kl‘k subgraph K of G, set G=G-V(K). For every
cVv(G), we have
i(G-5)=i(G-V(K)-5) ¢ n|V(K) U §|=(n+1)k
en|S]+n(k¢1)=(n+1)k=n|S|+{n-k).
Thus, condition (2) of Theorem S is also satisfied. So G has a

T(n)-factor containing K and G is T(n)-factor k-covered. ]

Nov wve are ready to prove our main theorem.
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Theorem 7. Let G be a graph, and 1sken. Then G is T(n)-factor
k-covered if and only if:

(1) i(G-S) <n|s| for every S<SV(G) and

(2) i(G-S)>n|S|-(n+1)k implies that A(G[S))<k.

Proof: Suppose that G is T(n)-factor k-covered. It is obvious
that condition (1) holds. Suppose there exists a. subset of vertices
S4¢S,SV(G),such that n|S | % i(G-Sg) >n|S j|-(n+1)k, and. AlG[s o)) 2 k.
Since A(G[Sol)zk. then G[Sol contains a Kl,k subgraph K.Set
G=G-V(K) and $=S -V(K).Then

1(G-5)=i (G-V(K)=(5 -V(K)))=i(G-S ) Z n|S g|-(n+1)k41
=n|S|+(n-k)+1
and so by Theorem 5 there exists no T(n)-factor containing K in G,
a contradiction. '
We next prove the sufficiency of the theorem. Suppose that

there wvere a K, subgraph K of G such that G had no T(n)-factor

Wk

containing K.Set G=G-V(K). By Theorem 5 there exists a set S,

SEV(G), such thst i(G-5)>n|S|+(n-k). Set s°=§uv(x). Then
i(G-5 =i (G-S) 7n|§|0n-k-nlsol-k(nﬂ ).

But A(G[Sol)z O(K)=k, which is contrary to (2). []

Note that from Theorem A and Theorem 1, it follows that the
star-factor and tree-factor problem are equivalent, But for the
covering problem they are not. For example the path of lenth 3, P),
is T(3)-factor i1-covered, but not S{3)-factor 1-covered. Since
S{n)< T(n), the S(n)-factor covered graphs are also T(n)-factor
covered, but the converse is not true. Thus we leave the following

open problem, characterize the star-factor covered graphs.
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