®
Validity of Lander's Conjecture for A = 3 and k ¢ 500

by

K. T. Arasu
ABSTRACT

Lander Conjectured: If D is a (v, k, A) difference set in an abelian
group G with a cyclic sylow p-subgroup, then p does not divide (v, n), where n
= k-aA.

In a previous paper, the above conjecture was verified for A = 3 and k ¢
500, except for k = 228, 282 and 444. These three exceptional values are
dealt with in this note, thereby verifying Lander's conjecture completely for

A=3and k ¢ 500.

1. Introduction

Let G be an abelian group of order v. A (v, k, A; difference set in G is
a subset D of G of size k such that for each element g # 1 in G, there exist
exactly A ordered pairs (x, y) ¢ D x D, x # y, satisfying g = xy_ .
An easy counting shows that
k{k-1) = & (v-1) (1)

we refer the reader to [3) amd (6) for an excellent treatment on the theory of

difference sets and their multipliers.
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Lander's conjecture [6] If there exists a (v, k, A) difference set in an

abeiian group G whose sylow p-subgroup is cyclic then p does not divide (v,
n), where n = k-a.

For A = i, the above conjecture is clearly true. For A = 2, Dickey and
Hughes [4] have checked this for k ¢ 5000. In fact, they showed more, viz, if
there exists an abelian (v, k, 2) difference set, then either k ¢ 9 or k )
5001 .

Iu (1), the author studied the above conjecture for A = ) and verified it

for kK ¢ 500, exccnt when k = 228, 282 and 444. This paper deals with those

three exceptional cases.

2. k = 228 Case

Ve apply the following theorem.

Theorem 1 (Jungnickel and Pott [5)) Let D be a (v, k, A) difference set in

the group G, where v > k. Furthermore, let u # 1 be a divisor of v, let U be

a normal subgroup of index u of G, put H = G/U and assume that H is abelian

and has exponent u.. Finally, lei p be a prime not dividing u' and assume tpf

2 -1 (mod u') for some numerical G/U- multiplier t of D and a suitable
nonnegative integer f. Then the following hold:

i) p does not divide the square - free part of n, so ijnn for sone
nonnegative integer j, '

i) pd ¢ viu

iii) if u > k, then szIVA (or equivalently pJ|x).

Let D be a hypothetical (v, 228, 3) abelian difference set.

Vhen k = 228 and A = 3, fron (1}, we get v = 3511. Let u = 35; t=1,p

= 5 and U be a subgroup of G of order 71. Theorem 1 applies, since 581 g -1
(mod 243). So, by (iii) of theorem 1, p|k i.e. 5|228, a contradiction. Hence

D does not exist.
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1. k = 282 Case
Let D be a putative (v, 282, 3) difference set in an abelian group G.
Then v = 32-5~587. Assume that the sylow 3-subgroup of G is cyclic. Then G =

Z,x 2, x2 By Hall's multiplier theorem, 31 is a multiplier of D.

9 5 587°
Assume without loss of generality that D is fixed by the multiplier 31.
orhts of Z9 under (x .. 31x) have sizes 3, 3, 1, 1, 1, of zs have sizes 1, 1,

1, 1, 1 and of 2 have sizes 1, 293, 293. Hence orbits of G under (x - 31x)

587
have sizes > 29) or ¢ 3. Small size orbits are not enough in number to form a

subset of size 282. Hence D cannot exist.
4. k = 444 case

Let D be a hypothetical (v, 444, 3) difference set in an abelian group G.
Then v = 32-5~31.47. By Hall's theorem, 7 is a multiplier of D. Let H be a
subgroup of G of index 5. Let G/H = {Bo, Hl. 82. 33, 54) and s; = IDnHil for

i=0,1, 2, 3, 4. It is well-known {for instance, see [2) or [6]).

4

i k = 444 and = 55
i=0 i=0
Since 7 is a G/H multiplier, it follows that (assuming D is fixed by the

22 g-atA[H| = 39780 (2)

Mo
L
1]

multiplier 7) s, = s, =5, = S, = b(say). Let Sy = a. Then (2) becomes
at 4b = 444

2 (3)
a + 4b° = 39780

Solving for a and b, we obtain a = 72 and b = 93. Orbit sizes under (x - 7x)

of Z and 247 respectively are

9r 250 233
3,3,1, 1,1
41

i3, 15, 1

23, 23, 1
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a =

orbits of Z

form

than

12 aweplies D N H0| = 72, so D picks up

11, 3, 7t » 10! x 101 x S
or 12, 5, 81 x 10} x 10} x T, where S and T are among the size 23

47°
In addition D also picks up a size 3 orbit from DnH, which must be of the

11, 4, 71 x (0l x (0] x (0O}
or 12, 5, 81 x {0} x {0} x (0O}
The above orbits yield (3, 0, 0, 0) as a difference of elements of D more

3 times, contradicting the fact A = 3. Hence D does not exist.
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