Validity of Lander's Conjecture for $\lambda = 3$ and $k \le 500^{\circ}$

ÞΥ

K. T. Arasu

ABSTRACT

Lander Conjectured: If D is a (v, k, λ) difference set in an abelian group G with a cyclic sylow p-subgroup, then p does not divide (v, n), where n = k- λ .

In a previous paper, the above conjecture was verified for $\lambda=3$ and k \leq 500, except for k = 228, 282 and 444. These three exceptional values are dealt with in this note, thereby verifying Lander's conjecture completely for $\lambda=3$ and k \leq 500.

1. Introduction

Let G be an abelian group of order v. A (v, k, λ) difference set in G is a subset D of G of size k such that for each element $g \ne 1$ in G, there exist exactly λ ordered pairs (x, y) ϵ D x D, x \neq y, satisfying $g = xy^{-1}$.

An easy counting shows that

$$k(k-1) = \lambda (v-1) \tag{1}$$

we refer the reader to [3] amd [6] for an excellent treatment on the theory of difference sets and their multipliers.

* Research supported by the Research Incentive Grant #241259 from Wright
State University

<u>Lander's conjecture</u> [6] If there exists a (v, k, λ) difference set in an abelian group G whose sylow p-subgroup is cyclic then p does not divide (v, n), where $n = k-\lambda$.

For $\lambda=1$, the above conjecture is clearly true. For $\lambda=2$, Dickey and Hughes [4] have checked this for $k \le 5000$. In fact, they showed more, viz, if there exists an abelian (v, k, 2) difference set, then either $k \le 9$ or $k \ge 5001$.

In [1], the author studied the above conjecture for $\lambda=3$ and verified it for k < 500, except when k = 228, 282 and 444. This paper deals with those three exceptional cases.

2. k = 228 Case

We apply the following theorem.

Theorem 1 (Jungnickel and Pott [5]) Let D be a (v, k, λ) difference set in the group G, where v > k. Furthermore, let $u \ne 1$ be a divisor of v, let U be a normal subgroup of index u of G, put H = G/U and assume that H is abelian and has exponent u^* . Finally, let p be a prime not dividing u^* and assume tpf = -1 (mod u^*) for some numerical G/U- multiplier t of D and a suitable nonnegative integer f. Then the following hold:

- i) p does not divide the square free part of n, so p^{2j} in for some nonnegative integer j,
 - ii) p^j ≤ v/u
 - iii) if u > k, then $p^{2j} | v \lambda$ (or equivalently $p^{j} | k \rangle$.

Let D be a hypothetical (v, 228, 3) abelian difference set.

When k=228 and $\lambda=3$, from (1), we get $v=3^571$. Let $u=3^5$; t=1, p=5 and U be a subgroup of G of order 71. Theorem 1 applies, since $5^{81}\equiv -1$ (mod 243). So, by (iii) of theorem 1, $p \mid k$ i.e. $5 \mid 228$, a contradiction. Hence D does not exist.

k = 282 Case

Let D be a putarive (v. 282. 3) difference set in an abelian group G. Then $v=3^2\cdot 5\cdot 587$. Assume that the sylow 3-subgroup of G is cyclic. Then $G\simeq Z_9\times Z_5\times Z_{587}$. By Hall's multiplier theorem, 31 is a multiplier of D. Assume without loss of generality that D is fixed by the multiplier 31. Orbits of Z_9 under $(x\to 31x)$ have sizes 3, 3, 1, 1, 1, of Z_5 have sizes 1, 1, 1, 1 and of Z_{587} have sizes 1, 293, 293. Hence orbits of G under $(x\to 31x)$ have sizes 2×293 or 3×293 . Small size orbits are not enough in number to form a subset of size 282. Hence D cannot exist.

4. k = 444 case

Let D be a hypothetical (v, 444, 3) difference set in an abelian group G. Then $v = 3^2 \cdot 5 \cdot 31.47$. By Hall's theorem, 7 is a multiplier of D. Let H be a subgroup of G of index 5. Let $G/H = \{H_0, H_1, H_2, H_3, H_4\}$ and $s_i = |D\cap H_i|$ for i = 0, 1, 2, 3, 4. It is well-known (for instance, see [2] or [6]).

Since 7 is a G/H multiplier, it follows that (assuming D is fixed by the multiplier 7) $s_1 = s_2 = s_3 = s_4 = b(say)$. Let $s_0 = a$. Then (2) becomes

$$a+ 4b = 444$$

$$a + 4b^2 = 39780$$
(3)

Solving for a and b, we obtain a = 72 and b = 93. Orbit sizes under $(x \rightarrow 7x)$ of Z_9 , Z_5 , Z_{31} and Z_{47} respectively are

3, 3, 1, 1, 1

4, 1

15, 15, 1

23, 23, 1

a = 72 implies $|D \cap H_0| = 72$, so D picks up

11, 4, 71 x 10! x 10! x S

or $\{2, 5, 8\} \times \{0\} \times \{0\} \times T$, where S and T are among the size 23 orbits of Z_{AT} .

In addition D also picks up a size 3 orbit from D \cap H, which must be of the form

11, 4, 7) x [0] x [0] x [0]

or | 12, 5, 81 x | 01 x | 01 x | 101

The above orbits yield (3, 0, 0, 0) as a difference of elements of D more than 3 times, contradicting the fact $\lambda = 3$. Hence D does not exist.

References

- 1. Arasu, K.T., "On Lander's conjecture for the case $\lambda = 3$ ", J. Comb. Math. and Comb. Computing, 1(1987), 5-11.
- Arasu, K.T. and Ray-Chaudhuri, D.K., "Multiplier theorem for a difference list", Ars Comb. 22(1986), 119-137.
- Beth, T., Jungnickel, D. and Lenz, H., Design Theory, Bibliographisches
 Institut, Hannheim and Cambridge University Press, Cambridge (1985)
- Hughes, D.R. "On biplanes and semibiplanes", In Combinatorial Mathematics, eds. Holton and Seberry, Lecture Notes in Mathematics, 686, (1978), pp 55-58, New York: Springer-Verlag.
- 5. Jungnickel, D. and Pott, A., "Two results on difference sets", submitted.
- Lander, E.S., Symmetric designs: An algebraic approach, London Math Soc.
 Lecture note Series 74 (1983), Cambridge University Press, Cambridge.

Department of Mathematics & Statistics

Wright State University

Dayton, Ohio 45435