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Abstract. Let R be a commutative ring. The principal intersection graph of a

commutative ring R, noted Gc(R), consist of all proper ideals of R as vertices. Two

distinct vertices I and J are adjacent if I ∩ J ̸= 0 and either I or J is a principal

(cyclic) ideal. In this paper, we investigate some properties from graph theory of

Gc(R) and its algebraic properties where R is a ring.

1. Introduction

The intersection graph of ideals of a ring R is the graph having the set of all ideals

as its set of vertices. Two distinct vertices I and J are adjacent if and only if their

intersection is non-zero idea and either I or J is a principal (cyclic) ideal. Intersection

graph were introduced by Bosak in 1964 [6]. Since, particular intersection graph like

small intersection graph, prime intersection graph, semisimple intersection graph are

studied respectively in [3, 1, 11, 5, 7]. Recently, several properties of these kinds of

graphs were investigated by many authors as Ansari-Toroghy, Nikmehr - Soleymanzadeh

and Alwan in 2016; 2017 and 2023 respectively.

In this paper, R is a commutative ring with identity (or eventually a domain). Here,

we introduce a particular intersection graph Gc(R) named Principal Intersection Graph,

whose set of vertices is the proper ideals of R. We will study the algebraic properties

of Gc(R) and also its properties when seen as a graph.

This paper is organized as follow: in the first section, we recall some properties of

rings and graph theory. In the second section, we study connectedness, completeness,

k-partite and Hamiltonian properties of this intersection graph. We gave a character-

ization of the connectedness, completeness and Hamiltonian properties of Gc(R) as a

principal ideal domain, an Ore domain and a Bezout domain.
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2. Preliminary results

his section, we recall some definitions from ring theory and graph theory.

2.1. Some Properties of Rings.

Definition 2.1. • An ideal I of commutative ring R is principal written as I =

aR for some a ∈ R, if it is generated by one element.

• A ring R is principal if every proper ideal is a principal ideal.

• A ring R is an Ore ring if it satisfies the Ore Condition. That is: For all

elements a and b in R, aR ∩ bR ̸= {0}.

• An element a of a ring R is a zero-divisor element if there is b ̸= 0 such that

ab = 0.

• A ring R is a domain if it has no zero-divisor.

• A ring R is an Ore ring if for all elements a and b in R, aR ∩ bR ̸= {0}.

• A principal ideal domain is a domain such that every ideal of R is a principal

ideal.

• Bezout ring is a domain in which for any to elements a, b ∈ R, there is n ≥ 0

such that Ran +Rbn is a principal ideal.

Example 2.1. (1) Every division ring is an Ore ring.

(2) The ring of integers Z is a principal ideal domain.

(3) Every principal ideal domain is an Ore domain.

(4) Every Ore domain is a Bezout domain.

2.2. Definitions from Graph Theory.

Definition 2.2. • A graph G is pair (V (G);E(G)), where V (Gc(R)) is the set of

vertices of G and E(Gc(R)) is the set of edges of Gc(R)).

• The graph G is empty graph if vertices set V (Gc(R)) is empty..

• The graph G is null graph if edges set E(Gc(R)) is empty..

• Let I and J two distinct vertices, I − J means that I and J are adjacent.

• The degree of a vertex I of graph Gc(R)) which denoted by deg(I) is the number

of edges incident on I.
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• If |V (Gc(R)))| > 2, a path from I to J is a sequence of adjacent vertices I −

I1 − I2 − · · · − In − J , where Ii ∈ V (Gc(R).

• The length a path graph of a graph is the number of edges in this path.

• A path using k distinct vertices has length k − 1.

• The distance between two distinct vertices I and J is denoted by d(I; J) is the

length of the shortest path connecting I and J .

• If there is not a path between I and J , d(I; J) = 0.

• The number of vertices of Gc(R) is the order of the graph.

• The diameter of a graph Gc(R)) is diam(Gc(R))) = sup{d(I; J)/I; J ∈ V (Gc(R)))}.

• A graph Gc(R)) is connected, if for any vertices I and J of Gc(R)) there is a

path between I and J .

• If not, Gc(R)) is disconnected.

• A closed path I − I1 − I2 − · · · − In − I is a cycle.

• The girth of Gc(R)) is the length of the shortest cycle in Gc(R)).

• It is denoted by g(Gc(R))). If Gc(R)) has no cycle, the girth of Gc(R)) is infinite.

• A clique of graph Gc(R)) is complete subgraph of Gc(R)).

• An independent set (or anticlique) of graph Gc(R)) is null subgraph of Gc(R)).

• A maximum clique C of graph Gc(R)) is a clique of Gc(R)) such that for all

vertices x of Gc(R)), the graph induced by C ∪ {x} is not one.

• The clique number w(Gc(R))) of Gc(R)) ix the number of vertices of a maximum

clique of Gc(R)).

• A Hamiltonian cycle is a cycle that contains every vertex of the graph.

• An Hamiltonian graph is graph containing a Hamiltonian cycle.

• A graph with no loop or multiple edges is a simple graph.

3. connectedness, completeness and Hamiltonian graph

Definition 3.1. Let R be a ring. The principal intersection graph Gc(R) of R is the

graph with vertices set is the proper ideals of R and two distinct vertices I and J are

adjacent if and only if I ∩ J ̸= {0} and either I or J is a principal ideal.

We shall prove the following important results for the graph Gc(R).

Proposition 3.1. Let R be a ring. Gc(R) is an empty graph if and only if R is a field.
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Proof:

• =⇒) It is obvious that if Gc(R) is empty graph then Gc(R) has no vertices.

Since vertices of Gc(R) are the proper ideals of R, then R has proper ideal, that

is R is a field.

• ⇐=) Conversely, if R is a field, R has no proper ideal. □

Lemma 3.2. If the graph Gc(R) is a null graph, then for all (a; b) ∈ R\{1} × R\{1},

ab = 0.

Proof: Assume that Gc(R) is a null graph. Let a ̸= 1 and b ̸= 1 be two elements of

R. Since Gc(R) is a null graph, then aR ∩ bR = {0}. Therefore, we have that

ab ∈ aR ∩ bR.

Thus,

ab = 0

□

Proposition 3.3. Let R be a commutative nonzero ring. The graph Gc(R) is a null

graph if and only if R = {0; 1}.

Proof:

• ⇐=) It is clear that if R = {0; 1}, then Gc(R) is a null graph.

• =⇒) Let 1 ̸= x ∈ R and Gc(R) a null graph. Take y ∈ R such that y ̸= 1 and

1 − y ̸= 1, then xy = 0. By Lemma 3.2, x = x − 0 = x − xy = x(1 − y) = 0.

Since R is commutative nonzero ring, then R = {0; 1}. □

Example 3.1. If p is prime integer, the graph Gc(Zp) is null graph.

Lemma 3.4. If R is a domain, then Gc(R) is a connected.

Proof: Let I and J to vertices of Gc(R) . Since I and J are proper ideals of R, there

exists a ̸= 0 and b ̸= 0 in I and J , respectively, such that ab ̸= 0. So, we have ab ∈ I∩J

implies that I∩J ̸= 0. If one of the ideals I or J is principal, then I and J are adjacent.

Moreover, I and J are not principal ideals. Since I ∩ J ̸= 0, let 0 ̸= c ∈ I ∩ J and put
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K = cR. Then I ∩K ̸= 0 and K ∩ J ̸= 0. Thus I −K − J is a path between I and J .

□

Lemma 3.5. If R is a domain, every connected graph Gc(R) is complete.

Theorem 3.6. Let R be a domain. The followings statements are equivalents:

(1) Gc(R) is a connected graph;

(2) Gc(R) is a complete graph;

(3) R is an Ore domain.

Proof:

(1) =⇒(2) Follows from Lemma 3.5.

(2) =⇒(3) Let a and b to non-zero elements in R. Put on I = aR and J = bR. Since

Gp(R is connected, I and J principal ideals, then I ∩J ̸= 0. Hence aR∩ bR ̸= 0

and ab ̸= 0. That is R is an Ore domain.

(3) =⇒ (1) follows from Lemma 3.4. □

Proposition 3.7. Let R be domain. If Gc(R) is a connected graph, then

diam(Gc(R)) ≤ 2.

Proof: Let I and J be to vertices of Gc(R).

• If I ∩ J ̸= 0, such that at least of of them is principal, then I − J . Thus

d(I, J) = 1.

• If I ∩ J ̸= 0, I and J both none principal, there are non-zero elements a and b

such that I − cR− J with c = ab. Thus d(I, J) = 2.

• If I ∩ J = 0 for all nonzero a ∈ I and b ∈ J , aR ∩ bR = 0 which contradicts

Theorem 3.6.

Hence, diam(Gc(R)) ≤ 2 □

Proposition 3.8. Let R be a ring. The following statements are equivalents.

(1) Gc(R) is a complete graph;

(2) R is essential and R has at most one non-principal ideal.

Proof:
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• (1)=⇒ (2). Assume that Gc(R) is complete and let I be a proper ideal of R.

By definition, the vertex I is adjacent to any others vertex, that is I is essential

ideal. Then R is essential ring.

Assume again that R has at least two proper ideals which are not principal. Let

I1 and I2 be two non- principal ideals of R. The vertices I1 and I2 can not be

adjacent; that is Gc(R) is not complete. Then R has at most one non-principal

ideal.

• (2)=⇒ (1). Let J and K be two vertices of Gc(R). Since R is essential, then

J ∩K ̸= 0. Since R has at most one non-principal ideal, we have two possible

cases: either J and K are principal, or exactly one between J and K is principal

– If J and K are principal, J and K adjacent vertices.

– If one between J and K is principal, J and K are adjacent vertices. □

The result follows.

Lemma 3.9. The graph Gc(R) of a principal ideal domain R is a complete graph.

Proof: Let I and J two proper ideals of R. Since I and J nonzero ideals, there is non-

zero elements a and b in R such that a ∈ I and b ∈ J . Hence, 0 ̸= ab ∈ aR∩ bR ⊆ I ∩J

implies that I and J are adjacent. □

Example 3.2. The graph Gc(Z) is complete because for all n, m ∈ Z, nZ ∩mZ ̸= 0.

Corollary 3.10. If R a field, then Gc(R[x]) is a complete graph.

Lemma 3.11. The graph Gc(R) of an köthe ring R is a complete graph.

Proof: Let I and J be two proper ideals of R. Since R is a köthe ring, there is

non-zero elements a and b in R such that a ∈ I and b ∈ J . Hence aR ∩ bR ⊂ I ∩ J

implies that I and J are adjacent. □

Lemma 3.12. (1) Gc(R) is a complete graph if and only if R is an essential domain

which has at most one non-principal ideal.

(2) If R has more than one non-principal ideal, then Gc(R) is a disconnected graph.

Proof:
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(1) If Gc(R) is a complete graph, by proposition 3.8, it has at most one non-principal

ideal. For all a and b two non-zero elements in R, aR∩ bR = abR. Since Gc(R)

is a complete, then ab ̸= 0. Conversely, if R is an essential domain which has at

most one non-principal ideal, then Gc(R) is complete by proposition 3.8.

(2) It is clear that two non-principal ideals of R can not be adjacent vertices of the

graph Gc(R). □

Theorem 3.13. Let R be a Bezout ring. The followings statements are equivalents:

(1) Gc(R) is a complete graph;

(2) R is a principal ideal domain.

Proof:

(1) =⇒(2). Since Gc(R) is a complete graph, there is at most one non-principal

ideal. Let I this ideal. For all a1 ∈ I, I1 = Ra1 is adjacent I, that is I1 ∩ I ̸= 0.

If I = I1, I is principal. Otherwise, there exist a2 ∈ I\I1 and let I2 = Ra1+Ra2.

If I ̸= I2 = Ra1 + Ra2, there exists a3 ∈ I\I2 and let I3 = Ra1 + a2 + Ra3.

Inductively, let In = Ra1 + · · · + Ran. If I ̸= In, we choose an+1 ∈ I\In. Since

Gc(R) is complete, the chain I1 − I2 − · · · − In must be finite. Moreover, the

ideal In = Ra1 + · · · + Ran is principal because R is Bezout domain. This is a

contradiction. Then R is a principal ideal domain.

(2) =⇒(1) follows from Lemma 3.9 □

Corollary 3.14. Let R be a Bezout domain. The followings statements are equivalents:

(1) Gc(R) is a complete graph;

(2) R is a principal ideal domain.

(3) For two ideals I and J , I ∩ J = 0 implies I = 0 or J = 0.

(4) For all (a; b) ∈ R2, aR ∩ bR = 0 implies a = 0 or b = 0.

(5) Every non-zero ideal of R is indecomposable.

Remark 3.1. (1) If R is Bezout domain, for all vertices I1, I2, · · · , In ∈ Gc(R),

I1 − I2 − · · · − In − I1 is a cycle.

(2) girth(Gc(R)) = 3
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Proposition 3.15. If R is Bezout domain, N and K two vertices of Gc(R) such that

K ⊂ N , then deg(K) ≤ deg(N).

Proof: Let N and K two vertices of Gc(R) such that K ⊂ N . If J is another vertex of

Gc(R) then J∩K ̸= 0. Since R is Bezout principal ideal domain and J∩K ⊂ J∩J∩N ,

then J ∩N ̸= 0. □

Theorem 3.16. The followings statements are equivalents in a Bezout domain R.

(1) Gc(R) is a complete;

(2) R is an integral domain and has at most one non-principal ideal ;

(3) R is a principal ideal domain.

Proof:

• (1)⇐⇒ (2) follows from Lemma 3.12 (1)

• (3)⇐⇒ (1) follows from Theorem 3.13. □

Corollary 3.17. The graph Gc(R) of a Bezout domain is a regular graph.

Proof: Since R is a Bezout domain, Gc(R) is complete in view of Theorem 3.16; Then

Gc(R) is regular graph. □

Proposition 3.18. If R is an Ore domain with k proper principal ideals, then the

clique number

w(Gc(R)) = k

.

Proof: Let I1, I2, . . ., Ik the k proper principal ideals, Ik+1, Ik+2, . . . , In the n − k

proper non-principal ideals of R. Since R is an Ore domain, for every vertex Ii for

i ∈ {1, 2, . . . , k} Ii ∩ Ij ̸= 0 for j > k. That is Ii for i ∈ {1, 2, . . . , k} adjacent to each

other vertex in the graph. Then the graph induced by the path {Ik+1, Ik+2, . . . , In} is

complete. Thus w(Gc(R)) = k. □

Here we recall a result from [5].

Lemma 3.19. (Ore Theorem) If G is a simple graph with order n ≥ 3 and deg(v) +

deg(w) ≥ n for each pair of non-adjacent vertices v and w, then G is a Hamiltonian

graph.
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Theorem 3.20. Let R a domain with k proper non-principal ideals and k′ proper

principal ideals of R. The followings statements are equivalents.

(1) Gc(R) is a simple graph and k′ ≥ k;

(2) Gc(R) is Hamiltonian graph.

Proof:

• (1) =⇒ (2). The order of Gc(R) is n = k′ + k. Let Lk the set of non-principal

ideals, L′
k the set of principal ideals, (I, J) a pair of non-adjacent vertices of

Gc(R). Three cases are possibles:

– case 1: If I and J are non - principal ideals, then deg(I) + deg(J) = 2k′ ≥

k′ + k = n.

– case 2: If I and J are principal ideals, then deg(I) + deg(J) = 2(n− 1) ≥

k′ + k = n.

– case 3: If exactly one ideal between I or J is principal, deg(I) + deg(J) =

k′ + 2(n− 1) ≥ n.

By the previous Lemma 3.19, Gc(R) is a Hamiltonian graph.

• (2) =⇒ (1). Assume that Gc(R) is not a simple graph or k′ < k;

– If Gc(R) is not a simple graph clearly Gc(R) is not Hamiltonian graph.

– If k′ < k, since n = k+k′ there is no cycle containing every vertex of Gc(R).

That is, there is no Hamiltonian cycle. Then Gc(R) is not Hamiltonian. □
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