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§1. Introduction‘

Let A be an m X n matrix with non-negativé integer
entries. We consider factorizations A - BC , where B is
mXb and C is b x n with entries 0 and 1 only. We say
that B and C are binary matrices, and that A - BC is a
binary factorization.

Two general problems a?e

1° To determine the smallest b = b(A) for which there
exists a binary factorization of A .
2° To find some structural restrictions on the factors B and
C , especially in the extreme case where b is minimal.

We will survey the literature on these éroblems, making no
attempt to be exﬁaustive. Our emphasis will be on several
possible jinterpretations of A = BC , showing the connection with
other areas of combinatorics. No proofs are given.

§2. Partitions into rectangles

Given a matrix X , let Xj be the jSh column of X .
Consider any factorization A - Bct , wheré. A is mxn , B
is mxr, Cis nxr, an& ct is the tfanspose of C . Then

this factorization may be re-written as
T
t
A= B,C, (1
) re'®
=

where now each term BjCJt is an m x n matrix of very special

type: it is either the all-zeroes matrix or has real rank one.
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When B and C are binary, then BJCJt is a "rectangle", that
is a binary matrix whose 1's form a rectangular sub-array. When
A - Bcc , with A, B and C all binary, then (1) has an
especially simple and visually appealing interpretation: this is
a partition of the set of 1’s of A into r rectangles.

This point of view on matrix factorizations is useful, but
seems to have been seldom used or even mentioned. (As an aside,
I note that Ryser {9, pp. 1-3] points out the connection between
certain binary factorizations of the all-ones matrix J and
partitions into "connected" rectangles.) In a forthcoming paper
(3], David Gregory and myself use this interpretation to derive
structural results on binary factorizations of symmetric designs.
We recall that a symmetric (v,%,A)- design is a v xv Binary
matrix A such that AAt - (&-2)I + AJ . A sample result is
that if & > AZ then every (v,k,))-design A has only trivial
binary factorizations A = BC , that is either B or C must be
a permutation matrix. Bridges and Ryser {1, p. 442] use the
additional hypothesis that G.C.D.(k,A) = 1 to derive the same
conclusion. Thus, the rectangle interpretation suggests a more
general result, with an easy and clear proof. |
§3. Bipartite Graphs; the matrix Tﬁ

There is a standard bijection between bipartite multigraphs
and non-negative integer matrices. Given the m x n matrix A,
form the graph G(A) on the vertex-sets R = (rl.....tm) and
C=- (cl....,cn) by placing Aij edges between 1, and cj
Clearly, the bipartite multigraph G(A) completely determines
the matrix A . A binary rectangle in A corresponds to a

complete bipartite subgraph of G(A) (a "biclique"). Thus, a

106



rectangle partition of A corresponds to a partition of the
edge-set of G(A) into bicliques. Orlin [7, p. 418] notes this
connection and shows that the computation of b(A) (defined in
the introduction) is NP-hard. A recent study of biclique
partitions of regular bipartite graphs is by Pullman and Stanford
[8].

A lower bound on b(A) , which is sometimes tight, is the
inequality b(A) 2 r(A) , where r(A) 1is the real rank of A .
For example, let Tn be the complement of the identity matrix,
f.e. T  is the nx n matrix with zerces down the main
diagonal and ones elsewhere. It is a simple exercise to show
that r(Tn) -n; so b(fn) 2 n . Now obviously b(A) s n for
every n X n binary matrix A . Thus b(fn) - n for every n .
Some methods for estimating b(A) and other exotic "ranks" are
discussed in Gregory and Pullman (5].

A somewhat more difficult problem is to classify, in some
reasonable fashion, the binary factorizations fn - BC , where B
and C are n X n ; this is a stronger version of problem 2°
raised in the introduction. In [2], some progress on this
problem is made. For example, it is shown that if (n-1) is
prime then the only binary factorizations of Tn are trivial,
i.e. either B or C wmust be a permutation matrix. In general,
the classification problem seems very difficult; we cannot even
classify the factorizations of fn into two circulant binary
matrices.

A similar problem, which has a moderately extensive
literature, is to classify the circulant binary factorizations of
the n X n all-ones matrix Jn . This is known as the

factorization problem for cyclic groups, and has been thoroughly
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studied by Hajés, de Bruijn, Sands and others. See Hill and
Irving (6, especially section 3] for some references to this
problem, together with an interesting application to Ramsey
numbers.
§4. Directed Graphs

let A be an n X n non-negative integer matrix. We may
associate with A the directed graph D(A) on the vertex-set
(vl,...,vn) , where vy is joined to vj by Aij directed
arcs. A binary rectangle in A corresponds to a complete
directed bipartite subgraph of D(A). This relationship is noted
by Orlin [7, p. 420] and studied more extensively in [2].
§5. Two applications to symmetric designs

Dinitz and Margolis [4] define a continuous map on an
incidence system (V,8) to be a partial mapping £:Y—V such
that £ 1(B) € 8 U (@) for every Be 8 . ‘Let us call a
continuous map proper if |f(V)| 4is mot 0,1 or |V| . Using
results of [4], one can show that a proper continuous map on a
symmetric design yields a non-trivial binary factorization of
the incidence matrix. We illustrate this by an example.

The matrix

(2)

»
1
COrKHOMKH
OO OKRK
OHO MM OKE
FOMHOKOK
HOOKHKHKMO
OrMHOMMO
M --O0O0O

which is a (7.4,2)-design, has the factorization (i.e. rectangle
partition; cf. §2) consisting of a partition of the first three

rows of A by three 2 x 2 rectangles, together with the

108



remaining four row-rectangles of A . A proper continuous map,
from which this factorization can be derived, is given by Dinitz
and Margolis. (The connection with factorizations is not noted
in [4], however.) Using results of [3], some theorems of [4] can
be interpreted in a wider context. For example, (4, Cor. 4.9]
implies that if # and ) are relatively prime, then a symmetric
(v.k,))-design has no proper continuous maps. This can be proved
easily using [3, Cor. 3.3), which gives a strong structural
restriction on partitions into v rectangles of (v,&,))-designs
with G.C.D.(%#,)\)=1 ; in particular, the rectangles all have the
same dimensions, unlike the factorizations derived from proper
continuous maps, as in example (2) above.

Another application to symmetric designs is given in [3],
where it is shown that the existence of a geometric line of a
certain size in a symmetric design A corresponds to a certain
binary factorization of the complement J - A . For example, a
known result is that the quadratic-residue design H(q) , where
q is a prime-power congruent to 3 modulo 4 , has no geometric
line of size three whemn q > 7 ; this is equivalent to saying
that J - H(q) does not have a binary factorization of a certain
sort. This raises an interesting problem. In [3] we conjecture
the stronger result that, when q > 7 , J - H(q) is prime, i.e.
has no non-trivial binary factorizations at all. We prove this
in [3,Th. 4.5]) when %(q+l) is an odd prime.

In closing, we recommend Ryser’s survey [9], in particular
section 5 therein, for further motivation and references in the

area of combinatorial matrix factorizations.
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