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Abstract

An [talian dominating function (IDF) on a graph
G = (V,E) is a function f : V — {0,1,2} satisfying
the property that for every vertex v € V, with f(v) =0,
2 _weN@) f () 2 2. The weight of an IDF f is the value
w(f) = f(V) = X uev f(u). The minimum weight of
an IDF on a graph G is called the Italian domination
number of G, denoted by v7(G). For agraph G = (V, E),
a double Roman dominating function (or just DRDF) is
a function f : V. — {0,1,2,3} having the property
that if f(v) = 0 for a vertex v, then v has at least two
neighbors assigned 2 under f or one neighbor assigned
3 under f, and if f(v) = 1, then v has at least one
neighbor with f(w) > 2. The weight of a DRDF f is the
sum f(V) =) cy f(v), and the minimum weight of a
DRDF on G is the double Roman domination number
of G, denoted by v4r(G). In this paper we show that
Y4r(G)/2 £ 71(G) < 2v4r(G)/3, and characterize all
trees T with v;(T) = 2vyq4r(T)/3.
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1 Introduction

We consider finite, undirected, and simple graphs G = (V, E)
with vertex set V = V(G) and edge set E = E(G). We denote
by |V(G)| = n(G) = n the order of G. The open neighborhood
of a vertex v is the set N(v) = {u € V|uw € E} and the closed
neighborhood of v is the set N[v] = N(v) U {v}. For a set
S C V, the open neighborhood of § is N(S) = (J,.4 N(v) and
the closed neighborhood of S is N[S] = N(S)U S. The degree
of a vertex v is deg(v) = |N(v)|. We denote the degree of v in
G by degy(v) to refer it to G. The maximum and minimum
degree among the vertices of G are denoted by A(G) and 6(G),
respectively. For a subset S of vertices of G, we denote by G[S]
the subgraph of G induced by S. The diameter, diam(G), of
G is the maximum distance among all pairs of vertices in G. A
diametrical path in G is a shortest path whose length is equal
to the diameter of G. A non-trivial graph is a graph of order at
least two. A star Ki, is a tree with one vertex of degree n and
n vertices of degree one. A double star is a tree with precisely
two vertices that are not leaves, called the centers of the double
star. By a leaf we mean a vertex of degree one, while a support
vertez is a vertex adjacent to a leaf. A strong support vertes is
a support vertex adjacent to at least two leaves. In this paper,
we denote the set of all support vertices of T by S(T') and the
set of leaves by L(T). A rooted tree T distinguishes one vertex
r called the root. For each vertex v # r of T, the parent of v is
the neighbor.of v on the unique (r, v)-path, while a child of v is
any c.)the.r nelgh‘por ofv. Aset SC Vina graph G is called a
go?:ﬁt:"g set if N[S] = V.. The domination number, 4(G) of
’ minimum cardinality of a dominating set in G, and 2




dominating set of G of cardinality 4(G) is called a v(G)-set. A
subset S € V' is a 2-dominating set if every vertex of V — 9 has
at least two neighbors in S. The minimum cardinality amongst
all 2-dominating sets of G is the 2-domination number, 72(G).
For other definitions and notations not given here we refer to
2, 7).

Let f: V — {0,1,2} be a function having the property that
for every vertex v € V with f(v) = 0, there exists a neighbor
uw € N(v) with f(u) = 2. Such a function is called a Roman
dominating function or just an RDF. The weight of an RDF
fis the sum f(V) = 37 ., f(v). The minimum weight of an
RDF on G is called the Roman domination number of G, and is

denoted by Yr(G), [4].

A generalization of Roman domination called Italian domina-
tion was introduced by Chellali, Haynes, Hedetniemi and McRae
in [3], where it was called Roman {2}-domination. This pa-
rameter was further studied by Klostermeyer and MacGillivray
[9], and Henning and Klostermeyer [8]. An Italian dominating
function (IDF) on a graph G = (V, E) is a function f : V —
{0,1,2} satisfying the property that for every vertex v € V, with
f(0) =0, Xuenw f(1) > 2. The weight of an IDF f is the value
w(f) = f(V) =3 .cv f(u). The minimum weight of an IDF on
a graph G is called the Italian domination number of G, denoted
by 71(G). In [3], what we call y;(G) is called Yr2)(G). A v1(G)-
function is an IDF with weight v7(G). A ~7(G)-function f can
be represented by a triple f = (Vo, V1, V2) (or f = Vi Vi, Vi)
to refer to f), where V; = {v € V(G) : f(v) =i} for i =0,1,2.

A function f : V — {0,1,2,3} is a double Roman dominating
function on a graph G if the following conditions are met (see

[1]).

(i) If f(v) = 0, then v has at least two neighbors in V5 or one
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neighbor in V3.

(if) If f(v) = 1, then v has at least one neighbor in V3 U V3.

A double Roman dominating function f can be represented
as f = (Vo, Vi, Va, Vi) (or f = (Vd, V{, Vi, V) to refer to f),
where V; = {v € V(G) : f(v) = i} for i =0,1,2,3. The double
Roman domination number vqr(G) equals the minimum weight
of a double Roman dominating function on G, and a double
Roman dominating function of G with weight y4r(G) is called
a yar — function of G. Clearly in a double Roman dominating
function of weight v4r(G), no vertex needs to be assigned the
value 1. Hence we can assume that V; = 0 for all double Roman

dominating functions under consideration.

In this paper we show that for any graph G, v4r(G)/2 <
v1(G) < 2v4r(G)/3. We then give some infinite families of
trees achieving equality for the lower bound, and characterize
all trees achieving equality for the upper bound. The following

are useful.

Proposition 1 (Beeler et al. [1]) Let G be a graph and f =
(Vo, V1, V2) a yr-function of G. Then var(G) < 2|V4| + 3|V4|.

Corollary 2 (Beeler et al. [1]) For any nontrivial connected
graph G, 7r(G) < 14r(G) < 27r(G).

Proposition 3 (Beeler et al. [1]) For any graph G, 27(G) <
14r(G) < 3v(G).
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92 Main results

We first state our upper and lower bounds for the Italian domi-
nation number in terms of the double Roman domination num-

ber.
Theorem 4 For every graph G, var(G)/2 < v1(G) < 2v4r(G)/3-

proof. Let f = (V{,V/, V) be a v;(G)-function. Then g =
(v/,0,V{,V{) is a DRDF for G. Thus, r(G) < 3|V§| +
2|V1f| < 4|V |+ 2|V1f| = 271(G), as desired. We next establish
the upper bound. Let g = (V{,0, V7, V) be a v4r(G)-function.
Then h = (V§, V4, V¥) is an IDF for G. Thus, v/(G) < w(h) =
2|V3 |+ V5| = 7ar(G) — (|[V5| +|V5|). On the other hand, since
VfUV4 is a dominating set for G, 7(G) < |Vy/|+|Vy/|. Therefore,
(G)'< 1a(@)=1(G). By Proposition 3, 14x(G) < 37(G), and
s0 71(G) < 1ar(G) = 7(G) < var(G) = 14r(G)/3 = 2v4r(G)/3.
B

If var(G)/2 = 71(G) and f = (VJ, V{, V) is a y1(G)-function,
then from the proof of Theorem 4, we obtain that V;/ = . Thus
Vlf is a 2-dominating set for G and so 1,(G) < |V1f | = 71(G).
Since always 77(G) < 72(G), we obtain that v/(G) = 7(G).
Thus we obtain the following.

Corollary 5 If v4r(G)/2 = ~41(G), then v1(G) = 7o(G). Fur-
thermore, V§ = 0 for every v1(G)-function f = (V{, Vi, V).

Note that the converse of Corollary 5 does not hold. To see this,
note that y;(Ps) = 72(Ps), but var(Ps)/2 # 71(Fs). We next
present necessary and sufficient conditions for a graph achieving
equality in the upper bound of Theorem 4.
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Corollary 6 For graph G, 11(G) = 2var(G)/3, ¥ and only i
14r(G) = 37(G), 1(G) = 2v(G)-

Proof. Assume that 7;(G) = 274r(G)/3. From the proof of
Theorem 4, we obtain that y4r(G) = 37(G) and 71(G) = 24(G).
The converse is obvious. ®

Corollary 7 If for gmph G, fyI(G = 2%!12( )/3, then for any
1R (G)-function f = (V{,0,V{,V{), Vi =0.

Proof. Assume that v;(G) = 274r(G)/3. Let f = (V{, 0, V,
V3 be a ’ydR(G) function. Suppose that V2 # (). Since v(G) =
V5| + V|, we have, 1r(G) = 3y(G) = 3|Va| + 3[V3| > 2[Va| +
3|Vs| = v4r(G), a contradiction. m

2.1 Trees

In this subsection, we first present families of trees achieving
equality for the lower bound of Theorem 4, and then characterize
all trees achieving equality for the upper bound of Theorem
4. For any positive integer k, let T}, be the class of all trees
consisting of the disjoint union of k¥ copies of P; plus a path
through the central vertices of these copies, as illustrated in
Figure 1 Let the i-th copy of P5 has vertex set {v}, ... 'u5}
where v is adjacent to v}, for j = 1,...,4. Clearly for any IDF
on Tk, f (U1)+ +f(vt) > 3, and thus VI(Tk) > 3k. On the other
hand g defined on V/(T) by g(v}) = f(vi) =0fori=1,2, ...k,
and g(z) = 1 otherwise is an IDF for T,. Thus v (Tk) = 3k-
Similarly, Yar(Tk) = 6k. Thus, y4p(T})/2 = v;(T}).

Lemma 8 Assume that T is a tree with yu5(T")/2 = y1(T"),
and w € V(T") is a vertex with y4p(T’ —w) > yap(T"). IfT 15 @
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Figure 1: The tree Tj.

iree obtained from T' by adding a path P, = uv and adding the
edge uw, then ")’dR(T)/2 = ’YI(T)

proof. Note that by Theorem 4, 2y/(T' — w) > y4p(T" — w) >
yar(T") = 2v1(T"), and so y1(T" = w) > 4/(T"). Since by Corol-
lary 5, V2f = ) for every v;(T")-function f = (Vof , Vlf ,V2f ), we
deduce that f(w) =1 for every v;(T")-function f. Then we can
extend & 7(7")-function to an IDF for T' by assigning 1 to v
and 0 to u, and thus y7(T) < v7(T") + 1. On the other hand, let
fi be a 7r(T)-function. Clearly fi(u) + fi(v) 2 1. If fi(w) #0,
then fi|r is an IDF for 7", and so v(T") < y(T) — 1. Thus
assume that fi(w) = 0. Then fi(u)+ fi(v) > 2. Now f; defined
on T' by fo(w) =1 and fo(z) = fi(z) if  # w is an IDF for T",
and so0 y;(T") < v1(T) — 1. Consequently, v;(T) = y(T") + 1.

Since Yar(T")/2 = 71(T"), for any v1(T")-function f = (V, V{,
0), the function f1 = (VZ,0,V{!,0) is a y4r(T")-function with
¢(w) = 2. Then f; can be extended to a DRDF of T' by as-
signing 2 to v and 0 to u, and so Yar(T) < 1ar(T") + 2. Now
assume that function g = (Vo,0, Vs, V3) be a y4r(T')-function.
If g(w) = 0, then g(u) + g(v) > 3, and function g|r—, is @
DRDF for T" — w. Then y4r(T) = 2 < Yar(T") < Yar(T' —w) <
w(glr—w) < Yar(T) — 3, a contradiction. Hence g(w) # 0,
then g(u) + g(v) > 2, and function g|r is a DRDF for tree T,
Hence Y4r(T") < var(T)—2 and so yar(T) = 1ar(T") +2. Hence
Wr(T)/2 = (var(T') +2)/2=n(T") +1=(T). =
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We propose the following problem.

Problem 9 Characterize all trees achieving equality for the lower
bound of Theorem 4.

We next wish to characterize trees achieving equality for the
upper bound of Theorem 4. Let F be the family of unlabeled
trees T' that can be obtained from a sequence Ty, ..., T;(j > 1)
of trees such that T; is a star K, for 7 > 2, and, if j > 2, then
T;41 can be obtained, recursively, from T; by one of the following
two operations O; and O, as illustrated in Figures 2 and 3.

Operation O; : Assume that v;(T; — u) > v;(T). Then T},
is obtained from T; by joining u to the central vertex of a star
K, for some s > 2.

Figure 2: Operation O;.

Operation O, : Assume u € V(T;). Then T}, is obtained
from T; by joining w to the central vertex of a star K, for
some s > 1, and then subdividing the new edge.

Next we show that every tree T in the family F satisfies in
11(T) = 27r(T)/3.

Lemma 10 If7/(Ti) = 2v4r(T;)/3 and Tiyy is obtained from T;
by Operation O1, then vr(Tiy1) = 2v4r(Tiyy) /3

176




Figure 3: Operation O,.

Proof. Assume that u € V(T}) and ;(T; — u) > (T3). Since
2yap(Ti-u) 2 (T —u) 2 y(T)) = 24ar(T:), we obtain that
var(Ti — u) > Y4r(T;). Let v be the central vertex of a star K} s
according to the Operation O;. Let f be a y4r(Ti+1)-function.
Then clearly f(v) = 3, since v is a strong support vertex of Ti41.
If f(u) # 0, then f|z, is a DRDF for tree T; and so y4r(T:) <
w(flz) = w(f) = 3 = 74r(Tis1) — 3, and otherwise f|r,_, is &
DRDF for forest T;—u and so by applying Theorem 4, y45(T;) =
3(T)/2 < 3 (T: — /2 < ur(Ts ~ v) < wlflr—) < w(f) -
3 = vr(Ti+1) — 3. On other hand any v4z(T;)-function can
be extended to a DRDF for T;,; by assigning 3 to v and 0 to
any leaf adjacent to v, and so Y4r(Ti41) £ Yar(Ti) + 3. Thus
var(Tis1) = Var(T;) + 3. Now assume that D is a y(T;)-set,
then DU {v} is a dominating set for tree T;41, and so y(Ti41) <
v(T;) + 1, and so by applying Corollary 6 and Proposition 3
on T., we obtain that v4p(Tiy1) < 3y(Tiy1) < 3y(T3) +3 =
4r(T3) + 3 = Yar(Ti+1). Thus var(Tis1) = 37(Tiy1). Similarly,
we can see that v7(Ti+1) = 2v(Ti+1) and so again by Corollary

6, 71(Ti+1) = 27ar(Tis1)/3. ®

Lemma 11 Ifv;(T}) = 2v4r(T:)/3 and Tiy1 is obtained from T;
by Operation Oy, then ¥1(Tiy1) = 27ar(Tit1)/3.
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Proof. Assume that u € V(T;) and v is the central vertex of
a star K s, where s > 1, and w is the new vertex obtaine(
by subdividing the edge uv. Let f be a v4p(Tiy1)-function. If
f(v) = 3, then we may assume that f(w) = 0, and so f|r, is a
DRDF for Ti. Thus vr(Ti) < w(fln) = w(f) =3 = Yar(Tit1) -
3. Thus assume that f(v) # 3. Then, v is a weak support
vertex. Let vy be the leaf adjacent to v. Clearly we may assume
that f(v) # 2. Thus f(v) =0, and so f(v;) = f(w) = 2. Then
g defined on V(T}) by g(u) = max{1, f(u)}, and g(z) = f(z) if
z # u is a DRDF for T;. Thus vr(Ti) < w(g) < Yar(Tiy1) -
3. On other hand any ~4z(T;)-function can be extended to a
DRDF of T;,1 by assigning weight 3 to v and weight 0 to its
neighbors, and so Y4r(Tis1) < Y4r(Ti) + 3. Thus y4p(Tiy;) =
var(T;) + 3. Now assume that D is a v(T;)-set, then DU {v} is
a dominating set for T;,;. Then y(Ti41) < ¥(T3) + 1, and so by
applying Corollary 6 and Proposition 3, Yar(Ti+1) < 3y(Tiy1) <
3Y(T3)+3 = var(Ti)+3 = Yar(Tit1)- Thus Yar(Tiy1) = 3y(Tigy).

Similarly we show that v;(T;,;) = 27(Ti4+1) and so by Corolla,ry
6, 71(Tix1) = 27ar(Ti1)/3. ™

We are now ready to provide a constructive characterization
for all trees T with 4;(T") = 2v4r(T)/3.

Theorem 12 For a tree T of order n > 3, v((T) = 2v4r(T)/3,
if and only if T € F.

Proof. The proof of sufficiency follows by an induction on the
number of operations performed to construct a tree T and ap- |
plying the Lemmas 10 and 11. We now prove the necessity part.
Let T' € F be a tree of order n > 3. We proceed by an induction *
on the order n of T with y;(T') = 2v4r(T')/3 to show that T € F. |
Clearly, diam(T) > 2. If diam(T) = 2, then T is a star and so |
T € F. Hence we may assume that diam(T') > 3. Suppose that
diam(T) = 3. Therefore, T is a double star. Let a and b be
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the central vertices of 7', If deg(a) = 2, then assigning 2 to b, |
to the leaf adjacent to a, and 0 to any other leaf of 7' yields an
[DF for T', and thus 4;(T') < 3. Furthermore, it is obvious that
5i(T) # 2. Thus 7(T') = 3. Similarly, it can be easily seen that
‘7’dR(T) < 5. Now, v(T') # 27var(T')/3, a contradiction. Thus
deg(a) = 3, and by symmetry, deg(b) > 3. Let T} and T; be the
components of ' — ab, where a € V(T1) and b € V(T3). Clearly
7, is a stars of order at least 3, for i = 1,2. Thus v/(T;) = 2
and 7ar(Ti) = 3 for i = 1,2. Since y/(T} —a) > y(T3), T is
obtained from Tj € F by Operation O;. Thus, we may assume
that diam(T') > 4.

Among all diametrical paths in T', let Z9z;...z4 be a diametrical
path in T such that deg(z4_1) is maximized. We root T at Zo.
We consider the following cases:

Case 1: deg(z4—1) > 3. Let S be a y(T)-set containing any
support vertex of T. Then z4_1 € S.

Assume that deg(zq_p) > 3. Let T" = T — T, ,. Then,
S — {z4-1} is a dominating set of 7", implying that ¥T') <
(T) = 1. On the other hand every dominating set of T' can
be extended to a dominating set of T by adding the vertex z4-1
to it, implying that v(T') < 4(T") + 1. Consequently, ¥(T') =
y(T') + 1. Every DRDF in T" can be extended to a DRDF of
T by assigning 3 to z4—1 and 0 to any child of z4-1, and so
vr(T) < var(T") + 3. Suppose that v;(T") # 2var(T")/3. By
Corollary 6, Yar(T") < 3y(T") or v1(T") < 2¢(T"). If var(T") <
3y(T"), then 1ar(T) < Yar(T') +3 < 3(T") +3 = 31(T), a
contradiction, since by Corollary 6, yar(T) = 3y(T). Thus,
vr(T") = 3v(T"), Similarly, v;(T") = 2¢(T"). By Corollary 6,
Y(T') = 2v4r(T")/3. By the inductive hypothesis, T' € F. We
show that v7(T" — z4_9) > v1(T"). Every IDF for T — z4_9 can
be extended to an IDF of T by assigning 2 to z4-1 and 0 to
each child of z4_1, and so y(T) < 71(T' — z4-2) + 2. Thus,
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if y1(T' — ®a-2 ) v (T ) then v;(T) < (1" = Za—3) + 2
(M) +2=2T)+2 = 2¢T) = v1(T), a contradiction
Hence, 71(T" = d-3) > v1(T ) Therefore T' can be obtained from,
the tree T" by applying Operation O;. Consequently, T' € F.

Next assume that deg(zq_s) = 2. Let 7" = T =Tz, ,. Let D he
a 7(T)-set containing any support vertex of T' Thus z4-1 € D,
Clearly we may assume that z4-5 & D. Then D — {z4-1} is
a dominating set of 7", and so y(T") < 7(T) — 1. On the
other hand, every dominating set of 7" can be extended to a
dominating set of T' by adding the vertex z4—1 to it, imply-
ing that ¥(T) < ¥(T") + 1. Consequently, ¥(T) = ¥(T") +
1. Every DRDF in T’ can be extended to a DRDF of T by
assigning 3 to 241 and 0 to each neighbor of z4-1, and so
Yar(T) < var(T")+3. I y1(T") # 27ar(T")/3, then by Corollary
6, yar(T") < 3¥(T") or y1(T") < 29(T"). If var(T") < 3 (T,
then yar(T) < Yar(T) +3 < 3y(T") + 3 = 3y(T), a contra-
diction. Hence Yar(T") = 3y(T"). Similarly, y(T") = 2y(T").
By Corollary 6, y1(T") = 2v4r(T")/3. If |[V(T")| 2 3, then by
the inductive hypothesis, 7" € F. Hence T is obtained from
the tree T' by applying Operation ;. Consequently, T € F.
Thus assume that |V(T")| = 2. Let 7" = T — T, ,. Clearly,
T" is a path of order 3, and clearly 7" € F. It is obvious that
vi(T" — ) > ~1(T"). Since T, , is a star of order at least
three, we deduce that T is obtained from 7" € F by Operation

;. Consequently, T € F.

Case 2: deg(z4-1) = 2.
We show that deg(z4—2) = 2. Suppose that deg(zs_s) > 3.
Then any children of z4_7 is a support vertex of degree 2 or a

leaf.

Assume that z4_o is not a support vertex. Let 7" =T — T, _,
and A = L(T;,_,) U{za—2}. Let D be a minimum dominating
set of T containing any support vertex of T. If z4_o & D,




then D = $(Tx,.,) 18 a dominating set of 7", and so ¥ (T") <
NOE 18(Tz,.0)| = YT) = Al + 1. Thus assume that 2, , € D.
Then (DU {24-3}) = (S(Tryy) U {2a-2}) is a dominating set
of T, and 50 ¥(T") £ UT) = [S(Tz,,)l = 4(T) = |A| + 1. On
the other hand, every dominating set of 7" can be extended to
a dominating set of T' by adding S(Tz,_,) to it, implying that
(T) £ ~(T") +|A| - 1. Consequently, YT) = 4(T") + |A|-1. I
D' be ay(T")-set, then the function f = (V(T) - (AuD'), A, D)
is an IDF for T', and so m(T) < 2|D'| + |A| = 2|D| - 2|A| +
2+ |Al = 2|D| —| Al + 2 < 2|D| = 2¥(T), a contradiction by
Corollary 6, since |A] > 3. Next assume that z,_; is a support
vertex. Let 7' =T —T;,_,. Let D be a (T')-set containing any
support vertex of . Then 41,243 € D, and thus D — {z4-1}
is a dominating set for T, implying that v(T") < y(T) - 1.
On the other hand every dominating set of 7" can be extended
to a dominating set of 7' by adding z4—; to it, implying that
~(T) £ (T")+1. Consequently, Y(T) =(T")+1. Now assume
that D' is a y(T")-set containing z4_o. Then the function f =
(vV(T) - (D'U {z4}),{z4},D') is an IDF for tree T. Hence
41(T) < w(f) =2|D'|+1=2y(T")+1 < 2¢(T), a contradiction
by Corollary 6. We conclude that deg(z4-2) = 2.

Let ' =T —T,,_, and D be a minimum dominating set of T
containing any support vertex of T. Thus, z4-1 € D, and we
may assume that Tq—o ¢ D. Then D—{z4-1} is a dominating set
of T', implying that v(T") < v(T) —1. On the other hand, every
dominating set of T” can be extended to a dominating set of T' by
adding z4_1 to it, implying that y(T) < y(T")+1. Consequently,
¥(T) = 4(T") + 1. Every DRDF in T" can be extended to a
DRDF of T by assigning 3 to z4—; and 0 to the neighbors of £4_1,
and 50 Yr(T) < Yar(T") + 3. I y1(T") # 24r(T")/3, then by
Corollary 6, Yar(T") < 3y(T") or 4;(T") < 24(T"). If 14r(T") <
39(T"), then 1ar(T) < 1p(T") +3 < 37(T")+3 = 3y(T), a con-
tradiction to the Corollary 6. Hence yar(T") = 37(T")- Similarly
(T") = 2y(T"). Hence, by Corollary 6, (T = 2var(T")/3.
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If |V(T")| = 2, then T = Ps, and clearly, y1(T') # 2v4r(T)/3.
Thus, [V(T")| > 3. By the inductive hypothesis, 7" € F. Hence,
T is obtained from T by Operation O,. Consequently, T' € F,
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