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ABSTRACT

All graphs meeting the basic necessary conditions to be the leave
graph of a maximal partial triple system with at most thirteen elements
are generated. A hill-climbing algorithm is developed to determine
which of these candidates are in fact leave graphs. Improved necessary
conditions for a graph to be a leave graph are developed.

1. Candidates, leaves, and pseudoleaves

A triple system of order v and index )\, B[3,\;v], is a pair (V,B). V is a v-set of
elements and B is a collection of 3-element subsets of V called triples or blocks. Every
2-element subset of V is contained in precisely A blocks. When this latter condition is
relaxed to require that every 2-subset appears in at most A\ blocks, the result is a par-
tial triple system PB[3,\;v]. Finally, when no block can be added to a partial triple
system without violating the requirements, it is termed mazimal.
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Maximal partial triple systems (mpts) have been widely studied, in part to deter-
mine the smallest order of (full) triple system into which a given mpts can be embed-
ded (see, for example, [2]). Only the collection of pairs left uncovered by the mpts
affects the embedding; hence we define the leave of an mpts to the a multigraph whose
vertices are the elements of the mpts; two vertices are connected by A—s edges in the
multigraph exactly when the corresponding pair of elements appear in precisely s
blocks of the mpts. Two mpts's with the same leave have the same embedding. It is
therefore of significant interest to attempt to characterize multigraphs which are
leaves. However, even for A=1, this problem is far from settled.

Some numerical necessary conditions are immediate. We view a B[3,\;v] as an
edge-partition of the complete multigraph MK, into triangles. A PBJ[3,\;v] with leave
L is then a partition of NK,—L into triangles. It follows that the multigraph MK, —L
has all vertex degrees even, and has O (mod 3) edges. The vertex degrees and number
of edges in MK, are easily determined; from these, we obtain two necessary conditions
on L:

(1) L has all vertex degrees even iff v is odd or ) is even; L has all vertex degrees odd
if v is even and X is odd.

(2) L has 0 (mod 3) edges if v=0,1 (mod 3) or \=0 (mod 3); L has 1 (mod 3) edges if
v=2 (mod 3) and A=l (mod 3); L has 2 (mod 3) edges if v=2 (mod 3) and =2
(mod 3).

In addition, for the leave L of a maximal PB[3,\;v], we have
(3) L is triangle-free.

Any multigraph on v vertices which is a subgraph of M, and satisfies conditions
(1)-(3) for a specific X is termed a A—candidate, or simply candidate when A=l Itis
well known that not all candidates are leaves; such a graph is called a pseudoleave by
Stinson and Wallis [10]. CUC; is a small example of a pseudoleave. Colbourn and
Rosa [5] constructed an infinite class of pseudoleaves, and Stinson and Wallis later
established that pseudoleaves exist for most of the admissible numbers of edges [10].

In this paper, we generate all nonisomorphic candidates on at most thirteen ver-
tices, and determine which are leaves and which are pseudoleaves. In the process, we
develop a powerful hill-climbing technique for determining whether a candidate is a
leave. We also improve the necessary conditions for a candidate to be a leave.
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2. Generating the candidates

One cannot hope to consider all nonisomorphic graphs on at most thirteen vertices
to determine which are candidates. The largest order for which graphs have been
exhaustively generated is ten [l], and there are already 12,005,168 nonisomorphic
graphs here. Hence we generated the candidates directly. To do this, we observe that
only a small fraction of the possible degree sequences for graphs are degree sequences
for candidates, in view of requirement (1). Generating integer sequences meeting
requirements (1) and (2) is straightforward; we then used the Havel-Hakimi algorithm
[7,8] to eliminate those with no graphical realization. All sequences which remain have
some graphical realization meeting requirements (1) and (2), but not necessarily
requirement (3).

The next step is to generate graphs with specified degree sequence, and which
contain no triangles. To do this, we use the modification of Farrell's algorithm [6] due
to Colbourn and Read [4]. As a graph is generated, a canonicity check is made to
ensure that the graph is nonisomorphic to all graphs generated thus far; this canonicity
check is implemented using an algorithm due to Mathon. This generation algorithm
generates precisely the nonisomorphic candidates.

The method employed here could be improved somewhat if one had a useful char-
acterization of degree sequences which have triangle-free realizations. Further
improvements could also be made by incorporating isomorph rejection at earlier steps
in Farrell's algorithm. Nevertheless, using the algorithm outlined here, we generated
all candidates on at most 13 vertices. The last case, v=13, consisted of 3234 candi-
dates.

3. A hill-climbing algorithm

Stinson [9] developed a clever hill-climbing method for constructing random
Steiner triple systems. The basic hill-climbing step in Stinson’s algorithm operates as
follows. Suppose that B is a partial triple system on the element set V; if (V,B) has
nonempty leave, there is (at least) one pair of incident edges in the leave. Let us sup-
pose that {z,y} and {z,z} are in the leave. If {y,z} is also an edge of the leave, we
simply add the triple {z,y,z} to B, thus forming a partial triple system with one more
triple. Otherwise, we locate the triple {w,y,2} containing {y,2z} and replace it with
{z.y.z}, producing a partial triple system with the same number of triples as the origi-
nal. While it is possible in principle for this method to get “stuck™ by producing a
nonextendible partial triple system, this seems never to happen in practice.
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We modify Stinson's algorithm as follows, in order to test whether a candidate
graph appears as a leave. We mark all edges in the candidate as required, and never
allow a triple to use one of these edges. As in Stinson’s method, we select a pair
{z.y}, {z,z} of incident edges. There are three possibilities for the edge {y,2). IMitis
unused and not required, we add the triple {z,y,z}. If it is used by a triple {w,y,z}, we
replace this triple by {i,y.z}. The third possibility is that it is required; in this event,
we abandon this choice of incident edges and randomly select another pair. We require
another modification to Stinson’s method as well. In his method, one need not be con-
cerned that the desired object does not exist; however, once certain edges are marked
as required for the leave, there might be no maximal partial triple system with this
candidate leave. Hence we stipulate an upper bound on the number of trials for pairs
of incident edges at each level before progress is made by adding a triple; if this upper
bound is exceeded, the hill-climbing is abandoned. This modified method does get
“gtuck”, even when there is a solution. However, we found it better to do a small
number (say, twenty) of independent hill-climbs rather than to increase the upper
bound on time spent at a level. In our examples, most leaves were detected by the
first hill-climb, and virtually all were detected within the first two.

It is perhaps remarkable that the hill-climbing strategy is so effective even with
the number of added constraints. We believe that it is an indication of the power of
randomizing a computation, in an effort to avoid getting mired down in an unprofit-
able subcase. Undoubtedly, the success is also an indication of the large number of
partial triple systems that correspond to a given leave.

4. Small Orders

We summarize here the results of a complete enumeration of candidates on at
most thirteen vertices. For each number of vertices, and each admissible number of
edges, we give the number of nonisomorphic graphs which are candidates, and the
number which are leaves and pseudoleaves.

Candidates of order 7
# edges 0} 6| 9| total
Candidates 1111}1 3

Leaves 11110 2

Pseudoleaves | 0 | 0 | 1 1
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Candidates of order 8

# edges 4| 7} 10 | total
Candidates 1132|686
Leaves 1/3]0 4
Pseudoleaves | 0 | 0 | 2 2

Candidates of order 9

# edges 06 ]9 | 12| total
Candidates 111]14]7 13
Leaves 111]3] 4 9
Pseudoleaves | 0 | O |1 | 3 4

Candidates of order 10

7 edges 619|12]15| 18 | 21 | total
Candidates 1}(8]9 |14 2] 2 36
Leaves 1817 §10 1 22
Pseudoleaves | 0 | 0 | 2 9] 2 1 14

Candidates of order 11

# edges 4|7]10]13]|16]19 | 22] 25| total
Candidates 118 |3 |51]16] 5 {2 114
Leaves 11| 8 |28]|3| 7]2}]0 85
Pseudoleaves | 0 | 0 | O 2|13 9312 29

" Candidates of order 12

# edges 6lol12]|15] 18 | 21 |24 |27 | 30 | total
Candidates 1]6|21|97|213|135|20]|13| 1 | 516
Leaves 1/6]21|97]108] 01]13} 9] O | 436
Pseudoleaves |0{0] 0] O| 15| 44}16| 4| 1 80
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Candidates of order 13

# edges ojejoj12| 15|18 21 | 24 | 27 [30]33]36]total

Candidates 1]1]4(127]137|802|1175865{1790|32]| 7 | 3 | 3234

Leaves 1|1}14}27|137|79911150]778 {1090 |16| 2 | 3 | 3028

Pseudoleaves |0 |0 |O0] O 0 3 25| 87| 70|18 5|0 | 206

A complete set of diagrams of all pseudoleaves on at most twelve vertices is given
in the appendix.

6. Necessary Conditions

Two further elementary necessary conditions have been used previously to estab-
lish that a candidate is not a leave. The first, a density condition, was used in [3,5):

Lemma 1: Let G be a candidate on v vertices and e edges, having an edge-cutset of ¢
edges which separates G into components of sizes s and v—s. If G is a leave, then

(o) ez

Lemma 1 rules out candidates such as C,UCjs, and numerous others. A different
approach was taken by Stinson and Wallis [10}, who observed that for G to be a leave,
every edge in G must appear in a triangle; moreover, if an edge appears in a unique
triangle, this requirement holds again for G with that triangle removed.

It is our purpose here to unify (and strengthen) these two approaches. To do this,
we consider conditions on the graph G which are necessary for G to have an edge-
partition into triangles, that is, for G to be a leave. We examine the neighbourhood
N(X) of a set X of vertices, that is, the set of all vertices not in X which are adjacent
to one or more vertices of X. We call a pair of sets (X,Y) a fence for the graph
G=(V,E) if XYCV, XNnY =@, and {NX)\}N {NY)\X}= . The fence-
degree fd(z) of a vertex £ EXUY is |N(z)N(XUY)| The X-defect defx(X.Y) of
the fence (X,Y) is the minimum number of edges in a partial subgraph H of the sub-
graph induced on X which has degy(z) = fd(z) (mod 2) Vz€X (a matching on the
vertices of odd fence-degree is minimum if one exists); the Y-defect defy{(X,Y) is
defined similarly. The defect def(X,Y) is then the sum of the X-defect and the
Y-defect.



I'inally, for a fence (X,Y), let €(N.Y) equal the number of cdges connecting ver-
tices of X to vertices of Y, and let ¢(Z) be the number of edges connecting vertices
within some set Z CV. We establish a relation between the number of “crossing”

edges, the number of “inside” edges, and the defect.

Theorem 2: Let (X,Y) be a fence of G. G is a leave only if ¢(X,Y) is even, and
€X,Y) 2 2({X) + ¢(Y) — def(X,Y)).

Proof:

Consider those triangles which contain the edges having one endpoint in X and
the other in Y. Since (X,Y) is a fence, the third node must lie either in X or in Y.
Thus immediately €(X,Y)=0 (mod 2) is required. For every two edges counted by
€(X,Y), one edge inside Y or inside X is accounted for. Removing all of these triangles
leaves the parity of all fence-degrees unchanged modulo 2. Hence the number of edges
inside X which must remain is (at least) def x(X,Y); similarly for Y. O

We should remark that Lemma 1 is an easy consequence of this theorem. In addi-
tion, edges belonging to zero triangles are ruled out; for such an edge, say {z.y}, taking
X ={z} and Y = {y} in the theorem yields a violated inequality. The power of these
inequalities in eliminating candidates is somewhat difficult to test, but these extreme

examples show the generality of the theorem.

8. Concluding Remarks

A number of interesting questions arise from the research here. First, the hill-
climbing method developed suggests that partitioning a graph into triangles is, in prac-
tice, a relatively easy task; however, theoretical results suggest that it is hard. It
would be interesting to establish that the algorithm described succeeds on random
graphs with high probability.

Second, the computational results suggest that the ratio of pseudoleaves to candi-
dates approaches zero as n increases; a proof of this would be quite interesting. Third,
the necessary condition developed in section 5 ensures that certain density require-
ments must be met. It does not appear likely that the condition given there can be
tested in polynomial time, however. Hence, there is reason to suspect that conditions
of this form may in fact be sufficient conditions (although the current conditions are

too weak for this).
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