Generalized Hilbert Fields, Quaternion Algebra
Structure and Block Design Counting

Joseph L. Yucas
In (Kal), Kaplansky introduced a claas of fieldsAvhich he
called generaiized Hilbert fields. These are the fields vhich
have'(up to isomorphism) a unique non-split quaternion algebra.
Exenpléé of such ere real closed fields and the p-adic fields.
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For a field F ve let G = F/F° and for x &« G ve set

Q(x) = {[E%Z]|y « G}. Kaplansky shoved that F is a generalized

Hilbert field if and only if |Q(x)] < 2 for every x € G.

Generalized Hilbert fieldas with |G| ¢ ® patisfying the
non-degeneracy condition, [@(x)| = 1 » x = 1 in G, have come to
play an important role in the algebraic theory of quadratic
forms. . It has ben conjectured (the elementary type conjecture)
that the Witt rings of.generalized Hilbert fields are fundamental
building blockas for the generation of all finitely generated Witt
rings, a role somevhat analégoue to that of the cyclic groups in
the theory of finitely generated Abelian groupa.

Given two fielde F, and F

1 2
62 and quaternion algebra sets 01 and 02 respectively, wve say

vith_square class groups Gl and

that F, and F, have the same quaternion algebra structure if

1 2
there is a group isomorphism a:G1 - 62 satiafying for

a,b,c,d € G '[a.b ~ [c,d s [a(a),a(b)] ~ [a(c),a(d)]. It
1 F1 Fl Fz . Fz
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turns out (see [MY, Corollary 3.6]) that Fl and F2 have the same
quaternion algebra structure if and only if they have isomorphic
Witt rings thus no mention of Witt rings or quadratic form theory
is needed here.

The purpose of this short survey is to report on the recent
vork concerning the elementary type conjecture in this quaternion
algebra setting. Most of thie work has been concentrating on (1)
the proof of the conjecture in particular cases, (i) recognizing
quaternion algebra structures wvhich can be decomposed and (1iii)
recognizing basic building blocke such as the quaternion algebra
structuree arising from generalized Hilbert fields.

If we let B be the subgroup of the Brauer group of F
generated by the quaternion algebras then it is not difficult to
see, [MY, Section 1), that the mapping q:G x G -+ B via
q(a,b) = E?E] is a symmetric bilinear mapping with G and B
groups of exponentbtvo satisfying

(1) q(a, -a) = 1 Va€eao(G

(11) q(a,b) = ql(c,d) =2 3 x € G with q(a,b) = qta,x) and
qlc,d) = qfc, x).

If one begine vwith arbitrary groups G and B of exponent two, a

distinquished element ; 1 € G and & bilinear symmetric mapping

q:G x G —+ B satisfying (1) and (ii)-then it is unknown 1if there
18 a field F with G = F/F%, B the subgroup generated by the

quaternion algebras over F and q the quaternion algebrh mapping.



There are two important vays to construct new quaternion
algebra etructuree from old. First, {if Fl and F2 are fields with
quaternion algebra structures given by qlzG1 X 61’4 B1 and
qzeﬁz X 82 -» 82 respectively then the natural mapping
q:(G1 X 82) X (Gl X Gz) - B1 X 82 is the quaternion algebra
structure of some field F. The construction of F is somevhat
complicated, see [Ku) for details. We will call this
construction the product construction. Second, if F is a field
wvith quaternion algebra structure q:G6 X G -+ B and A ig the group
{1,t} then the mapping q*': G* X G' =+ B' vhere G' = G X 4 and B*' c
B x G defined by

q’*((a,1),(b,1)) = (qla,b), 1)

q'({(a, 1), (b, t)) = (qla,b),a)

q*((a,t),(b,1)) = (q(a,b),b)

q' ((a, t), (b, t)) = (ql(a, b)), -ab)
is the quaternion algebra structure of the field of formal
Laurent series F((t)) over F, see [BCW). We call this the powver
construction.

A liest of fundamental examples of fields with their square

class size and number of quaternion algebras is given below.
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c 1 1
F 2 1
q
R 2 2
Q 4
p 2
extension of 02 22k-1 2
of degree 2k-3
extension of 02 22k 2

of degree 2k-2



Notice that all except C and Fq are generalized Hilbert fields.
The elementary type conjecture can nov be stated precisely.
(ETC) The quaternion algebra structure of any field F with

|?/§2| < ®» can be built up from the quaternion algebra structures

of the fundamental examples listed above by using product and
pover constructions.

It is not too difficult to see that if F does not satiefy
the non-degeneracy condition then its quaternion algebra
structure is a product of one totally degenerate and one
non-degenerate. Totally degenerate structures are easy to
classify. Thus from here on out we can and vill assume the
non-degeneracy condition on our quaternion algebra structures.
Some_special casen:

1. If |G| s 32, the conjecture ia true. (see (Cl], [KSS],

{S) and (H).
2. If F ia a pythagorean field (i.e. every sum of squares
is a square), the conjecture is true. (see [M])

3. If there are £ 4 quaternion algebras over F, the

conjecture ie true. (see [C2))

4. If |@(a)| £ 4V a € G, the conjecture is true. (see

tm))

S. If |(Q(a)}|a € G} | £ 4, the conjecture is true. (see

[FY3))
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Most of the recent work has centered on finding ways of
recognizing when a quaternion algebra structure does or doeas not
come from a product or powver construction. Notice that
sufficiently good recognition theorems would answer the

elementary type question.

For a8 € G wve let Oo(a) = {x € GI[g%ﬁ = l}

Recognition theorens.

1. The quaternion algebra structure of F ie a power
Bt;ucture 1££>there exists a € G with lOo(a)| = |00(~a)| = 2,
(CBCW)).

2. The quaternion algebra structure of F is a hroduct
structure of a powver structure and‘another structure coming from
a pythagorean field if and only if there exists a € G with
|00(a)| s 2. ([B1) . '

3. The quaternion algebra structure of F is a product of
tvo structures one of which arise from a generalized Hilbert
field if and only if there exiets a € G satisfying |0°(a)| = %|6|
and some other technical condii;on. ((FYlJ?.

Of course, besides for recognizigg product and power
structures one must also be able to recognizing wvhen a quaternion
algebra structure is tﬁe same as one in the list of fundapental
examples. With elementary linear slgebra one can show that the
quaternion algebra structure of a generalized Hilbert field is

the same as one in the list. Since the structures arising from C
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and Fq do not satisfying the non-degeneracy condition it follows
that to show a quaternion algebra structure satisfying the
non-degeneracy condition arieing from a field F is the same as
one in the list of fundamental examples it suffices to show that
F is a generalized Hilbert field. This is vhat is done in [FY2)
and [FY3) vhere the main tool used wvas a generalized block design
counting technique.

Recall that to prove r(k-1) = A(v-1) holds for the
parameters of any balanced incomplete block design one counts in
tvo different ways the total number of pairs of points (x,y} with
x and y appearing in a common block. In a similar way, even vith
no block design structure present, ve fix a € G and count in tvo
different ways the total number of pairs (x,y} with x,y € G\{}1,a!}

and with a, x € Ooty). ¥e obtain

2 1 . 1 - 1 - 2
jQGa)nQ(ax) | 1QC(x) | [ 2 |O(y)|] 1Q@Cad |
x#1, a yEOO(a)

This equation becomees somevhat manageable in two cases. First,
when all the Q(x) have the same size for x # 1 notice that both
of the sums in the equation will simplify. After a tedious but
elementary examination of the simplified equation wve obtain

(A) If for every x € G\(1}, all Q(x) have the same size <
2/1G| then F is a generalized Hilbert field .

If we nov assume that {Q(x) |x € G} forms a chain under
inclusion then it becomes easier to manage the |Q(a) N Q(ax)|'s

in the equation and we obtain

(B) If (Q(x)|x € G} forms a chain under inclusion the F is

a generalized Hilbert field.
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