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Abstract This paper mainly presents a construction of LDPC codes based on
symplectic spaces. By two subspaces of type (m,r) to produce a subspace
of type (m+1,r) or (m+1,r+1) in IF}(,2V), we use all subspaces of type
(m,r) to mark rows and all subspaces of type (m+1,r) and (m+1,r+1) to
mark columns of check matrix H . A construction of LDPC codes has been
given based on symplectic spaces. As a special case, we use all subspaces of
type (1,0) to mark rows and all subspaces of type (2,0) and (2,1) to mark
columns of check matrix H) in IF(4), the cycles of length 6 of H is further
discussed.
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1 Introduction

In 1962, Gallager proposed LDPC codes. In 1963, Gallager published ”Low-
Density Parity-Check Code” which began to mark the birth of LDPC codes. How-
ever, LDPC codes were limited to the technical conditions at that time and lacked
a feasible decoding algorithm, which was largely ignored in the next 35 years.
The rediscovery of LDPC codes/ in the late 1990’s showed that the performance
of LDPC codes based on irregular bidirectional graphs is better than that of Turob
codes. K. Yu, et al.l’] constructed four classes of LDPC codes based on points and
lines of finite geometrices and gave the lower bounds of the minimum distance.
R. Tanner! gave a method that described for constructing long error-correcting
codes from one or more shorter error-correcting codes, referred to as subcodes,
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and a bipartite graph. H. Tang, ct al.l%! presented new algebraic methods for con-
structing codes based on hyperplanes of two different dimensions in finite ge-
ometries. L. Zeng, et al.l"l introduced five methods for constructing nonbinary
LDPC codes based on finite geometrices. These methods result in five classes of
nonbinary LDPC codes, one class of cyclic LDPC codes, three classes of quasi-
cyclic LDPC codes and one class of structured regular LDPC codes. S. Myung,
et al. % presented a special class of quasi-cyclic low-density parity-check (QC-
LDPC) codes, called block-type LDPC (B-LDPC) codes, which have an efficient
encoding algorithm due to the simple structure of their parity-check matrices.
D.Chandler, et al.l¥l studied the permutation action of a finite symplectic group
of characteristic 2 on the set of subspaces of its standard module which are either
totally isotropic or else complementary to totally isotropic subspaces with respect
to the alternating form. A general formula is obtained for the 2-rank of the inci-
dence matrix for the inclusion of one-dimensional subspaces in the distinguished
subspaces of a fixed dimension.

In recent years, the well-constructed LDPC codes based on matrix geometry,
finite geometry, graph theory and combinatorial designs are studied. Many re-
searchers have made greatly contribution to this area. C. Ma and his students/°]
presented three families of low-density parity-check (LDPC) codes are construct-
ed based on the totally isotropic subspaces of symplectic, unitary, and orthogonal
spaces over finite fields, respectively. The minimum distances of the three fam-
ilies of LDPC codes in some special cases are settled. X. Wang and Y. Haol'0l
gave two constructions of LDPC codes with larger grith based on the pseudo-
symplectic geometry over finite fields. At present, LDPC codes are considered to
be the best performance codes so far, LDPC codes are of great importance both in
theory and in practical applications. Therefore, LDPC codes have become a hot
topic to research .

The structure of the paper is following: In section 2 we give some prelim-
inaries. The main body of the paper are section 3. By two subspaces of type

(m,r) to produce a subspace of type (m+1,r) or (m+1,r+1) in IF¢(12V), we use
all subspaces of type (m,r) to mark rows and all subspaces of type (m+1,r) and
(m+1,r+1) to mark columns of check matrix H. A construction of LDPC codes

based on symplectic spaces has been given. As a special case, consider ]F‘(f), the
cycles of length 6 of Hj is discussed.

2 Preliminaries

LDPC codes are a class of linear block codes.

Definition 2.1 *l An LDPC code is defined as the null space of a parity check
matrix H with the following structural properties:
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(1) each row consists of p “ones”;
(2) each column consists of y “ones”;

(3) the number of “ones” in common between any two columns, denote A, is
not greater than 1;

(4) both p and y are small compared to the length of the code and the number
of rows in H.

Since p and y are small, H has a small density of “one” and hence is a sparse
matrix. For this reason, the code specified by H is called an LDPC code.

The LDPC code defined above is known as a regular LDPC code. If not all
the columns or all the rows of the parity check matrix H have the same number of
“ones”(or weights), an LDPC code is said to be irregular.

Let IF, be the finite field with g element, where g is a power of a prime, and v
a positive integer. We use

IF¢(12V) = {(xlava'” ,xZV)lxi GFq,i= 1’2’.“ ’2V}

to denote the 2v-dimensional row vector space over .

Theorem 2.1 [l Let K be an n x n alternate matrix over F,. The rank of K is
necessarily even. Furthermore, if K is of rank 2v(< n), then K is cogredient to

0o IV
-1V 0 :
0(n—2v)

Let K be a 2v x 2v nonsingular alternate matrix over F,. A 2v X 2v matrix T
over IF, is called a symplectic matrix with respect to K if

TKT' =K.

Clearly, 2v X 2v symplectic matrix with respect to nonsingular alternate matrix
K are nonsingular and they form a group with respect to matrix multiplication,
called the symplectic group of degree 2v with respect to K over I, and denoted

by SPZV(]F(]’K)'
Without loss of generality, we take

o IV
S

denote the symplectic group with respect to K over F, simply by denoted by
Spav(Fy), called it the symplectic group of degree 2v over Fy.
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Clearly, Spay(IFg) is a subgroup of GL,y(IF;) and the action of GLyy(IF4) on

F**) induces an action of Spzv(F,) on FSIZV) as follow:

F) x Spay(F,) - F)

((x1yx2y0 = y%2v), T) = (x1,22, -+« X2y T.
The elements of Spyy(IF,) are also called symplectic transformations. The vec-

tor space IF,(JZV) together with the above group action of the symplectic group
Spav(IF,), ia called the 2v-dimensional symplectic space over I,

Let P be an m-dimensional vector subspace of ]F((,zv). We use the same letter

P to denote a matrix representation of the vector subspace P, i.., Pis anm x 2v
matrix of rank m whose rows form a basis of P. It is easy to see that PKP*
is an alternate matrix. By Theorem 2.1, let the rank of PKP' be 2s, then we
call the vector subspace P a subspace of type (m,s). Clearly s <v and 25 < m.
In particular, subspaces of type (m,0) are called m-dimensional totally isotropic
subspaces, and subspaces of type (2s,s) are called 2s-dimensional non-isotropic
subspaces. It is clear that a subspace P is a totally isotropic if and only if PKP* =
0, and it is non-isotropic if and only if PKP* is nonsingular.

Theorem 2.2 ! Let 25 <m < v+s. Then the number of subspaces of type
(m,s) in the 2v-dimensional symplectic space over F is given by

\4

N(m,s;2v) = qu(v+s—m) - i=v+s—m+l- |
I(g*-1) IT (¢-1)

i=1 i=1

(4%-1)

Theorem 2.3 (! Subspaces of type (m,s) exist in the 2v-dimensional sym-
plectic space if and only if 2s <m <V +s.

Theorem 2.4 ! .# (my,s1;m,s;2V) is non-empty if and only if
2s<m<v+s,
251 <my <v+sy,

and
0<s—s51<m—m,

and these three conditions are equivalent to

2s<m<v+s

and
max{0,m; —s—s1} < min{m —2s,m; —2s1 }.
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Theorem 2.5 ' Let
25<m< V4§

and

max{0,my =5 =81} < {minm—2s,my —2s;}.
Then the number N(my,s1m,8;,2v) of subspaces of type (my, 1) contained in a
given subspace of type (m, s) in the 2v-dimensional symplectic space over IF, Is

min{m-2s,m 25}

N(my,s1;m,8;2v) = ) q
k=max{0,m —s-5) }

25y (s48)~my+k)t(my—~k)(m-25-k)

s m-2s

N @@=y M (@-1
¥ i=5-4-8) =my k-1 I=m=25~k| |
5 my =28 =k k )
[Mg¥-1) I (¢-1)1I1("-1)
i=1 i=1 I=1
Theorem 2.6 ! Let
2<m<V+s

and
max{0,m; — s —s1} < {minm —2s,m; —2s, }.

Then the number N (my,s13m,5;2V) of subspaces of type (m, s) containing a given
subspace of type (m1,51) in the 2v-dimensional symplectic space over ¥y is

N’(ml,sl;m,s;ZV)

min{m—2s,m; 25}
q2(v+s—m)(s+S| —-my +k)+(2v—m—k)(m| ~251—k)

k=max{0,m) —s—s}

Vs —mj my—2s|

I @-1) I (¢-1)
i=s+s1—my-+k+1 i=my—2s1—k+1
V+s—m m—2s—k k

f"-0" @ -0flw-1

i=1 i=1

Theorem 2.7 (!!] Take any 3 column vectors I, ly and I, m,n,k € {1,2,--- ,N},
m# n# kin H, if there is free of cycles of length 4 in H, then the necessary and
sufficient condition for H to have cycles of length 6 is that every two column vector
has 1 on the same line, i.e., 1Tl =1, 10 =1, 1T = 1.

Theorem 2.8 1] If there is free of cycles of length 4 in H, then the necessary

and sufficient condition for H to have free cycles of length 6 is that the condition
of Theorem 2.7 is dissatisfied.
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3 Main Results

In this paper we assume that Iy is a finite field of characteristic 2.

Theorem 3.1 Let V| and V, be two subspaces of type (m,r) of IF,(,ZV). If
dim(Vy + V3) = m+ 1, then V\ +V; is a subspace of type (m+1,r) of IFSZV),
where 2r <m < vV+r—1, or a subspace of type (m+ 1,r+1) of ngzv), where
2rel<m<Sv+r

Proof. Since V) and V; are two subspaces of type (m, r) of ]ngv) ,by Theorem 2.3,
2r <m < v+r. We can suppose that V; 4V, is a subspace of type (m+1,s), then
2s<m+1<v+s. Since V; CVy+V,, by Theorem 24,0 <s—r< L.

Ifs=r, then 2r <m <v+r—1,V, +V; is a subspace of type (m+1,r). If
s=r+1,then2r+1 <m<v+r,V,+Visasubspace of type (m+1,r+1). I

It is always assumed that 2r+1 < m < v+r— 1 is established, we can con-
struct check matrix H.

Let V be the set of all subspaces of type (m,r) of IFSIZV) that are called points.
Let L be the set of all subspaces of type (m+1,r) and (m+1,r+1) of FSIZV) that
are called lines. Let M = N(m,r;2v), N = N(m+1,r;2v) + N(m+1,r+1;2V).

Using points to mark rows of H, using lines to mark columns of H. We con-
struct an M X N matrix H as follow:

1 viel
hiy =
0 Vi ¢lk
wherev;eV,i=1,2,--- M,y e Lik=1,2,---,N.
H has the following structural properties:
(1) The column and row weights Y= N(m,r;m+1,r;2v) or Y= N(m,r;m +
1,r+1;2v) and p =N'(m,r;m+1,r;2v)+N'(m,r;m+1,r+1;2v), respectively.
(2) The null space of HX = 0 over [, gives a LDPC code C of length n =
N(m+1,r;2v)+N(m+1,r+1;2v).

N(m+1,r;2v)+N(m+1,r+12v)—N(m,r;2v)

(3) The code rate is at least Nt 1 2v) N[t L 129)

Lemma 3.1 For 1 <i,j <M and i # j, the rows v; and v; of H have at most
one position where they both are 1.

Proof. Suppose there exist v;,v; € V and l,/; € L(k# 1) sothat hy = hy = hj =

hji =1, that s to say, vi,v; € [y and v;,v; € ;. Further, v;+v; € [y and v; +v; € ;.
Since dimv; = dimv; = m and dim/y = dim/; = m+ 1, then there always exists
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I = v+ v =i which contradict to the assumptions that k # [, This prove the
Lemma, ()

Let us consider 4-dimensional symplectic space over I, Since 27 | <
v+ r= 1, then we choose m = 1,r = 0. Let V| be the set of all qubqpuwu of typc

(1,0) of ll“(") Let L) be the set of all subspaces of type (2,0) and (2,1) of ll‘("
Comtmcl a dmk matrix M, of LI)I’C codu Cy, Hy is an M) x N; matrix, whcrc

M =q +¢*+ q+l and Ny = g* +¢* 4+ 2¢> + ¢+ 1. The weights of row and
column of H) are ¢* +¢+ 1 and ¢ + 1, respectively.

According to Theorem 2.7 and Theorem 2.8, we take any 3 column vectors
L, bn a0 O,y k € {1,2,++- \ N1} m o n# kin Hy. Now let's discuss the cycles
of H).

Lemma 3.2 [f Im,ln, and Iy are subspaces of type (2,0) of IF((,“), then the girth
of Hy is 8.

Proof. Let vi,,vi, and v;, € V) that are pairwise collinear and vj,, viy, i, are not-

collinear, i.e.,
Vi Vi Vi
=" ,h=|",and =] ?].
A I

Since I, In and J; are subspaces of type (2,0) of IF((,“) , then InK1}, = 0, L,KI! =
0 and /Kl = 0. We conclude that v,,Kv‘ = v KV}, = vV}, = vi, KV}, =
vi, KV, = vi Kviy = vigKvj, = vi,Kv, = v;sKv‘ = 0. Further,

Vil i t V(lKVi-l V,'l KV:-2 V“KVSJ
Vi | K |Via| = |Via K Vfl vi, K vi-z vi, K V:-3 =
Viy Vi, K v:-l vi, K vfz vi, K vfya

Viy

Hence

is a subspace of type (3,0) of IF‘(;‘). By Theorem 2.3, the subspaces of type (3,0)

don’t exist in IF‘(f) . Therefore, the length of the circles is at least 8.

There is a cycles of length 8, such as
1 0 00 0100
o 0]”[0 10 0]’”[0 L9 0]”[0 0 1 o]'”

0010 1000
[0010]”[0001J’”[°°°1]“’[0001J'
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Lemma 33 LfLudmewbwadow(l,O;df",“ is @ subs
space of type (2,1) of By, then the length of the circles of Hy is a1 least 6

Proof. By Theorem 2.3, the subspaces of type (3, 1) existin Fy /. Let v, , v, and
Viy

vy € V; that [u,,} is a subspace of type (3,1) of F, . Hence,

Vig
Vi Vi, ! v"Kfl-, Vi, K',q Vi, K/.] o ﬂ
vi, | K |vp| = v,'sz‘,.' v,-sz‘.-z v&Kv'b = l_] ol-
Viz Viy v,-,Ks’h "JK’& V,'3Kf- #
We conclude that V,‘IKI’;| — v,'sz*'i’2 = vé,xf,.’ 2 v,-‘Kv'i2 = v, Kv, = v;,th =
v, v} =0, v, Kv|, =1, and v, K¥}, = —1. Since I, and I, are two subspaces of
type (2,0) of Fy, Iy is a subspace of type (2,1) of ¥y, then LKIL, =0, LKL =0

andsz—_-[_ol :)].hisobviouslytha

= Vi b Vi s V,'z
e[ = P e
Therefore, the length of the circles of H; is at least 6. [J

Lemma 34 [f1, and I, are subspaces of type (2,1) of ¥y, I is a subspace of
type (2,0) of Fy), then the length of the circles of H, is at least 6.

Proof. By Theorem 2.3, the subspaces of type (3,l)cxistinF.(,4). Let v;,,v;, and

Vi,

vi; €V that |v;, | is a subspace of type (3,1) of Fy -
Vi3
(1 0 0]

LetP=|(0 1 O0f,then
0 1 1)
—Vll -"'l "’il Vi ;
PV,'ZK(PV,'Z)" =PV,-2KV,'2 P

Vg Vi3 vis| |

’v,-lKv:-‘ VilK“iz Vi, Kl"‘-3
= P V,‘ZKV:-I V&Kt;.-z V;zKV:-3 P
Lv,~3Kv:.l v,-3Kv'52 VéKV',-}

5
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We conclude that vi, Kvi = vi,Kvj, = v, KV} = vy KV| = v KV, =0, v K}, =
) 3 : \ VO Yy L Ll
Vi Kv{-J =1 and v,-zl(v{-l = v,-JKV}| = =1. Since In and I, are two subspaces of

type (2,1) of 11“(4), Ik is a subspace of type (2,0) of F("), then I, K1f, = [ Ol |

1
I.KIl, = [_‘_)1 0] and [t K1} = 0. It is obviously that
Vi Vi Vi
L, = h l = | L=1"
o= e [ e = )
Therefore, the length of the circles of H; is at least 6. (]

Lemma 3.5 If Im, In and l are subspaces of type (2,1) ofIF‘(4), then the length
of the circles of H\ is at least 6.

Proof. By Theorem 2.3, the subspace of type (3,1) exist in IFSI‘*)_ Let v;,,vi, and

Vi,

vi; €V that [v;, | is a subspace of type (3,1)0“1.*((14).
[Viy
1 0 0

LetP=|0 1 O0],then
iy
B t
Viy Vi Vi Viy
P Viz} K( [VQJ )t = P viz K Vi2 Pl

Vig Vi | Viy Viy

Vi Kvi, v Kv,, v Kv;,
= WP Viy K Vi’l Vi K V:-2 Vip K V:-3 P
Vi, K V?, Vi, Kvi, viK Viy

5o

We conclude that v; K vﬁ-l =K vf’2 =K v:-3 =0,v;, K v§2 = va.s =v, KV, =1
and v,-zKV,.l = v,-JK\f;' = v,-3Kv:-2 = —1 Since I, I, and J; are subspaces of type

4 0.1 0 1 0 1
(2,1) of F§ ’,thenlmKliﬁ[—l o}’l"Kl:‘Z[—l 0] a“dl"Klt=[—1 o]'

I, = Vil s (P ag g = e

. [V‘J " [vis] i Viy

Therefore, the length of the circles of H; is at least 6. [
From the above lemmas and Theorem 2.7, we have

It is obviously that
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N(2,0;4) +

.01.10.-01.00_01.
O O rm O Om O OO0 —0O
—_0 OO0 OO0 MO O O ™ -

5-10- -1 0- 105-10-0 Oh-lO —10-

yh2

yhs =
I8

by =
g =
b=
yl30 =
3=

24224241 =15N,

..Ol..OO..lod-Ol.Ol.-Ola-O 1-01_
—_O O O mm—w OO0 OO0 —O O m—

CO O OO0 O mM O O O —O

-O IL—!OO-—IO-MI-IO-—OO-OI -10-01

= L
I I Il I I I Il I
S TS T T <8 8

N(1,0;4)

+2x22424 1 =35. We can get

)i P L

) -1 0 0 OJ .O OI_ -O lJ -1 0. .O = 0 ki .0 1.
CO O mr Ord O~ MO OO0 O —

hOl-—l On—HO-FlO-—lO-OO —“O-OO-

Theorem 3.2 H, has cycles of length 6.

Example 3.1 InF{", M,

N(2,1;4) =242}

166

h3
he
ho
hn
hs
b
I3
I3



We construct a 15 x 35 matrix Hy as follow:

00000000101010011000110000000000 ;
|800000000lI0000000000000|00|0008??
00000000010101010100000110000000000
01000000000011000000000001100101000
00000001001000100010000100000110000
11100000000000010011001000000000000
00011000000010000101000000001010000
H = 00010100000100001010000000110000000
00100000110000000000000001010010100
00000010000001100001100000010000010
10001010000000001000000100000001100
00000110100000000000001010001100000
01000101000000000100100000000000101
00001001010000000000011000100000010
L0011000000000010000001001000000100 14

It is clearly to obtain that

(1) each row has weight p; = N'(1,0;2,0;4) 4+ N'(1,0;2,1;4) = 7.

(2) each column has weight n = N(1,0;2,0;4) = N(1,0;2, 1;4) = 3.

(3) H has cycles of length 6.

The null space in ]F£4) gives a regular LDPC C; of length 35 with the code rate
0.571428 and minimum distance is at lest 4.

4 Conclusion

In this work we introduce a construction of LDPC codes based on symplectic
spaces. By two subspaces of type (m,r) to produce a subspace of type (m+1,r)
or (m+1,r+1)in IF‘(I2V) , we use all subspaces of type (m,r) to mark rows and all
subspaces of type (m+ 1,r) and (m+ 1,7+ 1) to mark columns of check matrix
H. A construction of LDPC codes based on symplectic spaces has been given. As
a special case, we choose m =1 and r = 0 to construct check matrix H in IFSf)
and the cycles of length 6 of Hj is further discussed.
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