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ABSTRACT

For positive integers d and m, let Pd,m(G) denote the
property that between each pair of vertices of the graph G,
there are m vertex disjoint (except for the endvertices) paths
each of length at most d. Minimal conditions involving various
combinations of the connectivity, minimal degree, edge density,
and size of a graph G to insure that Pg,n(6) is satisfied are
investigated. For example, if a graph G of order n has
connectivity exceeding (n - m)/d + m - 1, then Pd,m(c) is
satisfied. This result is the best possible in that there is a
graph which has connectivity (n - m)/d + m -~ 1 that does not
satisfy Pd,m(G)' Also, if an m-connected graph G of order n
has minimal degree at least Un - m + 2)/Uld + 4)/31) + m - 2,
then G satisfies Pd,m(G)° Examples are given that show that
this minimum degree requirement has the correct order of
magnitude, and cannot be substantially weakened without losing
property Pd,m'
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1. INTRODUCTION

Consider a graph G which will represent a computer network
with each vertex representing a processor in the network and each
edge representing a two-way communication link. To insure that
the network is fault-tolerant with respect to processor failures,
it is necessary that the number of vertex disjoint paths between
each pair of vertices exceed the number of possible failures. In
particular, if there is a possibility of £ processor failures,
then it is crucial that there be at least £ + 1 independent
paths between each pair of vertices to insure that at least one
message arrives. Also, processors could have "byzantine®
failures: instead of failing to forward the message they change
the message. To be able to insure that the majority message
received was the original message transmitted in a network with
f such failures, the number of vertex disjoint paths between
pairs of vertices must be greater than twice the number of
possible failures (i.e. 2f + 1). Connectivity is clearly the
crucial graph concept in both cases. However, the length of time
for the messages to arrive is also important, so it is desirable
that the vertex disjoint paths be short. This transalates into
the fact that between each pair of the vertices of the graph G
there is a specified number of paths, each with a bounded number

of vertices.

For positive integers 4 and m, let Pd,m(c) denote the
property that between each pair of vertices of the graph G,

there are at least m vertex disjoint paths each of length at
most d. The graph G representing a computer network prone to

processor failures should satisfy Pd'm(G) for appropriate

values of d and m. This is one motiviation for studying

property Pd,m'



Menger's classical result [8) on connectivity solves the
problem of the existence of a system of such paths, if there is
no concern for the length of the paths in the system. Although
Menger's theorem gives no information about the length of the
pPaths, the "length problem" has been studied. For example, Bond
and Peyrat studied the effect of adding or deleting edges on the
diameter of a network in [2], and Chung and Garey considered
diameter bounds for altered graphs in ([3]. Menger type results
for paths of bounded length were proved by Lovadsz, Neumann-Lara,
and Plummer in (7] and by Pyber and Tuza in [11), and Mengerian
theorems for long paths were given by Montejanao and Neumann-Lara
in [9) and by Hager in [6]. In [10] property Pq,m and its
application to computer networks and distributed processing was

introduced.

We will investigate conditions on various graphical
parameters of a graph G that are sufficient to insure that
Pd,m(c) is satisfied. Various combinations of size,
connectivity, minimum degree, and density properties that imply
Pd,m(G) will be considered. In particular, the following four

results will be proved.

The first result does not have any connectivity assumptions,
and thus, has the extremely strong size and degree conditions
needed to insure that a graph is m-connected. The proof is

straightforward.
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THEOREN 15 Let d 22 and m be positive integers. Let G
be a graph of order n, for which at least one the following
conditions hold:

(1) G has at least (“51) + m edges.

(2) G has minimum degree Un + m)/21.

Then G satisfies Pd,m' Further, each condition is sharp.

sufficiently large connectivity will guarantee that Pd,m(G)
is satisfied, and the following result gives the minimum such

connectivity that will suffice.

THEOREW 2: Let d and m be positive integers, and let G

be a graph of order n. If G has connectivity exceeding

(n -m)/d + m -1, then Pd,m(G) is satisfied. This result is
the best possible in that there is a graph which has connectivity
(n - m)/d + m - 1 that does not satisfy Pd,m(G)'

If the graph is known to be mn-connected, then the degree
condition needed to insure Pd'm(c) is greatly reduced, as the

following result indicates.

THEOREN 3¢ Let m and d be positive integers, and let G
be an m-connected graph of order n. If G has minimum degree

exceeding Ln - m + 2)/1l(d + 4)/3J)J + m - 2, then G satisfies

Pd'n(G) .

If a graph G has connectivity at least m, then a density
condition on the edges of G can insure that Pd,n is
satisfied. With this in mind, for a graph G and any positive
integer s, let den(G,s) be the minimum number of edges in any
induced subgraph of G on s vertices. The following result
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gives a sufficient restriction on den(G,s) to insure pd.m'

THEOREM 4: let m and 4 22 be positive integers, and let

G be a k-connected graph (k 2 m) of order n. If there
exists some s (s ¢ (k-m+l) ld/2J), such that G satisfies the
inequality

den(G,s) 2 (3/4)s s/ /211,

then G has property Pd,m(c)'

The density condition in Theorem 4 is not the best
possible, but an example will be given in the next section to

indicate that it has the correct order of magnitude.

Notation and standard definitions in the paper will
generally follow that found in [1]. Any special notation will

be described as needed.

2. EXAMPLES

Graphs with the same connectivity, and even the same minimal
degree, can have vastly different Menger Eype path systems.
Consider the generalized wheel graph "m-z,n-m+2 = Kp-2 + Cnomtar
which has order n, and connectivity and minimal degree m. It

is easy to see that this graph does not satisfy P, since

n-m,n’
any m internally vertex disjoint paths between a pa;r of
adjacent vertices on the rim of the wheel will have one path that
contains all of the vertices of the rim of the wheel. On the
other hand, the mn-cube Qm has order n = zm, connectivity and
minimal degree m, and it satisfies pm+1,m' This last
assertion is easy to verify by an induction argument on the index

m of the m-cube.
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vWheel type" graphs give important information on the
extremal properties related to Pd,m' Consider the wheel graph
Wy
By replacing each vertex of W, with a complete graph, and

= Ky + Cp that has r spokes and r vertices on the rim.

making each vertex of the corresponding complete graph adjacent
to the vertices in the neighborhood of the replaced vertex, a new
graph is obtained. A finite number of applications of this
process gives a family of generalized wheels., oOrder the
vertices of W, starting with the center and followed by the
vertices on the rim in a natural order around the cycle. For
positive integers p(i) (0¢ i¢r), there is a generalized
wheel, which we will denote by W(p(0) ,P(1),..-,P(X)), obtained
from W, by replacing the ith  vertex with a complete graph
Kp(i)‘ This graph has p(0) + ... + p(r) vertices. Note that
if each p(i) = 1, the graph is isomorphic to W,..

In many of the cases of interest to us, most of the p(i)'s
in the generalized wheel will be the same, so we will adopt the
more compact notation of representing the sequence
(P(3)s.--,p(X)) with p =p(J) = ... = p(k) by (k-j+l:ip).
Thus, W(l,r:;1) = W, and W(n-2,n-m+2;1) = Ky_.s + Cpny2v which
is the generalized wheel considered earlier in this section. For
the following families of generalized wheels, it will be assumed

that 4 22 and m are fixed positive integers.

Select any integer n such that n - m is divisible by 4,

and consider the generalized wheel
W(n-2,d;(n-m)/d4,1,1).

Iet x and y dencte the two vertices on the rim of the
generalized wheel that are associated with the complete graphs

that contain a single vertex. This graph has order n,



connectivity m - 1+ (n-m)/d 2m, and m - 1 internally
disjoint paths of length at most 2 between x and Y.
However, any path from x to y not using any of the m - 2
vertices in fhe center of the generalized wheel or the edge xy
has length at least 4 + 1..ATherefore, W(m-z,d;(n-m)/d,l,l)
doé; not satiéfy Pd,m' We will verify in Theorem 2 that any
graph with c¢onnectivity exceeding (n - m)/d + m - 1 does
satisfy Pd;m'

Select any positive integer p, let n= (d + 4)p + m - 4,

and consider the graph
W(m-2,3p-2,4-2;p,3p-2,1,1).

Again, let x and y be the vertices on the rim of the
generalized wheel associated with the complete graphs with a
single vertex. This graph has order n, minimum degree
3Jp+tm=-3=3(n-nm+ 4)/(d + 4) +m -3, and connectivity
p+n-1 2n. Just as before, any path between x and y that
does not contain the edge xy or any of the m - 2 vertices in
the center of the graph has iength at least d + 1. Thus, this
graph does not éatisfy Pd,m' but has minimum degree of the same
order of magnitude as the degree condition in the hypothesis of

Theorem 3.

Let k 2m be a fixed positive integer, and consider the
following generalized wheel of order n which we will denote by

H:

4 = W(m-2,d-1;k-n+l,n-n-(d-1) (k-n+1),1,1).
For n sufficiently large, this graph has connectivity k but
does not satisfy Pa,m for the same reasons described in the

previous examples. Also, this graph is edgé maximal in that the
addition of any edge will insure that Pa,m is satisfied.
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Denote by #, the graph obtained from the graph

W(n-1,d4-1;k-n+l1,n-m-(d-1) (k-m+1)-1,1,1)

by deleting the edge between x and y, where x and y are
the vertices on the rim associated with the complete graphs on a
single one vertex. The graph X, also has order n, and

does not satisfy Pd,n' but the addition of any edge will imply
Pd,m' .

Each of the graphs H and H#, are very dense
graphs. One way to measure this density is to determine the
number of edges contained in induced subgraphs. Recall, for each
positive integer s and graph G, den(G,s) is the minimum
number of edges in any induced subgraph of G on s vertices.
Thus, den(¥#;,s) is defined for i=1, 2. It is easy to
verify that den(H,,s) 2den(H,s) for s {n-n+1,
and the reverse inequality is true for the remaining values of

s. Let
den(n,k,s) = min{den(#4,,s), den(H),s)).

Theorem 4 gives some indication that there is a positive answer
to the question: For a fixed s, must any k-connected graph G
of order n with den(G,s) > den(n,k,s) satisfy Pd,m'
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3. RESULTS

There are obvious conditions on the size and minimum degree
of a graph G that insure that Pd,m(c) "holds. For positive
integers r < s, consider the graph Ky-y + (K VKg), which
has connectivity m - 1 and mininum degree m + r - 2. This
graph, which we will denote by G(r,s), clearly does not satisfy
Pd,m' because of the connectivity condition. The graph
G(1,n-m) has (ngl) +m-1 edges. We will verify in Theorem 1
that this is the maximum number of edges in a graph of order n
that does not satisfy pd,n' The graph
G( Un-m+l) /2], [(n-m+1)/27) has minimal degree Un-m+1l)/2J. It
will be shown in Theorem 1 that this is the largest possible

minimum degree in a graph not satisfying Pd,n‘

THEOREN 13 Jet d 22 and m be positive integers. Let G
be a graph of order n, for which at least one of the following

conditions hold:

(1) G has at least (“51) + m edges.
(2) G has minimum degree Un + m)/2J.

Then G satisfies Pd,n' Further, each condition is sharp.

PROOF: Consider vertices x and y of G, and let N be
those vertices of G which are adjacent to both x and y. If

N has at least m vertices or just m - 1 vertices when x
and y are adjacent, then Py is satisfied. In fact, all of

the paths have length at most 2. Suppose this is not true.

This implies G has at least n - m edges, and either x or
y has degree less than Un + m)/2J], a contradiction. The
examples described prior to the statement. of Theorem 1 imply the
sharpness of the conditions, and complets the proof. 8
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Both of the conditions of Theorem 1 are so strong that
there are m paths of length either 1 or 2 between each péir
of vertices. Thus, the parameter d does not effect the size or

minimun degree needed to imply Pq,m*

The generalized wheel W(m-2,d;(n-m)/d,1,1) discussed in
the previous section shows that in a graph G of order n, the
connectivity of G must exceed (n - m)/d +m -1 for pd,m to

hold. Theorem 2 verifies that this is also sufficient.

THEOREHM 2: Let m and d be positive integers, and let G

be a graph of order n. If G has connectivity exceeding

(n -m)/d +m -1, then Pd,m(G) is satisfied. This result is
the best possible in that there is a graph which has connectivity
(n - m)/d + m - 1 that does not satisfy Pd,m(G)'

PROOFs+ The necessity of the condition has already been
exhibited. The sufficiency can be verified by a counting
argument. Let x and y be vertices of G. Since G is
k-connected for some k > (n - m)/d + m - 1, there are Kk
internally vertex disjoint paths, say Py, ., Py, between x
and y. We can assume the paths are ordered by their length. 1If
Pd,u is not satisfied, then at most m - 1 of these paths have
length at most d, so0 each P; has length exceeding d for

i 2m. Also, the total number of internal vertices in the m - 1
shortest paths is at least m - 2, and there will beAequality
only when there is one path of length 1 and m - 2 paths of
length 2. Therefore, by counting the internal vertices in the

k paths along with x and y, we have the number of vertices
in G is at least

di(k - m+ 1) + (m-2) +2 >d(n -mn)/&d +m=n,
Since this is impossible, the proof of Theorem 2 is completeQ B
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The minimum degree in a graph G required to insure
property Pd'n(G) was considered in Theorem 1. Theorem 3 shows
that the minimum degree needed is less if G is m-connected.
However, one of the generalized wheel examples shows that the

minimum degree must exceed
(3(n - m + 4)/(d + 4)) + m - 3.

Theorem 3 indicates that this is asymptotically the correct value.

THEOREN 35 Let m and d be positive integers, and let G
be an m-connected graph of order n. If G has minimum degree

exceeding Un -m + 2)/Ud + 4)/3J) +m - 2, then G satisfies
Pq,m(G) -

PROOFs We can assume that d 2 2, since the result is

trivial for d = 1. Let G be a graph of order n that does
not satisfy Py, nm(G). Select vertices x and y for which
there do not exists m vertex disjoint paths, each of length at
most d, between the two vertices. Since G is m-connected,
there are m vertex disjoint paths between x and Y. Select

m such paths with the sum of the lengths a minimum. Denote the
paths by Py, Py, «o., Py, and let ry £rp ... ¢ r, be the
respective lengths of the paths. By assumption, rpm > d. Let H
be the subgraph induced by the vertices on these m paths. Then
r=ry + ... +rp-m+ 2 is the number of vertices in the

subgraph H.

Assume P, = (x = Vor Vir cees vrm = y). Since rj >d, we
can select the set X = {(Vor V30 «--y vi(t-l)’ with
t = l(d+4)/3). We will determine an upper bound on the sum of
the degrees of the vertices in X.
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Any vertex not in H can be adjacent to at most a single
vertex of X, for otherwise the path P; could be shortened.
So, the sum of the degrees of the vertices of x relative to

G~-H is atmost n - r.

The minimality of the 1eng£h of the path P; implies that
there are no chords along the path. Therefore each vertex of X
is adjacent to at most 2 vertices of P,, and the sum of the
degrees of the vertices in X relative to P, is at most
2t Srp +3 - t. In fact, unless x is adjacent to vy, the

right hand side of the inequality can be replaced by rp, +1 - t.

Finally, if v,y is adjacent to an internal vertex u of a
path Py for k < m, then Vay for j > i cannot be adjacent
to any vertex of P, that precedes u on the path (considered
as starting at x and ending at y). Otherwise the paths P
and Py could be replaced by two paths of shorter length.
Therefore, each interior vertex of P, is adjacent to at most
one vertex of X except for possibly t - 1 vertices (counting
multiplicities). Thus, the sum of the degrees of X relative to
the interior vertices of P, is at most

rg -1+ (t-1) =x +t=-2.

Note that if Py contains just the edge xy, then there
are no edges between X and the interior vertices of Py, which
yields a bound strictly less than ry + t - 2. By taking this
fact into account along with the effect'the edge xy has on the
number of edges between X and Pp, we have that the sum of the

degrees of the vertices in X is bounded above by

(n-r) + (rp+1-t) + EP-] (rg+t-2) + 1 <n-m+ 2 + (m - 2)t.



Therefore, at least one of the t vertices in X has degree at
most Ln - m + 2)/t]l + m - 2. This gives a contradiction which

completes the proof of Theorem 3. &

Before proving Theorem 4, we need to make some additional
observations. It is not difficult to calculgte den( # ,s)
for a specific s ¢ (k -m+ 1) {4 + 1)/2). One critical
observation needs to be made. Assume that S is a set of s
vertices of H wvhich induces a minimum number of edges of
H). We can certainly assume that S is a subset of the
vertices in the rim of the generalized wheel.

Let A, B, ¢ and D be the vertices of § in four
consecutive sets of vertices along the rim of 4, and let
a, b, ¢ and d be the orders of the sets respectively. The

number of edges in the graph induced by these vertices is
=3+ &+ + () +ab+bc+ecd
1l 2 2 2 2 *

Considering the case when a 2d and b 21, and moving one
vertex from B to C, a set S' is obtained with s vertices
that induces a subgraph with the following number of edges:

= (3 + P31 + (534 + (D + ad-1) + (b-1)(c+1) + (c+l)d.

Since Ny = Nz =a - d, the minimum is also attained with s°.
In fact, there is no loss of generality in assuming that b = 0.
Repeated application of this observation and elementary
properties of binomial coefficients gives that the minimum will
occur for a set S in which the number of vertices in
alternating sets on the rim is 0, and the number in the
remaining sets differ by at most 1 (with the exception of the
two sets of rim vertices contained in the complete graphs with a

single vertex).
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The previous observations reduce the calculation of
den(‘#;,s) -to the détermination of the number of edges in
4d + 1)/2J copies of complete graphs each with either
s/ (a + 1)72J] or [/ U4 + 1)/211 vertices. It should be

noted that some minor adjustments must be made in this
calculation to account for the fact that a minimum set S

can contain vertices in the two singleton vertex sets on

the rim. However, the order of magnitude of dén(k&,s) is

s Is/ (d+1)/21])/2. Therefore, the density of H implies that
the dﬁnaity condition in Theorem 4 has the correct order of
magnitude, and the constant factor cannot be reduced by more than

a factor of 2/3.

We need the following technical lemma to prove Theoren 4.
The essential observation of the proof of Lemma 5 was used in
the previous proof. However, since the fact will be applied
repeatedly in the proof of Theorem 4, it is stated separately

for easy reference.

LEKHA S pet P and Q be internally vertex disjoint paths
from x to y in a graph G, such that their sum of their
lengths is a minimum. If A and B are subsets of vertices of
P and Q respectively, such that A does not contain any pair
of consecutive vertices on P, then the number of edges betweeen

A and B is atmost [A|l+ [B]| - 1.

PROOFs Let A = (aj, Ay, «cey ap) and B = (bj, by, ..., bq)
with the vertices listed in the order they appear on the path.
If a, is adjacent to bg, then aj is not adjacent to bj
for any i >r and j < s; otherwise, there would be a pair of
paths from x to y with the sum of their lengths less than
that of P and Q. Therefore, each vertex of B will be

adjacent to at most 1 vertex of A, except for possibly
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Al = 1 (counting multiplicities) vertices. This proves

Lemma 5. #

THEOREM 4t Let m and d 22 be positive integers, and let
G be a k-connected graph (k 2m) of o'x:der n. If there
exists some s (s < (k-n+l) ld/2J) such that G satisfies the
inequality

den(G,s) 2 (3/4)s [/ la/2.11,

then G has property Pd’m(G).

PROOF: Assume G- does not satisfy Pd,m(c) , and let x and y
be a pair of vertices for which the appropriate paths do not
exist. Select k internally vertex disjoint paths, say

Pys Py, ¢oey, P, from x to y so that the sum of the lengths
of the paths is a minimum. Assume that the lengths of the paths
are py £pp ... Spyp respectively. By assumption we have

pi>d for all i 2m.

For each i 2m, let A; be the first 2ld/2] internal
vertices on P;, and A7 and Af the W/2J) odd and even
indexed vertices of A; respectively. Let r = [/ ld/217. We
will select a set S of s verticeé in G, by selécting either
A or A} foreach i (m i ¢ m+f-1). Actually, only a
proper subset of AJ_,,; ©Or Aj_yy; will be selected unless s
is divisible by las/2J. An upper bound on the number of edges
in the subgraph spanned by S will be determined.

The selection of S will be done by induction on i
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(m £€i ¢ m+r-1), and in such a way as to minimize the number of
edges in the induced subgraph. From Lemma 5 there are less than
3ld/2] edges between Ag and Ap.,, So the number of edges
between AS and either A2,y or a%,,, say AQ,,, isless
than 3 ld/2J/2. Assume the appropriate subset of Ay, which we
can say with no loss of generality is Ag, has been selected for
all i < j. Repeated application of Lemma 5 implies that the
number of edges between A4 and the union of the Ag for i< 3j
is less than 3(j - m) K/2J). Hence, for an appropriate selection
of a subset of Aj, say hg, the number of edges between this
subset and the previously chosen subsets is at most

(3/2)(j - m) d/21. Therefore, by induction, S can be chosen
such that the number of edges in the induced subgraph is less
than

(3/2) d/2)(1 + 2 + ... + (x-1)) < (3/4)s [s/ d/2.11.

This contradiction completes the proof of Theorem 4. &

Note that for s ¢ l/2J, the inequality in the statement
of Theorem 4 is den(G,s) > 0. Theorem 4 for this special case
comes from the trivial observation that any set of vertices that
are not consecutive on a minimal length path cannot be adjacent.
If the path has length greater than d, there exist Ild/2J

such vertices.



4. PROBLEMS

There are several natural and interesting questions related
to the results presented that have not been answered. The
density function in Theorem 4 has the same order of magnitude as
the density function den(n,k,s) defined from the generalized
wheel graphs # and #,. Can one show for a fixed s that
any k-connected graph G of order n such that each induced
subgraph on s vertices has more than den(n,k,s) edges

satisfies pd,m(c)?

Minimal connectivity and degree conditions that separately
imply ?d,m have been investigated. Also considered was the
minimal degree condition sufficient for Pd,n assuming the
graph was m-connected. However, it is natural to expect that
with higher connectivity, the degree condition needed to imply
Pd,m would be less. This relationship between these two

parameters and what is needed to give pd,m should be studied.

Recently, classical results on paths and cycles in graphs
that were based on degree conditions, such as minimal degree and
the sum of the degrees of nonadjacent vertices, have had
neighborhood condition analogs (see [4]) and [5]). One such
neighborhood condition involves the minimum number of vertices in
the union of the neighborhoods of each pair of nonadjacent
vertices of the graph. Recall, that in the generalized wheel

graph W(m-2,n-m+2;1) the order of the union of a nonadjacent
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pair of vertices can be as small as m + 1, while in the m-cube
it is at least 2m - 2. However, the minimum degree and the
ninimum sum of the degrees of nonadjacent vertices is the same
for the two graphs. This indicates that the relationship between
naeighborhood conditions and property ,Pd,; should be .
investigated, because neughborhood conditions might yield sharper

results than degree conditions.

Also, one need not'consider only nonadjacent pairs of
vertices, but adjacent pairs or all pairs of vertices can be
considered in neighborhood conditions implying Pyq,m In
addition, one need not restrict consideration to just the union
of the neighborhoods of pairs of vertices. For any fixed integer
t, the number of vertices in the union of the neighborhoods of
any set of t (nonadjacent) vertices can be considered in the
neighborhocod condition. For all of these possibilities of a
neighborhood condition, the generalized wheel and the cube have
significantly different properties} so many interesting problens

remain.
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