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ABSTRACT

A necessary and sufficient condition for a family of finite sets to
possess a collection of n compatible systems of distinct representatives
(SDR’s) is given. A decomposition of finite family of sets into partial

SDR’s is also studied.

Let A = (Ai. iel) be a system of subsets of a set E indexed by the
set I. A system of distinct representatives, or shortly SDR, of A is a
1-1 function x:I<E such that x(i)eAi, ieI. The SDR is also denoted
(x(i), ieI) or (x;, ieI).

Since P. Hall [6] showed the criterion for a finite family of sets
to possess a SDR, a lot of generalizations of various kinds have been
proved (see [B8] or for later ones (1),[4],[9] etc.).

Two SDR’s EJ = (xg, ied), j = 1,2, of a family A = (Ai, iel) are

g # xf. for any ieI. In the first part of this

called compatible if x
paper we establish a necessary and sufficient condition for a family of
finite subsets to possess n pairwise compatible SDR’s. This theorem is
a generalization of the transfinite form of Hall’s theorem due to

M. Hall Jr. (5] and at the same time a generalization of a result of

A. S. Asratian concerned with finite femilies ([2].

The second part of the paper deals with decompositions of a finite

family of sets into partial SDR’s.
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1. Preliminaries.

Throughout this paper a family A = (Ai, ieI) will be a family of
finite subsets of an underlying set E. If not stated otherwise, the
index set I is an arbitrary set of indices.

Let Ji' i=1,2,...,n, be a collection of SDR’s of A. Then these
SDR’s are called compatible if any pair of them is compatible. Let xeE,
and J ¢ I. Then (x,4,J) = |{jeJ, xeAj}l. We will often abreviate
(x,4,J) to (x,J), whenever convenient. For J < I, n natural number, we
define

A)|. = £
l In xeE

which is standard notation in transversal theory.

min(n,(x,J)). If n = 1 then |A(J)|1 = |A()| = v A,
jeg v

We will say that a family a = (Ai, ieI) satisfies condition % if
|A(J)|n 2 n|J|, for any finite subset J of I (which we denote J < < I).
If I is also finite, then we replace the condition "for any finite
subset" by "for any subset" of I.

For n = 1, the statement "A family a4 = (Ai. iel) satisfies
condition xn" becomes: "A satisfies Hall's condition ¥, i.e.: For any
Jecl, |A(D)] 2 191

Remark 1. The property to "satisfy condition xn" is hereditary in
the sense that if a family & satisfies condition xn then A satisfies
also condition ¥ for m = 1,2,..,n-1.

Let J < 1. Then a family a* = (AJ. jeJ) is said to be a subfamily

of the family a = (Ai. ieI).

Theorem 1. Let the family 4 (Ai, iel) satisfy condition xn. Let

n > 2 be a natural number and Jk' k =1,2,...,n be subsets of I such

n
n Jk we also have |A(J)|n = n|J|.

that ]A(Jk)ln = n|Jk|. Then for J = r=1



Proof. It is sufficient to prove the statement for n = 2. For

n > 2 it can be obtained by induétion. Since A satisfies condition scn,

]A(J1 n J2) ,n n,J1 n sz + s, where s is a nonnegative integer. For

m=1,2 set

0; (x,J,nJ,) 2 n

n—(x.Jl n Jz); (}(V,J1 n J2) < n and (x,J1 n J2)+(x,Zm) > n.
xeA(Z ) '
(x,Zm); (:nz,J1 n JZ) + (x,Zm) <n

wherez —J2,Z :Jz-J

1 2
As |A(Jm) In =n |Jm| we get

1

tm = n{Zm| -s,m= 1,2,

Then JA(J; U Jo) ], < JAI; A Jy) ], + ¢y + ¢,

n|Jan2| +s +n|.J1 - le -‘s+n|J2 -Jll -s

m|J1 u J2| - 8.
However, by assumption, A satisfies condition xn,- thus s = 0 and the
proof is complete.

Let A be a family of subsets of a set E and let M c E. The
conditions for A to possess an SDR which contains any element of M are
given by several authors (see [8]). (The elements of M are usually
referred to as marginal elements). We will make use of the following
theorem, which is Theorem 6.6.3 in [8]. ‘

Theorem (Hoffman-Kuhn-Rado). Llet a = (Ai' icI) be a family of
finite subsets of E; let M < E; and suppose that no element of M occurs
in infinitely many A’s. Then A possesses an SDR which contains M if and
only if both of the following conditions are satisfied.

i) |JAQ)| 2 |J], forall Jc eI,
ii) |(ieI; Ai NN=#pgH > IN| for all N c < M.
For the reader’s convenience, we finish this section by stating

Rado’s selection principle which will be made use of in what follows.
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Theorem (Rado’s selection principle, (10]). Let a = (Ai. iel) be a
family of finite subsets of a set E. Let Jcc I and let fJ be a choice
function of the subfamily (Aj' jeJ). Then there exists a choice
function f of A with the property: for each J c c I, there is a K with

JcKeeland f|J= fK|J.

2. A_generalization of the transfinite form of Hall’s theorem.

First we will deal with a special case.

Theorem 2. Let a = (Ai. ieI) be a family such that |Ai| = n, iel.
Then A possesses n compatible SDR’s if and only if A satisfies condition
% -

Remark 2. In this case condition nn is obviously equivalent to the
condition that no element of underlying set E occurs in more than n A’s.

Proof. The necessity of condition un is straightforward. To prove
the "if" part we will show that & satisfies the assumptions of
Hoffman-Kuhn-Rado theorem for M = {x;(x,I) = n}. In other words, there
exists a SDR of A which contains all the elements of M.

As it was mentioned above, we have (x,I) ¢ n, so no element of the
underlying set E occurs in jnfinitely many A’s. Directly from Remark 1,
A has property (i). Any element of M occurs in exactly n A’s, moreover,
lAi| = n, ieI, hence |{iel: Ai aN#pH2 [N| for all Nc < M. Thus
there exists Fl = {xi. iel}, Fl containing all the elements of M, Fl is
SDR of a.

Define a family 3 = (Bi' ieI) be letting Bi = Ai - xi. Any xeE
occurs in at most n-1 B’g, moreover [Bi| = n-1, ieI, therefore % also
satisfies conditions required for applying the Hoffman—Kuhn-Rado theorem
for M* = {x,(x,®,I) = n-1}. Thus we cbtain a SDR F2 containing M* which
is compatible with Fl’ By repeatedly using this procedure, we obtain n

compatible SDR’s.



Now we can prove a generalization of the transfinite form of Hall’s
theorem originally stated by M. Hall Jr. (5].

Theorem 3. A family a4 = (Ai, icI) possesses n compatible SDR’s if

and only if A satisfies condition nn.

Proof. Taking into account Theorem 2, all that remains to be shown
is to prove that there exists a family A* = (Ai, iel) such that A{ [ Ai'
|A{[ = n, iel.

Consider a partial order "<" on B, the collection of all families
A* = (Ai, ieI), satisfying nn and having property Ai < Ai' ieI, given in
the following way.

If a* = (Ai, iel), a'* = (Ai', ieI) are two families from ® then a'
€ A'' if and only if A* c A'r, iel.

Let Aj = (Ag. ieI), jeJ, J an ordered set, be a chain in (B, <).

Then the family a = (Zi' ieI) such that Zi = n Ag has the property
JeJ
Ki < Ai' ieI. From the finiteness of all A’s follows that & satisfies

condition ¥ as well, and, consequently, A ¢ %. Therefore, & is a lower

bound of (®,¢) and by Zorn's lemma, (%, <) has a minimal element, say

A - (A‘i‘, iel).

. . : b
Suppose that there is an i, xoeI, such that Aio = {xl,xz,...,xm),
m > n. Moreover, suppose that deleting any x\j from Ai leads to a
o

violation of X i.e. for any j = 1,2,...,m there exists Jj < c I such

that for &, = (Aﬁ, ker), A; = A;, ker), k& io, Ag = A? - xj we get

1
J o o

]A‘j(Jj)|n ¢nl3;|. This implies that |A*(3;)| = nlJ5)h 3=1,2, .00 0m,

and, consequently, that (xj, Jj - (iol) < n. According to Theorem 1,

m
for J = jgl Jj, we get [A(J]n = n|J|. As |A((i°})|n =m > n.l, we must

have J ? (io). From (xj, Jj - {ioi) <n, j =1,2,...,n, follows

directly that (xJ.,J) <n, j =1,2,...,n, and therefore |A(J-(i°})]n =
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nJj-m<n |J—(i0)| = (n-1)|J|. We arrived at a contradiction with
the assumption that .A* satisfies condition :tn. Therefore there exists

X.» 1 ¢ J ¢ m such that the family &' = (A}, ieI), A} = A;, feI - (i},

J
A! = A? - {le satisfies X% . But this contradicts the assumption that

i, i
the family 4¥ is minimal in (%,¢). Thus |A:| = n, ieI, and the proof is
complete.

The following two corollaries are now immediate.

Corollary 1 [§). A family 4 = (A;, ieI) possesses a SDR if and
only if A satisfies condition X, i.e. Hall's condition: vJ c < I: [A(J)]
2 |9

Corollary 2 [2]. Let a = (Ai’ i=1,2,...,m) be a finite family of
'subsets of E. Then A possesses n compatible SDR’s if and only if a
satisfies condition x .

Remark 3. In [2] the author uses a slightly different notation. In
addition, he exhibits an algorithm for constructing, if possible, n
compatible SDR’s of A in O(n.m3 + nz.m.|E|) “elementary” steps. In (3],
the lower bound for the number of different collections of compatible

SDR’s is given.

The proof of Thgoreﬁ 3 is "direct” in that it does not utilize the
fact that for finite families the criterion has already been shown. If
we take this into account, using Rado’s selection principle we can
obtain a shorter proof.

Theorem 4. A family A = (Ai. ieI) possesses n compatible SDR’s if
and only if any finite subfamily does.

Proof. Again, the "only if" part is obvious. To prove
sufficiency, associate with the family 4 a family A* = (Ai, iel) such

that Ai contains exactly all ordered n—tuples of elements from Ai.



Formally, Ai = {(xl,...,xn); xJ.eAi, J=1,2,...,n}, iel. Let JccI
and let Fy = (Y, joJ), k = 1,2,...,n, be n compatible SDR's of (A
ieJ). Define a choice function fJ: J-E" (E" is the set of all ordered
n—tuples of elements from the underlying set E) by fJ(j)

= (xf;. xg,...,xg), JeJ. According to Rado’s selection principle we get
a choice function f: I-.En, such that for any J ¢ ¢ I there exists K, J ¢
K ¢ ¢ I, with the property f[J = fK]J. This implies immediately that if
£3) = (3, K5reen ), £04) = (525, 6% then o # xK, 1 ¢ m e k

< n, and xl; # xf;. k = 1,2,...,n. Therefore, setting Fk = (xl;. iel),

k =1,2,...,n, we get n compatible SDR’s of a.

3. Decomposition of a family of sets into maximal SDR’s.

Theorem 2 and Lemma ) of (2], which is a version of Theorem 2 for
finite families of sets, can be thought of as a decomposition of a
family of sets into SDR’s. Clearly, this is possible only in the case

when the cardinalities of all sets of the family are the same. A family

which contains sets with different cardinalities can be decomposed only
into partial SDR’s. One theorem of this type is Ksnig'’s theorem [7)
which says that the edges of any bipartite graph with maximum degree k
can be decomposed into k matchings. After translation into terms of
transversal theory, it gives a decomposition of a family of sets into
partial SDR’s. (As a matter of fact, the above mentioned Lemma 1 of [2]
is an immediate consequence of Konig's theorem.) However, we do not
know anything about the size of these partial SDR’s. For instance, one
could require these SDR's to have the maximal possible size.

In what follows we will deal with this kind of decomposition, and

we will confine ourselves to finite families.



Let F* = (xi, ieJl), Fe* = (xi‘, ier) be SDR of A* = (Ai, ieJn),
At = (Ai’ ier), respectively, where A*', A'‘' are subfamilies of the
family A. We will say that F* and F**' are compatible if xi # xi‘ for
any ieJl n JZ'

Definition. Let 0 = 2, < a; < a, Coae & a, be natural numbers.

let A = (Ai, ieI) be a family and let I = J1 U J2 U...U Jn be a
decomposition of I such that if ieJk then ‘Ail = 8- Then we will say

that A is decomposable into maximal SDR’s if there exist a; - a; SDR's

i-1
of A. = (A., jeI - U J.),i=1,2,...,n, such that all these a
1 J j:I 1 n
(partial) SDR'’s are pairwise compatible.

To illustrate the difference between the decomposition given by
Kbnig's theorem and the decomposition into maximal SDR's,’ consider the
family & = (Al, AZ' Aa), where Al = A2 = {a,b}, A3 = {a,b,c}. Thgn A
has a decomposition into three partial SDR’s but cannot be decomposed
into maximal SDR’s because it does not possess two compatible SDR’'s (of
length 3).

The following theorem gives a criterion of decomposability into
maximal SDR’'s for a family such that the cardinality of its sets attains
one of two possible values.

Theorem 5. Let a,b be natural numbers, a > b. Let & = (Ai, ieI)
be a family of subsets of a set E such that the cardinality of any Ai is
either a or b. Then &4 is decomposable into maximal SDR’s if and only if
i) A satisfies condition LS
ii) no xeE occurs in more than a A’s.

Proof. For the sake of simplicity, we may take I = {1,2,...,n} and

lAi| =a, i= 1,2,....m.|Ai] =b, i =m+ 1,...,n.



Let A be decomposable into maximal SDR’s, i.e. there exist b
compatible SDR’s of A. By Theorem 3, A satisfies the condition ®-
Moreover, there exist a-b compatible SDR’s of (Ai, i=1,2,...,m) which
are also compatible with SDR’s of 4, i.e. alltogether any element of E
can occur in at most a A’s.

Now we show that i) and ii) are sufficient for & to be decomposable
into maximal SDR’s. From i) and Theorem 3 we get that a possesses b
compatible SDR's, say F, = (xi, i = 1,2,...,n), k = 1,2,...b. We will
construct a-b compatible SDR’s of (Ai, i=1,2,...,m), denoted
Gt = (y:, i=12,...,m), t=1,2,...,a-b, which are compatible with Fk.
The construction will proceed by induction. But y§ = Vi
t = 1,2,...,8b, where (v),...,v,} = A = (<, k= 1,2,...,b).
Suppose now that the elements y§, i=1,2,...,s, s¢<¢m t=1,2,.., a-b,
have already been chosen, and we want to choose elements y:+l,

t=1,2,..., a-b. Lgt ZyreeerZy g be the elements of the set As+1 -

(xl's{ﬂ, k =1,2,...,b). We will make use of the following procedure.
Set y;_’_l =z, If y; ® 2, J=1,2,...,8, then (y;, 3= 1,2,...,841) is

an SDR of (Ai' i=1,2,...,s+1). Let yi =z, for some ¢, 1 ¢ ¢ ¢ s.

Then, from ii), there exists either k, 1 ¢ k ¢ b such that Z # xg,
i=12,...,n,0rt, 2 ¢t ¢ absuch that z, # y;, Jj=12,...8. We
will illustrate this step of the procedure for the case z, # xg, where
1 ¢ k < b; the other case would be treated in the same manner.

In order not to violate the condition that (y}, J=1,2,...5+1) be
an SDR of (Ai’ i=1,2,...,8+l) we will interchange some elements of Fk
and (y;, J =1,...,8+l) which have the same subscript, i.e. the

elements, which belong to the same A;. Define the sequences (§d }s
i

v, 1, i=1,2,...,¢, as follows:
i
= _ .1 _ = _ .k -
xa1 R AL EN yal = x“l' where @ =c
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Suppose (;ca Y, {;a }, i = 1,2,...,p, have already been constructed.
i i

If ;'a # yj., j=1,2,...,8, then we put ¢ = p. If :’—'a = yy then
. P

P
cxp+1 =d and
% _ y1 3 - xk
=y, = .
ap“_1 d ap+1 °p+l
Clearly, after at most ¢ ¢ s steps we must get ‘;';a # y‘lj,

[4
j=1,2,...,8.

Now we interchange the elements of Fk and (y;, j=1,24...,8) with

. = =k . -k _ k
subscripts al,...,ae and get l'-‘k = (xi, i=1,2,...,n), where x; = X

. - - . ss =1
ie (al...,cei, xl; =X, 1e [al,...,ae}. Similarly, we get (yj,

1,2,...,8+1).

J

Because z, # x‘.:, i=1,2,...,n, F, is an SDR of A and (§‘lj,

1 k
j=1,2,...,8+1) is an SDR of (Ai, i=1,2,..0,8+%1).

Obviously, by the above described process of interchange, the
condition of compatibility could not be violated. We can repeat the
above procedure for elements ZyreeorZyy and construct the element
y;'ﬂ, t=2,...,a-b, such that Ht = (yg, J = 1,2,...,5+1) is an SDR of
(Ai’ i=1,2,...,841), t =1,2,...,8-b, Ht are mutually compatible, and
at the same time compatible with Fk' k=1,2,...,b. The proof is

complete.
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