PRINCIPAL INTERSECTION GRAPH OF COMMUTATIVES RINGS

LAMINE NGOM AND MANKAGNA ALBERT DIOMPY

ABSTRACT. Let R be a commutative ring. The principal intersection graph of a commutative ring R, noted $G_c(R)$, consist of all proper ideals of R as vertices. Two distinct vertices I and J are adjacent if $I \cap J \neq 0$ and either I or J is a principal (cyclic) ideal. In this paper, we investigate some properties from graph theory of $G_c(R)$ and its algebraic properties where R is a ring.

1. INTRODUCTION

The intersection graph of ideals of a ring R is the graph having the set of all ideals as its set of vertices. Two distinct vertices I and J are adjacent if and only if their intersection is non-zero idea and either I or J is a principal (cyclic) ideal. Intersection graph were introduced by Bosak in 1964 [6]. Since, particular intersection graph like small intersection graph, prime intersection graph, semisimple intersection graph are studied respectively in [3, 1, 11, 5, 7]. Recently, several properties of these kinds of graphs were investigated by many authors as Ansari-Toroghy, Nikmehr - Soleymanzadeh and Alwan in 2016; 2017 and 2023 respectively.

In this paper, R is a commutative ring with identity (or eventually a domain). Here, we introduce a particular intersection graph $G_c(R)$ named Principal Intersection Graph, whose set of vertices is the proper ideals of R. We will study the algebraic properties of $G_c(R)$ and also its properties when seen as a graph.

This paper is organized as follow: in the first section, we recall some properties of rings and graph theory. In the second section, we study connectedness, completeness, k-partite and Hamiltonian properties of this intersection graph. We gave a characterization of the connectedness, completeness and Hamiltonian properties of $G_c(R)$ as a principal ideal domain, an Ore domain and a Bezout domain.

²⁰¹⁰ Mathematics Subject Classification. 13A70, 05C25, 05C45.

Key words and phrases. principal intersection graph, ring, domain, principal ideal domain, Ore domain, Bezout domain, connected graph, complete graph, Hamiltonian graph.

NGOM AND DIOMPY

2. Preliminary results

his section, we recall some definitions from ring theory and graph theory.

2.1. Some Properties of Rings.

Definition 2.1. • An ideal I of commutative ring R is principal written as I = aR for some $a \in R$, if it is generated by one element.

- A ring R is principal if every proper ideal is a principal ideal.
- A ring R is an Ore ring if it satisfies the Ore Condition. That is: For all elements a and b in R, $aR \cap bR \neq \{0\}$.
- An element a of a ring R is a zero-divisor element if there is $b \neq 0$ such that ab = 0.
- A ring R is a domain if it has no zero-divisor.
- A ring R is an Ore ring if for all elements a and b in R, $aR \cap bR \neq \{0\}$.
- A principal ideal domain is a domain such that every ideal of R is a principal ideal.
- Bezout ring is a domain in which for any to elements a, b ∈ R, there is n ≥ 0 such that Raⁿ + Rbⁿ is a principal ideal.

Example 2.1. (1) Every division ring is an Ore ring.

- (2) The ring of integers \mathbb{Z} is a principal ideal domain.
- (3) Every principal ideal domain is an Ore domain.
- (4) Every Ore domain is a Bezout domain.

2.2. Definitions from Graph Theory.

Definition 2.2. • A graph G is pair (V(G); E(G)), where $V(G_c(R))$ is the set of vertices of G and $E(G_c(R))$ is the set of edges of $G_c(R)$).

- The graph G is empty graph if vertices set $V(G_c(R))$ is empty...
- The graph G is null graph if edges set $E(G_c(R))$ is empty..
- Let I and J two distinct vertices, I J means that I and J are adjacent.
- The degree of a vertex I of graph $G_c(R)$) which denoted by deg(I) is the number of edges incident on I.

- If $|V(G_c(R))| > 2$, a path from I to J is a sequence of adjacent vertices $I I_1 I_2 \cdots I_n J$, where $I_i \in V(G_c(R))$.
- The length a path graph of a graph is the number of edges in this path.
- A path using k distinct vertices has length k 1.
- The distance between two distinct vertices I and J is denoted by d(I; J) is the length of the shortest path connecting I and J.
- If there is not a path between I and J, d(I; J) = 0.
- The number of vertices of $G_c(R)$ is the order of the graph.
- The diameter of a graph $G_c(R)$ is $diam(G_c(R)) = sup\{d(I; J)/I; J \in V(G_c(R)))\}.$
- A graph $G_c(R)$ is connected, if for any vertices I and J of $G_c(R)$ there is a path between I and J.
- If not, $G_c(R)$) is disconnected.
- A closed path $I I_1 I_2 \cdots I_n I$ is a cycle.
- The girth of $G_c(R)$ is the length of the shortest cycle in $G_c(R)$.
- It is denoted by $g(G_c(R))$. If $G_c(R)$ has no cycle, the girth of $G_c(R)$ is infinite.
- A clique of graph $G_c(R)$) is complete subgraph of $G_c(R)$).
- An independent set (or anticlique) of graph $G_c(R)$) is null subgraph of $G_c(R)$).
- A maximum clique C of graph $G_c(R)$) is a clique of $G_c(R)$) such that for all vertices x of $G_c(R)$), the graph induced by $C \cup \{x\}$ is not one.
- The clique number $w(G_c(R)))$ of $G_c(R))$ is the number of vertices of a maximum clique of $G_c(R)$.
- A Hamiltonian cycle is a cycle that contains every vertex of the graph.
- An Hamiltonian graph is graph containing a Hamiltonian cycle.
- A graph with no loop or multiple edges is a simple graph.

3. CONNECTEDNESS, COMPLETENESS AND HAMILTONIAN GRAPH

Definition 3.1. Let R be a ring. The principal intersection graph $G_c(R)$ of R is the graph with vertices set is the proper ideals of R and two distinct vertices I and J are adjacent if and only if $I \cap J \neq \{0\}$ and either I or J is a principal ideal.

We shall prove the following important results for the graph $G_c(R)$.

Proposition 3.1. Let R be a ring. $G_c(R)$ is an empty graph if and only if R is a field.

Proof:

- \implies) It is obvious that if $G_c(R)$ is empty graph then $G_c(R)$ has no vertices. Since vertices of $G_c(R)$ are the proper ideals of R, then R has proper ideal, that is R is a field.
- \Leftarrow) Conversely, if R is a field, R has no proper ideal.

Lemma 3.2. If the graph $G_c(R)$ is a null graph, then for all $(a; b) \in R \setminus \{1\} \times R \setminus \{1\}$, ab = 0.

Proof: Assume that $G_c(R)$ is a null graph. Let $a \neq 1$ and $b \neq 1$ be two elements of R. Since $G_c(R)$ is a null graph, then $aR \cap bR = \{0\}$. Therefore, we have that

$$ab \in aR \cap bR.$$

Thus,

ab = 0

Proposition 3.3. Let R be a commutative nonzero ring. The graph $G_c(R)$ is a null graph if and only if $R = \{0, 1\}$.

Proof:

- \Leftarrow It is clear that if $R = \{0, 1\}$, then $G_c(R)$ is a null graph.
- \implies) Let $1 \neq x \in R$ and $G_c(R)$ a null graph. Take $y \in R$ such that $y \neq 1$ and $1 y \neq 1$, then xy = 0. By Lemma 3.2, x = x 0 = x xy = x(1 y) = 0. Since R is commutative nonzero ring, then $R = \{0, 1\}$.

Example 3.1. If p is prime integer, the graph $G_c(\mathbb{Z}_p)$ is null graph.

Lemma 3.4. If R is a domain, then $G_c(R)$ is a connected.

Proof: Let I and J to vertices of $G_c(R)$. Since I and J are proper ideals of R, there exists $a \neq 0$ and $b \neq 0$ in I and J, respectively, such that $ab \neq 0$. So, we have $ab \in I \cap J$ implies that $I \cap J \neq 0$. If one of the ideals I or J is principal, then I and J are adjacent. Moreover, I and J are not principal ideals. Since $I \cap J \neq 0$, let $0 \neq c \in I \cap J$ and put

4

K = cR. Then $I \cap K \neq 0$ and $K \cap J \neq 0$. Thus I - K - J is a path between I and J.

Lemma 3.5. If R is a domain, every connected graph $G_c(R)$ is complete.

Theorem 3.6. Let R be a domain. The followings statements are equivalents:

- (1) $G_c(R)$ is a connected graph;
- (2) $G_c(R)$ is a complete graph;
- (3) R is an Ore domain.

Proof:

- (1) \Longrightarrow (2) Follows from Lemma 3.5.
- (2) \Longrightarrow (3) Let *a* and *b* to non-zero elements in *R*. Put on I = aR and J = bR. Since $G_p(R \text{ is connected}, I \text{ and } J \text{ principal ideals}, \text{ then } I \cap J \neq 0$. Hence $aR \cap bR \neq 0$ and $ab \neq 0$. That is *R* is an Ore domain.

 $(3) \implies (1)$ follows from Lemma 3.4.

Proposition 3.7. Let R be domain. If $G_c(R)$ is a connected graph, then

 $diam(G_c(R)) \le 2.$

Proof: Let I and J be to vertices of $G_c(R)$.

- If $I \cap J \neq 0$, such that at least of them is principal, then I J. Thus d(I, J) = 1.
- If $I \cap J \neq 0$, I and J both none principal, there are non-zero elements a and b such that I cR J with c = ab. Thus d(I, J) = 2.
- If $I \cap J = 0$ for all nonzero $a \in I$ and $b \in J$, $aR \cap bR = 0$ which contradicts Theorem 3.6.

Hence, $diam(G_c(R)) \leq 2$

Proposition 3.8. Let R be a ring. The following statements are equivalents.

- (1) $G_c(R)$ is a complete graph;
- (2) R is essential and R has at most one non-principal ideal.

Proof:

• (1) \implies (2). Assume that $G_c(R)$ is complete and let I be a proper ideal of R. By definition, the vertex I is adjacent to any others vertex, that is I is essential ideal. Then R is essential ring.

Assume again that R has at least two proper ideals which are not principal. Let I_1 and I_2 be two non- principal ideals of R. The vertices I_1 and I_2 can not be adjacent; that is $G_c(R)$ is not complete. Then R has at most one non-principal ideal.

(2)⇒ (1). Let J and K be two vertices of G_c(R). Since R is essential, then J ∩ K ≠ 0. Since R has at most one non-principal ideal, we have two possible cases: either J and K are principal, or exactly one between J and K is principal – If J and K are principal, J and K adjacent vertices.

- If one between J and K is principal, J and K are adjacent vertices. The result follows.

Lemma 3.9. The graph $G_c(R)$ of a principal ideal domain R is a complete graph.

Proof: Let I and J two proper ideals of R. Since I and J nonzero ideals, there is nonzero elements a and b in R such that $a \in I$ and $b \in J$. Hence, $0 \neq ab \in aR \cap bR \subseteq I \cap J$ implies that I and J are adjacent.

Example 3.2. The graph $G_c(\mathbb{Z})$ is complete because for all $n, m \in \mathbb{Z}, n\mathbb{Z} \cap m\mathbb{Z} \neq 0$.

Corollary 3.10. If R a field, then $G_c(R[x])$ is a complete graph.

Lemma 3.11. The graph $G_c(R)$ of an köthe ring R is a complete graph.

Proof: Let I and J be two proper ideals of R. Since R is a köthe ring, there is non-zero elements a and b in R such that $a \in I$ and $b \in J$. Hence $aR \cap bR \subset I \cap J$ implies that I and J are adjacent.

- **Lemma 3.12.** (1) $G_c(R)$ is a complete graph if and only if R is an essential domain which has at most one non-principal ideal.
 - (2) If R has more than one non-principal ideal, then $G_c(R)$ is a disconnected graph.

- (1) If $G_c(R)$ is a complete graph, by proposition 3.8, it has at most one non-principal ideal. For all a and b two non-zero elements in R, $aR \cap bR = abR$. Since $G_c(R)$ is a complete, then $ab \neq 0$. Conversely, if R is an essential domain which has at most one non-principal ideal, then $G_c(R)$ is complete by proposition 3.8.
- (2) It is clear that two non-principal ideals of R can not be adjacent vertices of the graph $G_c(R)$.

Theorem 3.13. Let R be a Bezout ring. The followings statements are equivalents:

- (1) $G_c(R)$ is a complete graph;
- (2) R is a principal ideal domain.

Proof:

(1) \Longrightarrow (2). Since $G_c(R)$ is a complete graph, there is at most one non-principal ideal. Let I this ideal. For all $a_1 \in I$, $I_1 = Ra_1$ is adjacent I, that is $I_1 \cap I \neq 0$. If $I = I_1$, I is principal. Otherwise, there exist $a_2 \in I \setminus I_1$ and let $I_2 = Ra_1 + Ra_2$. If $I \neq I_2 = Ra_1 + Ra_2$, there exists $a_3 \in I \setminus I_2$ and let $I_3 = Ra_1 + a_2 + Ra_3$. Inductively, let $I_n = Ra_1 + \cdots + Ra_n$. If $I \neq I_n$, we choose $a_{n+1} \in I \setminus I_n$. Since $G_c(R)$ is complete, the chain $I_1 - I_2 - \cdots - I_n$ must be finite. Moreover, the ideal $I_n = Ra_1 + \cdots + Ra_n$ is principal because R is Bezout domain. This is a contradiction. Then R is a principal ideal domain.

 $(2) \Longrightarrow (1)$ follows from Lemma 3.9

Corollary 3.14. Let R be a Bezout domain. The followings statements are equivalents:

- (1) $G_c(R)$ is a complete graph;
- (2) R is a principal ideal domain.
- (3) For two ideals I and J, $I \cap J = 0$ implies I = 0 or J = 0.
- (4) For all $(a; b) \in \mathbb{R}^2$, $aR \cap bR = 0$ implies a = 0 or b = 0.
- (5) Every non-zero ideal of R is indecomposable.

Remark 3.1. (1) If R is Bezout domain, for all vertices $I_1, I_2, \dots, I_n \in G_c(R)$, $I_1 - I_2 - \dots - I_n - I_1$ is a cycle. (2) $qirth(G_c(R)) = 3$

Proposition 3.15. If R is Bezout domain, N and K two vertices of $G_c(R)$ such that $K \subset N$, then $deg(K) \leq deg(N)$.

Proof: Let N and K two vertices of $G_c(R)$ such that $K \subset N$. If J is another vertex of $G_c(R)$ then $J \cap K \neq 0$. Since R is Bezout principal ideal domain and $J \cap K \subset J \cap J \cap N$, then $J \cap N \neq 0$.

Theorem 3.16. The followings statements are equivalents in a Bezout domain R.

- (1) $G_c(R)$ is a complete;
- (2) R is an integral domain and has at most one non-principal ideal;
- (3) R is a principal ideal domain.

Proof:

- $(1) \iff (2)$ follows from Lemma 3.12 (1)
- $(3) \iff (1)$ follows from Theorem 3.13.

Corollary 3.17. The graph $G_c(R)$ of a Bezout domain is a regular graph.

Proof: Since R is a Bezout domain, $G_c(R)$ is complete in view of Theorem 3.16; Then $G_c(R)$ is regular graph.

Proposition 3.18. If R is an Ore domain with k proper principal ideals, then the clique number

$$w(G_c(R)) = k$$

Proof: Let I_1, I_2, \ldots, I_k the k proper principal ideals, $I_{k+1}, I_{k+2}, \ldots, I_n$ the n-k proper non-principal ideals of R. Since R is an Ore domain, for every vertex I_i for $i \in \{1, 2, \ldots, k\}$ $I_i \cap I_j \neq 0$ for j > k. That is I_i for $i \in \{1, 2, \ldots, k\}$ adjacent to each other vertex in the graph. Then the graph induced by the path $\{I_{k+1}, I_{k+2}, \ldots, I_n\}$ is complete. Thus $w(G_c(R)) = k$.

Here we recall a result from [5].

Lemma 3.19. (Ore Theorem) If G is a simple graph with order $n \ge 3$ and $deg(v) + deg(w) \ge n$ for each pair of non-adjacent vertices v and w, then G is a Hamiltonian graph.

- (1) $G_c(R)$ is a simple graph and $k' \ge k$;
- (2) $G_c(R)$ is Hamiltonian graph.

Proof:

- (1) ⇒ (2). The order of G_c(R) is n = k' + k. Let L_k the set of non-principal ideals, L'_k the set of principal ideals, (I, J) a pair of non-adjacent vertices of G_c(R). Three cases are possibles:
 - case 1: If I and J are non principal ideals, then $deg(I) + deg(J) = 2k' \ge k' + k = n$.
 - case 2: If I and J are principal ideals, then $deg(I) + deg(J) = 2(n-1) \ge k' + k = n$.
 - case 3: If exactly one ideal between I or J is principal, $deg(I) + deg(J) = k' + 2(n-1) \ge n$.

By the previous Lemma 3.19, $G_c(R)$ is a Hamiltonian graph.

- (2) \implies (1). Assume that $G_c(R)$ is not a simple graph or k' < k;
 - If $G_c(R)$ is not a simple graph clearly $G_c(R)$ is not Hamiltonian graph.
 - If k' < k, since n = k + k' there is no cycle containing every vertex of $G_c(R)$.

That is, there is no Hamiltonian cycle. Then $G_c(R)$ is not Hamiltonian. \Box

References

- Ahmed H. Alwan., Semisimple-Intersection graph of ideals of rings, Communications in Combinatorics, Cryptography and Computer Science, 2 (2023), 140148
- F. W. Anderson, K. R. Fuller. Rings and categories of modules. Second edition. Springer-Verlag, 1991.
- H. Ansari-Toroghy, F. Farshadifar, and F. Mahboobi-Abkenar, Small intersection graph of multiplicative modules, Journal of Algebra and Related Topics, Vol. 4(2016), pp. 2-32.
- M. F. Atiyah, I. G. Macdonald. Introduction to commutative algebra. Addison Wesley, Reading, Mass, 1969.
- J. A. Bondy and U. S. R. Murty, Graph theory, Gradute Text in Mathematics, 244, Springer, New York (1964) 199-125.

- J. Bosak, The graph of semigroups, in Theory of Graphs and its Applications, (Academic Press, New York, 1964), pp. 119-125.
- I. ChaKrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graph of ideals of rings, Discrete Math., 23 (2005) 23-32.
- 8. W. K. Nicholson, M. F. Yousif; Quasi-robenius rings, Cambridge University Press, New York 2003.
- M. J. Nikmehr, B. Soleymanzadeh; The prime intersection graph of ideal of a ring; Comm. Math. Univ. Carol. (2017) 137-145.
- R. Wisbauer, Foundations of module and ring theory, A Hendbook for Study and Research, Gordon and Breach Science Publishers, Reading. 1991.
- F. Yaraneri, Intersection graph of a module, Journal of Algebra and Applications, 12 (2013) 125 -208.

LAMINE NGOM

UNIVERSITÉ CHEIKH ANTA DIOP DE DAKAR,

Facults Sciences et Techniques, Departement de Mathematiques et d'informatique BP: 5005

DAKAR, SENEGAL

Email address: laminengo89@hotmail.fr

Mankagna Albert Diompy

Université Cheikh Anta Diop de Dakar,

Facults Sciences et Techniques, Departement de Mathematiques et d'informatique BP: 5005

DAKAR, SENEGAL

Email address: albertdiompy@yahoo.fr