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Abstract

In this work we construct many new examples of maximal partial line
spreads in PG(3,q), g even. We do this by giving a suitable representa-
tion of PG(3, ) in the non-singular quadric Q(4, q) of PG(4,g). We prove
the existence of maximal partial line spreads of sizes ¢* — ¢ + 1 — £z, for
every pair (f,Z) € Py U Pz, where Py and P, are the pair sets P, =
{(t,2) €ZxZ:4-2<t<q-3,0<2< % -2} and
Pr={(t,2) EZxZ:0<t<£-30<z<q-1},forg>8
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1 Introduction

Let PG(n,q) denote the n-dimensional projective space over the finite field of
order q. A partial line spread in PG(3, q), is a set of pairwise disjoint lines. A line
spread in PG(3, ) is a partial line spread in PG(3, q) covering the space. A max-
imal partial line spread in PG(3,q) is a partial line spread in this space which
cannot be extended to a larger partial line spread. Many authors have investi-
gated maximal partial line spreads in PG(3, g), but the complete knowledge of
them is still far away, especially in the case g even. The aim of this work is to
find new examples of maximal partial line spreads in PG(3, g), with g even. To
this end we call regulus of the non-singular quadric Q(4, q) of PG(4, q) a regulus
of a hyperbolic quadric hyperplane section of Q(4, ). Also, for every point V' of
Q(4, q), we call lined tangent cone of vertex V of Q(4, q) the set of all the lines of
Q(4, q) through V. As well known, the union of these lines is the tangent cone

of vertex V of Q(4,9).
In order to construct our maximal partial line spreads, first we transfer the
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whole geometry of PG(3,q) over the non-singular quadric Q(4, q). More pre-
cisely we get the following mapping. The points of PG(3,q) are the lines of
Q(4,q), and the lines of PG(3, g) are the lined tangent cones and the reguli of
Q(4, g). Also, each plane of PG(3, q) is the set of all the lines of Q(4, ¢) meeting a
fixed line of this quadric, and viceversa. Secondly, we consider the non-singular
quadric Q(4,q) of PG(4, q), with q even and q > 8, an elliptic quadric &, hy-
perplane section of Q(4, q), and a suitable collection of non-singular conics over
the quadric £. Through the quadric £ and through the mentioned collection of
non-singular conics, we construct a set F of lined tangent cones and reguli of
Q(4, @) such that any two distinct elements of 7 have no common line, and such
that every lined tangent cone and every regulus of Q(4, g) has a line in common
with an element of F. So F is a maximal partial line spread in PG(3, g), q even
and ¢ > 8, by means of the above mapping of PG(3,q) over Q(4,q). Also we
get:
|Fl=q¢* —q+1-1z

for every pair (£, Z) € P; U P2, where P; and P, are the following pair sets:

P1={(t,z)€ZXZ:%——2_<_tSq_3’OSz_<_%_2},

'P2={(t,z)erZ:Ogts%—3,0_<_z5q—1}.

By this, we get many new values for the sizes of maximal partial line spreads in
PG(3, q), with g even, as immediately follows by the state of art presented in

section 2.

2 Known results about maximal partial line spreads
in PG(3,q), q even
In this section we produce all known results about maximal partial line spreads

in PG(3, q), with q even.
In [3] A.A. Bruen proved the following result (also for ¢ odd):

Theorem 2.1. If S is a maximal partial line spread in PG(3, q), other than a line
spread, we have:

g+v/3+1<|8| < ¢ — Va.

The upper bound was given by D.M. Mesner (see [11]) and later by A.A. Bruen,
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by using blocking sets theory. Afterwards, in [S] A.A. Bruen and J.A. Thas
improved the previous result, ruling out the equal sign on the left.
D.G. Glynn in [7] proved the following result (also for ¢ odd):

Theorem 2.2, If S is a maximal partial line spread in PG(3,q), then

S| > 2q.

In [13] L.H. Soicher gave a complete classification of maximal partial line spreads
in PG(3,4), through a computer search. The spectrum of their sizes is the set

{11,12,13,14,17}.
In [3], A.A. Bruen proved the existence of a maximal partial line spread S in

PG(3, q) (also for g odd), with

IS|=¢*—q+1, ¢>2

In [S], A.A. Bruen and J.A. Thas constructed a maximal partial line spread S in

PG(3, q), with
IS|=¢®*—q+2, q=2%

h integer, h > 1.
In [6], J.W. Freeman constructed a maximal partial line spread S in PG(3, q),

with
,S,:qz_q+2) q=22h;

h integer, h > 1.
In [8], A. Gécs and T. Szényi constructed a maximal partial line spread S in

PG(3,q) (also for g odd), of size
[S] =cq+1,

for every integer c satisfying the condition

6lng+1<c<gq
In [2], A. Beutelspacher showed that in PG(3,q) (also for g odd) there is a

maximal partial line spread S of size

IS| = ¢* + 1 —ng,
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for every integer n satisfying the condition

1
<n<-—qg-1.
0_n_2q 1k

In [12], S. Rajola and M. Scafati Tallini, showed that in PG(3,q), g even and
g > 8, there is a maximal partial line spread S of size

|S| = ¢® — 2ng + 2n + 1,

for every integer n satisfying the condition

qg—1 1+\/§q—1}
; :
2

4

05n<min{

In [10], D. Jungnickel and L. Storme proved the existence of a maximal partial
line spread in PG(3,q), q even and g > 4, such that

S| = ¢* —q.

In [4], A.A. Bruen and J.W.P. Hirschfeld showed that in PG(3,q), with (g +
1,3) = 1 (and also for g odd), there is a maximal partial line spread S such that

e

In [1], J. Barat, A. Del Fra, S. Innamorati and L. Storme proved that 58 is
the largest size for a maximal partial line spread, other than a line spread, in
PG(3,8).

Finally, in [9], M. Iurlo and S. Rajola, by a computer search, found new mini-
mums and new density results for the sizes of maximal partial line spreads in
PG(3,q), with ¢ = 8,16, 32, 64. More precisely they found the minimum size 30
(previous 41) in PG(3, 8), the minimum size 87 (previous 145) in PG(3, 16), the
minimum size 238 (previous 545) in PG(3, 32), the minimum size 623 (previous
1665) in PG(3,64), the density result 31 — 55 (previous 56 — 58) in PG(3,8),
and the density results 88 — 221,225 — 231 (previous 240 — 242) in PG(3, 16).

3 On the non-singular quadric Q(4, q) of PG(4, q)

Let Q(4, q) be the non-singular quadric of PG(4, q). The quadric Q(4, ) contains
no plane. Also, in the case g even, such a quadric admits a nucleus. For every
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Point V of Q(4, q), we denote by I'y the tangent cone of vertex V of Q(4, q), i.e.
e point set T'y = SN Q(4,q), where S is the tangent hyperplane to Q(4, q) at

the point V. We denote by I, the lined tangent cone of vertex V of Q(4,q),
that is the set of lines contained in 'y and set

' = {Ty}vequ,g) -

Evidently, if I}, and I, are two distinct cones of I, then we have either
T4\ NI = @, orT, NT%, = {r}, with r line of Q(4,9). A hyperplane 53 of
PG(4, q) meets Q(4,q) at an elliptic quadric £, or at a hyperbolic quadric 7, or
at a tangent cone I'y. In particular we have 53 N Q(4,q) = I'y if and only if

S, is the tangent hyperplane to Q(4,¢) at the point V. Also, for every line r of
Q(4, q), the following statements hold:

i) r is tangent to £ (i.e. r has exactly one point in common with £),
ii) either r is tangent to I, or r is contained in I,
iii) either r is tangent to I'y, or r is contained in I'y .

Furthermore, it is easy to prove the following lemmas.
Lemma 3.1. The set £N I is a non-singular conic.
Lemma 3.2. Theset Ty NE,V ¢ &, is a non-singular conic.

Lemma 3.3. In the case q even, a hyperplane S3 of PG(4, q) contains the nucleus
of Q(4, q) if and only if S is tangent to Q(4,9)-

In [14] the following result is proved.

Theorem 3.4. Let o be a plane of PG(4,q), q even, meeting Q(4,q) at a non-
singular conic. If the plane o does not contain the nucleus N of Q(4,q), then the
hyperplane through o and N is tangent to Q(4, q). Also, there are q/2 hyperplanes
through o meeting Q(4, q) at elliptic quadrics and g/2 at hyperbolic quadrics. If a
contains N, then every hyperplane through o is tangent to Q(4, q).

Now let Z be the set of all hyperbolic quadrics, hyperplane sections of Q(4, q),
with g even. For every I € Z, let I; and I, be the two reguli of I, i.e., for
n € {1, 2}, I,, is a set of lines contained in I which partitions the points of I. Let
C be a non-singular conic, plane section of Q(4,q),C = m N Q(4, q), where 7 is
a plane of PG(4, q) not through the nucleus N of Q(4, q). Also, let R(C) be the
following set:

R(C) = {IJn € {1,2} :C C I}. 1)
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By (1) and by theorem 3.4 we get
IR(C)| = q. 2)
Let us prove the following lemma.

Lemma 3.5. Let £ be an elliptic quadric hyperplane section of Q(4,q), g even,
£ = 83N Q(4,q), S hyperplane of PG(4,q). Let C be a non-singular conic, plane
section of £. Then there is one and only one tangent cone I'y; of Q(4,q), such that
'pNE=C.

Proof. Evidently, we have C = yNE = yNQ(4, ), 7 plane of S;. The hyperplane
Ss does not contain the nucleus N of Q(4, ¢), since S3NQ(4,q) = £ and lemma
3.3. holds. By N ¢ S3 and 4 C Sj it follows that N ¢ 5. By N ¢ #, by
¢ = ¥N Q(4, q), by the fact that C is a non-singular conic and by theorem 3.4,
it follows that there is one and only one tangent hyperplane to Q(4, q) through
7. This hyperplane meets Q(4, q) at a tangent cone, that we call I'y. Obviously
we have I'yy D C and therefore V ¢ £. By V ¢ £, T'y D € and by lemma 3.2,
we get 'y N € = C. Also, there is no tangent cone of Q(4, ), distinct from 'y,
meeting £ at the conic C, since there is a unique tangent hyperplane to Q(4, )
through 4. So the lemma is proved. O

Let us prove the following theorem.

Theorem 3.6. Let & be an elliptic quadric hyperplane section of Q(4, q), q even.
Let C and C' be two non-singular conics, plane sections of £, and let 'y and T'z
be the tangent cones of Q(4,q) such thatT'y N& =C, Tz NE = C/, according to
lemma 3.5. Then we get what follows. If C and C' are distinct conics and I'y, and
I, have a common line r, then we have C N C' = {A}, A common point to r and
E. Viceversa, if CNC' = { A}, A point of £, then the line of T'y, through A coincides
with the line of T, through A, and this line is the only common line to Iy, and
I'.

Proof. Assume C # C’ and suppose a common line r to I'}, and I, exists. Also,
denote by A the common point to r and £. Evidently, we have A € CNC’. Let
us prove that C N C' = {A}. To do this, let B be a point of C N’ distinct from
A. By C # (' it follows that I'y # I'z and therefore that V # Z. By r € '}, and
rel’,wegetV erand Z € r. SoV and Z are two distinct points of r — { A}.
The line u through V and B is a line of Q(4, g), since u is a line of T'},. The line
v’ through Z and B is a line of Q(4, q), too, since v’ is a line of I'’;. Therefore
the lines r,u and v/ are three lines of Q(4, q) forming a triangle, and the plane
through them is contained in Q(4, ). A contradiction, since Q(4,q) contains no
plane. The contradiction proves that C NC’' = {A}.
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Viceversa, suppose C N C' = {A}. Let r be the line of I'}, through A, and ' the
line of I';; through A. Let ~ be the plane of C and 7y the tangent hyperplane to
Q(4,q) at the point V. Then we have I'v = 7v N Q(4,¢) and v C 7v. Assume
r # r'. Then we get r' ¢ v and therefore ' Ny = {A}. Now let S; be
the hyperplane through ~ and 7. The hyperplane S; is distinct from 7y(S;
', 7v P r') and meets Q(4, q) at a quadric, that we call 1. Such a quadric is not
an elliptic quadric, since ' C I. Also, the quadric I is not a tangent cone. To
show this, suppose I = 'y, 't tangent cone of Q(4, q) of vertex T. Then S3 is
the tangent hyperplane to Q(4, ¢) at the point 7. Furthermore we have C C I'r,
T ¢ £ and C C &, and therefore C C 't NE, T ¢ €. By this and by lemma
3.2 we get C = I'r N €. Also we have T'y # T'r, since S3 # 7v. So I'v and
T'r are two distinct tangent cones of Q(4,q) suchthat Ty NE =TrNE=C: a
contradiction, since lemma 3.5 holds. The contradiction proves that I is not a
tangent cone. It follows that I is a hyperbolic quadric. We have C C I, C C €
and so C C I'NE. By this and by lemma 3.1 we get C = I NE. The line 7/,
which is a line contained in I, is a line of a regulus R of I. Now let v be the line
through Z of the regulus of I opposite to R and let E be the common point to
v and €. Obviously we have E # A. By IN& = C it follows that E € C. Also,
the line v is a line of I',, since v is a line of Q(4, q) through Z. By this we get
E € C'. Thus, E is a common point to C and C’ distinct from A: a contradiction,
since CNC' = {A}. The contradiction proves that r = r’. In addition to this,
by r = 7’ and by the fact that I'}, and I}, are two distinct lined tangent cones
of Q(4,q) (T}, # I, since C # C’), it follows that the line r = r’ is the only
common line to I'}, and I',. So the theorem is proved. O

4 On the elliptic quadric £ of PG(3, q), g even

Let £ be an elliptic quadric of PG(3,q), g even, let 2; and 2, be two distinct
points of £ and let w be the line through Q, and €. Let o and 3 be the tangent
planes to £ at the points ; and 22 respectively, and [ the line | = a N g.
Evidently we have IN€ = @ and INw = 0. Let 7y, ..., my—1 be the planes through
I distinct from o and 8. Each of such planes meets £ at a non-singular conic.
So, for every index i = 1,...,q — 1, let C; be the non-singular conic C; = m; N €.
Furthermore, let 7y, ..., 7, ; be the planes through w. Each of such planes meets
€ at a non-singular conic. So, for every index j = 1,...,q + 1, let C; be the non-
singular conic C} = 7 N €. Let us prove the following theorem.

Theorem 4.1. For every indexi = 1,...,q — 1, and for every index j = 1, ...,q+1,
we have |C;NC}| = 1.

Proof. Let C; and C] be the non-singular conics C; = m; N, C; = m; NE, with
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i€ {1,..,q—1}, j € {1,...,g+1}. Since q is even, the quadric £ determines
a null polarity p. Let C, be the general linear complex determined by p, i.e.
the set of isotropic lines of p. As well known, each point of PG(3, g) belongs to
its polar plane and C, consists of the tangent lines to £. For every point X of
PG(3,q), we denote by p(X) the polar plane of X with respect to p. Evidently,
we have p(;) = a and p(Q;) = B. By this it follows that the line [ is the polar
line of w, and viceversa. The pole N; of }, which is a point of =}, is also a
point of 1, since n; is a plane through w and [ is the polar line of w. So we
get {N;} = «jnl. Similarly, the pole M; of m; which is a point of ;, is also a
point of w, since ; is a plane through ! and w is the polar line of I. So we get
{M;} = m Nw. Evidently, the distinct points M; and N; are conjugated points
in p, and therefore the line r = m; N 1r;., which is the line through M; and N, is
a line of C,. So the line r is tangent to £ at a point X, and we getr N € = { X},
Clearly we have X € m;, X € 7} and X € £ and therefore X € C; N C}. Let
us prove that C; N C; = {X}. To show this, let Y be a point of C; N C; distinct
from X. ByY e (;NC; wegetY €m, Y €emjandY €e£andsoY € rNE:
a contradiction, since rN € = {X} and Y # X. The contradiction proves that
CNC' = {X}. So the theorem is proved. O

By the construction of Cy,...,Cq-1, Ci,...,Chy1 and by theorem 4.1 we get
what follows:

(a) Ql ¢Ci, Q‘Z ¢ Ci Vi = 1, ey @ — 1,

(b Cy,nC,=0 Vi, i2 =1,...,q—1, i1 # 12,
(C) c."ll nc.;'z = {91192} Vi1, J2 = 1,.,q9+1, J1 # J2s
@ lenc)=1 S AT TEN R R

The non-singular conics ¢, ...,Cq-1, 1, ...,C}1, that are univocally determined
by £, ©; and Q5, will be referred to as associated conics with &, Q, Q.

5 The mapping of PG(3, q) over Q(4, q)

We remark that the content of this section is also in [12]. Let Q(5,q) be the
Klein quadric of PG(5, q). Let Q(4,q) be the non-singular quadric hyperplane
section of Q(5, ), Q(4,q) = Q(5,9) NS4, S4 hyperplane of PG(5,q). Also, let £
be the set of lines of Q(4, q). A linear complex of PG(3, q) is a set of lines whose
Pliicker coordinates p;;, ¢,j = 0,1,2,3, i < j, satisfy a linear equation, that is
a hyperplane section of the Klein quadric. A general linear complex is a linear
complex with equation

Z a;;pij =0, @)

i<j
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under the condition that ||a;; ||, with @ji = —a;j and a;; = 0, is a non-singular
matrix. Since Q(4,q) is a hyperplane section of Q(5, q), the points of Q(4,q)
represent the lines of a linear complex B of PG(3, q). Also, Bis a general linear
complex with equation (3), since Q(4, q) is a non-singular quadric. Now, let ¢
be the Klein mapping, that is the bijection:

1[) 3 r(p,'j) - (p,-j) € Q(5,q), 1 <jandi,j =0, 1,2,3,

where r(p;;) denotes the line r of PG(3,q) of Pliicker coordinates p;;. The

general linear complex B determines the null polarity f of PG(3, g) which asso-
ciates a point Z(Tg, Z1, 22, 73) of PG(3,q) with its polar plane f(z) with equa-

tion
3 3
Z (Z aija:_j) Ii = 0.

i=0 \ ;=0

As well known, the point Z belongs to f(Z) and the lines of B through Z consti-
tute the line pencil, of centre Z, lying in f(Z). Now let z be a point of PG(3,q)
and F; the pencil of lines of B through z; the set 1(F;) is a line s of Q(4, ). Let
¢ be the following bijection:

p:z € PG(3,q9) — s€ L.

So ¢ sends the points of PG(3, g) to the lines of Q(4, q).

Now let us represent the lines.of PG(3,q) over Q(4,qg). To do this, first we
consider the lines of B. Let r be a line of B and let 71, z2, ..., Z4+1 be the points
of 7. The lines (z1), ¢(z2), ..., p(z4+1) of Q(4,g) are all distinct and all of them
contain the point 9(r). Therefore (r) is the lined tangent cone of Q(4,q) of
vertex 9(r). Viceversa, it is easy to prove that, for every lined tangent cone I',,
of Q(4,q), there is a line r of B such that ¢(r) = I'},. It follows that ¢ sends the
lines of B to the lined tangent cones of Q(4, ¢). Now let r be a line of PG(3, q).
The line 7/, the polar line of r under f, is the axis of the pencil of polar planes
of the points of 7. In particular it follows that the polar line of a line r € B,
under f, coincides with . Now let us consider a line r of PG(3,¢) not of B
and denote by 7’ the polar line of r under f. Obviously we get rN 7’ = .
Let z1,z,,..., 2441 be the points of r and let z1,75,...,x7,, be the points of
r'. The lines ¢(z1), ¢(2), ..., ¢(%4+1) are mutually disjoint, and the same holds
for the lines p(x}), ¢(23), .., ¢(z},). Every line o(z}), j = 1,..,q + 1, meets
all the lines (), 9(22), -y P(Z441). The hyperplane S; of S; through p(z;)
and p(z,) contains all the lines o(z}) and all the lines ¢(z;), j = 1,..,¢ + 1.
It follows that S; meets Q(4, ) at the hyperbolic quadric the reguli of which
are p(r) and ¢(r'). So the line set R = u(r) = {p(z1), p(z2), 1 (Tq41)} i5
a regulus of Q(4,q). Viceversa, it is easy to prove that for every regulus R of
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Q(4, g) there is a line r of PG(3,q), not of B, such that ¢(r) = R. So ¢ sends
the lines of PG(3, ¢) not of B to the reguli of Q(4, q).

Finally, taking into account that ¢ sends the lines of B to the lined tangent cones
of Q(4, g), it is easy to prove what follows. For every plane 7 of PG(3, q), the
line set () consists of all the lines of Q(4, q) meeting a fixed line ! of Q(4, 9),
and the point ¢ ~1(l) of PG(3, ) is the pole of = with respect to the null polarity
f. Viceversa, for every line [ of Q(4,q), there is a plane = of PG(3, q) such that
¢(m) is the set of all the lines of Q(4,q) meeting . So the following theorem
holds.

Theorem 5.1. The Galois space PG(3, q) is mapped over Q(4, q) as follows:

The points of PG(3, q) are the lines of Q(4, q).

The lines of PG(3, q) are the lined tangent cones and the reguli of Q(4, q).

A plane 7 of PG(3, q) is the set of all the lines of Q(4,q) meetmg a fixed line I of
Q(4, g), and viceversa.

More precisely, the lined tangent cones of Q(4, g) are the lines of a general
linear complex B of PG(3,q), and the other lines of PG(3,q) are the reguli of
Q(4,q). Furthermore, in the third statement of theorem 5.1, the line [ is the
pole of 7 with respect to the null polarity determined by B. In what follows, we
will use only the first two statements of theorem 5.1. The third one has been
mentioned for completeness reasons.

6 Construction of maximal partial line spreads in
PG(3,q), q even

Let Q(4, ¢) be a non-singular quadric of PG(4, ), g even, and let £ be an elliptic
quadric hyperplane section of Q(4, q). Let ; and €, be two distinct points of
& and let 4, ...,Cq—1, Ci, ...,C; 44 e the associated conics with £, Q;, Q.. Such
conics satisfy the conditions (a), (b), (c) and (d), mentioned in section 4. For
every non-singular conic C, plane section of £, there exists one and only one
tangent cone I'y of Q(4,¢) such that 'y N € = C, as follows by Lemma 3.5.
Then, for every index i = 1,...,q — 1, let 'y, denote the tangent cone of Q(4, q),
of vertex V;, such that I'v, N £ = (;, and, for every index j = 1,....q + 1, let
I'z; denote the tangent cone of Q(4,q), of vertex Zj, such that Tz, N € = Cj.
Obv10usly we have V; ¢ € for everyi = 1,...,g— 1, and Z; ¢ £ for every
J=1.,q+1
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Now let S and S’ be the following sets of lined tangent cones of Q(4, q):

/ / / /
8:{ nl, QZ,FVI’“-, Vq’l},
SI_ F,

Z]’ q“ .

By means of theorem 5.1 we identify PG(3, g) with defined structure on Q(4, ).
So S and S’ can be considered as sets of lines of PG(3,q), both of them of size
q + 1. The following theorem holds.

Theorem 6.1. The line sets S and S’ are the two reguli of a hyperbolic quadric of
PG(3,9).

Proof. By Q; # g, by (a) and (b) it follows that two distinct lined tangent
cones of S have no common line. So S is a set of parwise disjoint lines of
PG(3, q). We remark that each lined tangent cone of S’ has one line in common
with every lined tangent cone of S. To show this, let P'z,- be a cone of &,
j € {1,..,q+1}. Evidently, the cone F'z,- has one line in common with I'g,
i = 1,2. Also, for every index ¢ = 1,...,q — 1, the conics C; and C; have one
common point, since (d) holds. By this and by theorem 3.6 it follows that, for
every index ¢ = 1,...,q — 1, the cones I';. and I}, have one common line. So
the remark is proved. Therefore, in PG(3 q), every line of &’ meets every line
of S; this implies that S and S’ are the two reguli of a hyperbolic quadric of
PG(3,q). So the theorem is proved. 0O

We denote by I the hyperbolic quadric of PG(3, q) the reguli of which are S
and S'. Clearly; the points of T are the lines of the lined tangent cones of S (or
of S’). We denote by F the set of such lines. Evidently, there are g + 1 lines of
F through the point ;, i = 1,2, whereas there is one and only one line of F
through each point of £ — {Q4,95}. So, for every point X € £ — {Q1,s}, we
denote by r(X, F) the line r of F through X. By the definition of (X, F) we
get: :

VNI, =r(X,F),¥i=1,...,q =1, Vi =1,..,q+1, 4

where X is the common point to the conics C; and C;.
Now suppose g > 8 and denote by H; and H, the following sets:

le{(h,k)erz;lghs-‘zl, 1gksq—1},

H2={(h,k)erZ:%+1§h$q—2, 1gkgq}.

Let (h,k) be a pair of H; U Hy. The ordered pair (h,k) determines the set
{CI, 55C5: Cls ...,Clic}, which is a proper subset of {Cl, iy G 164 ...,C{,H}, i.e.
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the set of associated conics with £,Q;,Q,. For every index i = 1,...,h the
plane 7;, meeting £ (and therefore Q(4, g)) at the conic C;, does not contain the
nucleus of Q(4,¢). So, let F; be the following set of reguli of Q(4, q):

R
A = JR(),
i=1

where R(C;) is the set of reguli (1), for every conic Ci, i = 1,...,h. By the
definition of R(C;) and by lemma 3.1 it follows that every regulus of R(C:),
i € {1,...,h}, is a regulus of a hyperbolic quadric, hyperplane section of Q(4, ),
meeting £ at the conic C;, and viceversa. Let F, be the following set of lined
tangent cones of Q(4, q):
/
U2 = {FZ" }j=1,...,l-c .

Obviously, F; and F, are non-empty sets. Now, let £’ be the point set:

(@l

By (h,k) € H, U H, it immediately follows that £’ # @. Also, let F3 be the
following set of lined tangent cones of Q(4, 9):

Fzs={Tv}vee -
Finally, let F be the following set:
F=rRJRU7F.

Clearly, the set F is determined by the pair (h, k). The lines of the lined tangent
cones and the reguli of F form a set of lines of Q(4,q), that we call F. The
set F can be considered as a set of lines of PG(3,q). Let us prove that F is a
set of pairwise disjoint lines of PG(3, q). To show this, first we remark that two
distinct lined tangent cones F'z,-l and I"Zj2 of F» have no common line, since the
distinct non-singular conics C; and C;, have the common points 2; and 2, and
theorem 3.6 holds. Furthermore, two distinct lined tangent cones of F3 have
no common line, since there is no line of Q(4, ¢) having two distinct points in
common with £. Finally, a lined tangent cone of 7, and a lined tangent cone
of F3 have no common line, since C; N &’ = ( for every index j = 1,..., k. In
conclusion, two distinct lined tangent cones of F have no common line. Also, it
is trivial to check that two distinct reguli of F; of the same R(C;), i € {1, ...,h},
have no common line. Furthermore, if R; and R are two reguli of F; such
that R, € R(Ci,), Ry € R(Ci,), with 41,32 € {1,...,h} and i; # i, then such
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reguli have no common line, since (b) holds. In conclusion, two distinct reguli
of 7 have no common line. In addition to this, we remark that every regulus of
F1 has not any lines in common with every lined tangent cone of F3, since we
have C; N &’ = { for every index i = 1, ..., h. Now, let R be a regulus of F; and
I%s9.€ {1, ...,k}, a lined tangent cone of F,. Evidently, we get R € R(C;),
i € {1,...,h}. Furthermore, the lined tangent cones I';, and I'; meet at the
line r = r(X, F), where C; NC; = {X}, since (4) holds. The regulus R does not
contain the line r, since r is a line of I'y, and RN T, = §. By this and by the
fact that R cannot contain lines of I', distinct from r, it follows that Rand I';,
have no common line. In conclusion, a regulus and a lined tangent cone of F
have no common line. Thus, any two distinct elements of F have no common
line. This implies that F is a set of pairwise disjoint lines of PG(3,¢), that is a
partial line spread in PG(3, q).

Let us prove that F is maximal. To do this, we have to show that for every
Y, € I and for every regulus R of Q(4,q) we get 'y, N F # 0 and RN F # 0.

To this end, we remark that every lined tangent cone I'}, of Q(4,9), with V € &,

has a line in common with F', since the lines of F' cover the points of £. Now,

let 7 be the following set:

T={T}, eT’:V¢E}UR,

where R denotes the set of all the reguli of Q(4, ¢). It is only to prove that every
element of 7 has a line in common with F. To show this, let T be an element
of T such that TN F = §, and let C be the non-singular conic C = T'N £, where
T denotes the union of all the lines of T (see lemmas 3.1 and 3.2). Also, let U;
and U, be the following non-empty point sets:

Uc,, Uy = U C;-

i=1

It is immediate to check that all the ¢ + 1 lines of Q(4, ¢) through a fixed point
of £’ U (U; NT%,) are lines of F. By this and by T N F = § we get

C C U1AU;, ()

where the symbol A denotes the symmetric difference operation. Also, taking
into account that (h,k) € H; U Hy, it is easy to verify that each associated
conic with £,€,;,Q,, contains a point not of U; AU,. So, each of such conics
is not contained in U; AU,. By this and by (5) it follows that C is not a conic
of the set {C1,...,C4-1,Cy, ...,C,,; }. We remark that C has at most two distinct
points in common with U - U2 To show this, let X, Y and Z be three distinct
points of C N (Uy — Uy). By the definition of F and by T N F = 0, it follows
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that T' contains the three distinct lines r1(X, F'), ro(Y, F) and r3(Z, F) of F,
which are three distinct points of the hyperbolic quadric T of PG(3,q). So T is
a line of PG(3, q) having three distinct points in common with I, and therefore
T is a line contained in I, that is a line of a regulus of J. Thus, T is a lined
tangent cone of S U S’. By this and by T' € T, it follows that T is a lined
tangent cone of SU S’ distinct from I'y and I'f, , that is a lined tangent cone of

the set {P'V,’ v DY Ty 2 }, and therefore that C is a conic of the set

{C1,..,Cq-1,C},...,Chy1 }: a contradiction, since C is not a conic of this set, as
already noticed. The contradiction proves the remark, that is that C has at most
two distinct points in common with U; — Us,.

Now, we give a lower bound for the integer k. In order to do this, first we
remark that

R
Uz — Ui = | (¢} — y). (6)
j=1

Also, by the fact that C is not a conic of the set {Cj, ...,C. ., }, it follows that C has
at most two distinct points in common with C}, for every index j = 1,...,q + 1.
So C has at most two distinct points in common with the point set C; — Uy, for
every index j = 1, ..., k. By this and by (6) we get

ICN (U —Uh)| < 2k. @)

By (7), by the fact that C has at most two distinct points in common with U; —U,
and by (5), we have:

g+1<2k+2,

and therefore e
k> =.

23 (8)

Now, we give an upper bound for the integer A. In order to do this, first we

remark that
qg—1

U, —-U, = [ U (C; ﬂUz)} U{Ql, Qa2} - ©)
i=h+1

Also, since C is not a conic of the set {Cy,...,C,_1}, it follows that C has at most

two distinct points in common with C;, for every index i = 1,...,¢ — 1. So C has

at most two distinct points in common with the point set C; NUs, for every index

i=h+1,...,q— 1. Then the conic C contains at most 2(¢ — 1 — k) distinct points

of the set
g—1

U (€N U?).

i=h+1
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Also, the conic C contains at most one of the points €; and Qj, since € is not
a conic of the set {C},...,C;,, }. Thus, taking into account the equality (9), we
get

ICN(U:—Uy)| < 2(q-1-h)+1. (10)

By (10), by the fact that C contains at most two distinct points of U; — U and

by (5), we have:
q+1<2(g—1-h)+3,

and therefore

(11)

h <

LS

Thus, the pair (h, k) satisfies both of conditions (8) and (11): a contradiction,
since (R, k) € H; U H, and there is no pair of H; U H, satisfying both of (8) and
(11). The contradiction proves that every element of 7 has a line in common
with F. It follows that the partial line spread F of PG(3, q) is maximal.

Also, by the definition of F and by (2) we get

|Fl=q*—kq+2k+hk—h—1. (12)

Now, let ¢ and z be the following integers:

t=q—2-h,
L 13
z=k-1. (13
By (12) and (13) we get:
|Fl=¢*-q+1-1z (14)
Let P; and P, be the following pair sets:
q q
o o P = < =
P {(t,z)erZ.z 2<t<q-3 0S2<] 2},
P2={(t,z)€ZxZ:05tsg—3, ogzsq—l}.
It is easy to verify that;
hk) € Hy < (I,2) € P1,
(_ _) 1 (t,2) € Pr (15)
(h,k) € Hy < (t,2) € P2

By (15) it follows that
(h,k) € HHUH, <> (},Z) e PyUPa.

Thus, in PG(3,9), with ¢ even and q > 8, there exists a maximal partial line
spread F of size (14), for every pair (i,z) € P, U Ps.
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For ¢ > 16, g even, formula (14) allows us to find many new cardinalities. In
particular, for ¢ = 16, we find the size 223 and all the sizes from 232 to 239:
for ¢ = 32 we find 192 new sizes. Moreover, for ¢ = 8,16, we find many of the
results already obtained in [9] by a computer search. The number of new sizes

increases for larger value of q.
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