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Abstract

An edge-magic total labeling of a graph G = (V| E) is an assignment
of integers 1,2,...,|V| + |E| to the vertices and edges of the graph so
that the sum of the labels of any edge uv and the labels on vertices u
and v is constant. It is known that the class of complete graphs on n
vertices, Kn, are not edge-magic for any n > 7. The edge magic number
MEg(K,) is defined to be the minimum number ¢ of isolated vertices such
that K, U tK; is edge-magic. In this paper we show that, for n > 10,
MEg(Kp) < fat1+57— 322—‘@- where f; is the i*® Fibonacci number. With
the aid of a computer, we also show that Mg(K7) = 4, Me(Ks) = 10,
and MEg(Kj9) = 19, answering several questions posed by W. D. Wallis.

1 Introduction

For a simple, undirected graph G with vertex set V and edge set E, we define
a labeling as an injective map A from V U E to the integers; a total labeling
is defined as a bijective labeling with range [|V| + |E|]. A graph is said to be
edge-magic if there exists a labeling A with the property that for each edge uv
in G the sum A\(u) + A(uv) + A(v) = p for a constant p. In this context, p will
be called the magic constant of the labeling. If this labeling is total, we say that
G has an edge magic total labeling abbreviated EMTL. For example, Figure 1
gives an edge-magic total labeling of K4 — {e} with magic constant 12.
Edge-magic total labelings were introduced by Ringel and Llado in 1996
(1]. In [3], Wallis, Baskoro, Miller, and Slamin enumerated every possible edge-
magic total labeling of complete graphs and proved that the complete graph K,
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Figure 1: Edge-Magic Total Labeling of K4 — {e}

is not edge-magic if n = 4 or if n > 7. In light of this theorem, it is natural to
ask for some measurement of how far from edge-magic a given complete graph
is. This idea led Wallis [2] to define the magic number Mg(Ky,) as the minimum
number ¢ of isolated vertices such that K, UtK; is edge-magic. Figure 2 shows
an edge-magic total labeling of K; U K; using one isolated point, illustrating

that ME(K4) = 1.,

Figure 2: Edge-Magic Total Labeling of K4 U K;

Using the magic number as a measure of how far from edge-magic complete
graphs are, Wallis [2] posed two problems: one asking for the magic numbers of
K7 and of Kg and the other asking for bounds on Mg(Ky). In this paper, we
solve an extended form of the first problem and provide a new upper bound for
MEg(K,). Much of our work depends upon the construction of a new element
of a particular category of sequences, discussed in the next section.

2 Well-spread Sequences

In this section we will introduce a specific type of sequence that provides can-
didates for vertex labels in an edge-magic total labeling of a complete graph

together with isolated vertices.
A well-spread sequence is a strictly increasing sequence {a;}i~, of integers
in which all pairwise sums of elements are distinct.

Lemma 1. Any edge-magic labeling A of K, requires the labels used for the
vertices to form a well-spread sequence.

80



Proof. Suppose, by way of contradiction, that there is some edge-magic labeling
of Ky, in which the labels on the vertices do not form a well-spread sequence.
Let the magic constant of the labeling be y. Given y; the label used on edge
uv must be p — (A(u) + A(v)). Since the sequence of labels on the vertices is
not well-spread, the sums A(u) 4+ A(v) are the same for different pairs (u,v) of
vertices and it is necessary to use the same label on two distinct edges, violating
the bijective requirement of a labeling. The result follows. O

For a well-spread sequence A = {a;}i-;, let p(A) be defined as follows:
p(A) =1if a1 > 1, p(A) =2if a1 =1 and az > 2, p(A) =3 if a) = 1,03 = 2,
and az > 3, and p(A) = 4 if ay = 1,02 = 2, and a3 = 3. Note that there
is no well-spread sequence in which a; = 1,a; = 2,a3 = 3, and a4 = 4 since
that would force a; + a4 = a2 + ag; hence p(A) is defined for all well-spread
sequences.

We will say a sequence A is doubly well-spread if an+an_1+p(A)—a;—a; #
ay for any %,j,k € [n]. Doubly well-spread sequences serve to provide a basis
for the labelings used in this paper.

Lemma 2. The elements of any doubly well-spread sequence A = {a;}? pro-
vide candidates for the vertez labels of some edge-magic labeling of K, (not
necessarily a total labeling).

Proof. Since the sequence A is well-spread, the sum of every pair of vertex labels
is distinct, and therefore no edge label will need to be repeated. It remains to
show that there exists a labeling using the elements of this sequence as the
vertex labels in which no element of the sequence itself is needed as an edge
label.

Let a; be the label on vertex v; so that a, is the label on v, and a,—; is the
label on v,—;. Label the edge v,vn—1 with p(A). Hence the magic constant
must be p = a, + an—1 + p(A).

With magic constant p, the label for an edge v;v; is p — a; — ax. Since p =
@y, + an—1 + p(A) and no label may be used more than once, we require an, +
a,_1 + p(A) — a; — ax to be distinct from every term in the sequence, namely
@n + @n—1 + p(A) — a; — ax # a; for all 4, j, k such that 1 < 1,5,k < n. Since A
is doubly well-spread, the above inequality holds and the result follows. a

Define n(A) = an + an—1 — a2 — a1 + p(A). Note that n(A) is actually
the largest label required in an edge-magic labeling of K, that uses doubly
well-spread sequence A for the vertex labels.

Lemma 3. Given a doubly well-spread sequence A = {a;}}=,, the edge-magic
labeling from Lemma 2 can be an extended to an edge-magic total labeling of
K, UtK; witht =n(A) —n — (3) and magic constant p = an + an—1 + p(A).

Proof. We will construct the edge-magic total labeling from the set

L ={1,2,...,n(A)}, which contains the given doubly well-spread sequence A.
Let K, have the labeling from Lemma 2 that has each vertex labeled with some
a; € A. Set t = n(A) —n— (3) and append ¢ copies of K to the graph. Assign

81



each unused label from the set L to one of the ¢t K;’s. Since the total number
of labels used on the K, is the n from sequence A and one for each of the (’2‘)
edges, the unused labels will fit exactly on the ¢ copies of K; and the edge-magic
labeling has been extended to a edge-magic total labeling as desired. O

Lemma 2 ensures that finding a doubly well-spread sequence A with n terms
coincides with finding an edge-magic labeling of K,,, however, other well-spread
sequences may also provide edge-magic labelings of K, by using a different
definition of p(A) for the smallest edge label. Lemma 3 allows us to extend
the labeling of K, provided by a doubly well-spread sequence to an edge-magic
total labeling of K, U tk; with t = n(A) —n — (3). We will make use of these
two properties of doubly well-spread sequences throughout the paper.

3 Bounds for Mg(K,)

In this section we provide two constructive upper bounds on Mg (K. n), answering
a question posed by Wallis [2].

3.1 Upper bound for Mg(K,), n>7

First define fo =0, fi =1, fo =1, and fn4+1 = frn—1 + fn, the usual Fibonacci
sequence, and define F;, = {f; ?:21; we call F,, the n-term truncated Fibonacci

sequence. The n-term truncated Fibonacci sequence will provide the first bound,
holding for all n > 7.

Claim 1. For eachn € Z*, F,, is a doubly well-spread sequence.

Proof. First we show that F;, is a well-spread sequence. Suppose, by way of
contradiction, that it is not: then there exist four distinct elements f;, f;, fx, fi
such that f; + f; = fx + fi.

Suppose without loss of generality that i is the largest index of ¢, j, k, [; hence
k =1 — p for some p and | = ¢ — q for some ¢. Since f; may be written as a sum
of the previous terms in the sequence, we may rewrite f; as fi_p + fi_g + W
where W is the rest of the terms needed to compose f;. Note that W > 0. Now
we have: fi_p+ ficq+ W+ fj = fy + fi. Since i —p =k and i — q = [, this
forces W + f; = 0, however no term in F}, is 0 and we have a contradiction.

Next we show that F,, is doubly well-spread. Since fo =1, f3 = 2,f; =
3, p(F,) = 4. As before, suppose F, is not doubly well-spread, this forces
fa+1+ fo+p(Fn) — fi — fj = fx for 4,5,k < n. Without loss of generality, we
may assume that ¢ < 3.

If fx = fo+1, then we have f, +4 = f; + f;. If f; = fa41 also, then the
contradiction is immediate. If instead f; < fn41, it is possible to rewrite f,
as fj + W where W > 0 is zero or a sum of other elements of F,,. This gives
W +4 = f;. If W =0, the contradiction is immediate since 4 is not a Fibonacci
number. Furthermore, if W # 0, then it may be rewritten as f; + W’ with
W' > 0. This gives W’ + 4 = 0, certainly a contradiction.
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If fx < fa+1, then we may follow a similar process to the above, rewriting
fn+1 88 fy + W and f, as f; + W', This forces W + W’ + 4 = f;, and we can
then rewrite W as f; + W” and obtain the same contradiction as above. O

The above claim gives a doubly well-spread sequence, which allows us to
prove the following upper bound on the magic number of K,.

Theorem 1. For any integer n > 7,

Mg(K,) < % (

42
14vB) | (n+n-2
2 ) "

Proof. Using F},, construct an edge-magic total labeling for K, UtK; by the
construction in Lemma 3. Then t = n(F,) — n — (3). Since Mg(Kp) is the
minimum ¢ of all labelings, we utilize the closed form of the i*! Fibonacci number
to obtain:

Mg(Ky) <t =n(F,) —n— (’;)

- bt st (D

=fn+2+1_n_<g> |

+2
tof /B ) n24n =2
V5 2 2

as desired. 0

While this gives an upper bound on Mg(K,) for any n > 7, it can be
improved substantially for larger values of n.

3.2 Upper bound for Mg(K,), n > 10

By using the n-term truncated Fibonacci sequence as a base, we can construct
a second well-spread sequence that will allow us to manufacture an improved
labeling for larger complete graphs.

Let F}, be the n-term truncated Fibonacci sequence from the previous subsec-
tion and define F} = {g;}", as follows: set gn = fnt1 + 33, gn—1 = fnt+1 +22,
n-2 = fop1+ 11, a0d g = frp1 — fa41-i for 1 < i < n—3. We call the
sequence F)| the semi-involuted Fibonacci sequence. In order to construct a la-
beling with the semi-involuted Fibonacci sequence, we must first show that F]
is well-spread. The proof of this fact requires to following observation.

Define a positive integer d to be a safe difference for a sequence {b;}j-, if d
is such that b; + b; # bx — d for distinct %, 5,k € [n)].
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Observation 1. The numbers 11, 22, 24, 33, 35, and 46 are all safe differences
for the Fibonacci sequence starting at fq = 3.

Proof. Let d be one of the given differences and suppose by way of contradiction
that there exist 1, j,k > 4 such that fx —d = f; + f; with f; > fr. Note first
that fi + f; < fx. Furthermore, fi 4+ fx < fx—1+ fk—3 and, if the sum is smaller
than that, it is smaller than fx_;. Since Fibonacci numbers grow rapidly, for
any k > 14 (f14 = 377), fx — 46 > fx—1+ fr—3, and hence d is a safe difference
whenever &k > 14.

For k < 7, fi — 11 < 2; certainly no pairs of Fibonacci numbers at least 3
will sum to one of these values, making d a safe difference for all k£ < 7.

We now inspect each of the given differences individually for the values of k
between 8 and 13.

Case: d = 11. Recall that, the assumption is fx —d = f; + f;. If kK = 8, this
becomes 10 = f; + f;, and since f; > f; > 3, the contradiction follows. Similarly
if K = 9, we must have 23 = f; + fj; since fx_1 + fk—3 > 23, the maximum
sum is fx—) = 21 and the contradiction follows. The case when k = 10 follows
identically, as fx—1 < fx — 11 < fg—1 + fk—3. In the cases in which k = 11,12
and k = 13, we have that fx — 11 > fx_1 + fx—3. This gives that d = 11 is a
safe difference.

Case: d = 22. Since fg < 22, we need not consider that case. If k = 9, the
assumption gives 12 = f; + f;, again, certainly a contradiction. If k = 10, we
obtain 33 = f; + f;, which is also untrue. In the cases of k = 11,12 and 13, we
have fx —22 > fy_1 + fix—3. Thus d = 22 is a safe difference.

Case: d = 24. Since fg < 24, we need not consider that case. If k = 9, the
assumption gives 10 = f; + fj, certainly a contradiction. If kK = 10, we obtain
31 = f; + fj, which is also untrue. If ¥ = 11, the assumption gives 65 = f; + f;,
certainly a contradiction since no two Fibonacci numbers greater than 3 sum
to 65. The case when k = 12 follows from the fact that fr—; < fr — 24 <
fr—1 + fxk—3- In the case of k = 13, we have fr — 24 > fr—1 + fr—3. Hence
d = 24 is a safe difference.

Case: d = 33. Since fo = 34, the contradiction is trivial. If k& = 10, the
assumption gives 22 = f; + f;, certainly a contradiction. If k = 11, we obtain
56 = f;+ f;, which is also untrue. If k = 12, the assumption gives 111 = f; + f;,
certainly a contradiction since no two Fibonacci numbers greater than 3 sum to
111. In the case of k = 13, we have fx —24 > fx—1 + fk—3- Hence d = 33 is a
safe difference.

Case: d = 35. Since fo = 34, the contradiction is trivial. If k = 10, the
assumption gives 20 = f; + f;, certainly a contradiction. If k = 11, we obtain
54 = f;+ fj, which is also untrue. If k = 12, the assumption gives 109 = f; + f;,
certainly a contradiction since no two Fibonacci numbers greater than 3 sum to
109. In the case of k = 13, we have fy — 24 > frx—1 + fk—3. Hence d = 35 is a
safe difference.

Case: d = 46. Since fg = 34, the contradiction is trivial. If k = 10, the
assumption gives 9 = f; + fj, certainly a contradiction. If k = 11, we obtain
43 = f; + f;, which is also untrue. If k = 12, the assumption gives 98 = f; + f;»
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certainly a contradiction since no two Fibonacci numbers greater than 3 sum to
98. In the case of k = 13, we have 187 = f; + f;, also not a sum that can be
formed from Fibonacci numbers. Hence d = 46 is a safe difference. ]

With these safe differences, we can now prove that the semi-involuted Fi-
bonacci sequence is well-spread.

Claim 2. The sequence F) is well-spread.

Proof. We must show that g; + g; # gx + g for distinct 4, j, k,{. Without loss
of generality we may assume that ¢ > j,k,l and k > [. The proof is split into
cases depending upon 1.

Case: i < n— 3. Suppose, by way of contradiction, that g; + g; = gk +
for some 1, j, k,! € [n — 3]. By definition of the terms, we have:

fa+1 = Farr—i + fod1 — Fati-k=j = fas1 — fat1—k + fat1 — fat1=0
far1—i + fav1—k = fat1-j + fas1-1-

Since each of 1, j, k, [ are distinct and the n-term truncated Fibonacci sequences
is well-spread, this is certainly a contradiction.

Case: 1 = n. As before, suppose by way of contradiction that the sequence is
not well-spread. To attain a series of contradictions, we consider the possibilities
for j and k.

If j = n — 1, the result is trivial since g, and gn—1 are the largest terms.

If j = n— 2, then k = n — 1, otherwise the result is also trivial. Suppose
that this is the case and that there is some [ such that g, + gn—2 = gn—1 + gi-
By the definition of the semi-involuted Fibonacci sequence we have:

far1 +33+ fap1 +11 = frop1 + 22+ fogp1 — fat1-t
22 = = fay11
which is certainly a contradiction.

If instead, j < n — 3 we condition upon k.
Consider the case in which kK = n — 1. This gives:

In+9i =0n-1+4q
a1 +33+ fat1 — fn+1—j =fa1+22+q
fann+11 =g + fat1-j
If I < n—3, we have 11 = fp41-j — fn41-1- Since the only Fibonacci numbers
whose difference is 11 are 13 and 2, and since | < n — 3, fat1-1 = f4 = 3, this
gives the needed contradiction.

If instead, | =n — 2, we have 0 = f,4,_j, a straightforward contradiction.
Now consider the case in which k = n — 2. This gives:

Int G =0n-2+ag
fn+1 5 33+ fn+1 = fn+1—j = fn+1 +41F fn+1 o fn+1—l
fat11 +22= Fadi=g:
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No Fibonacci numbers have a difference of 22, resulting in the needed contra-

diction.
Finally consider the case in which k¥ < n — 3. In this instance, we have:

Jat1 + 33+ fat1 = fat1—j = fat1 = fati—k + fas1 — frt1-i
fat1=k + fat1-1 = fay1-5 — 33.

Together with Observation 1, this gives the contradiction.

Case: © = n— 1. As above, suppose by way of contradiction that the
sequence is not well-spread. To attain a series of contradictions, we consider the
possibilities for j and k.

If 5 = n -2, the result is trivial, since ¢ > j, k, .

If j <n-3and k=n-—2, then we have:

In-1+9; = gn-2+ g
far1 + 22+ foy1 = fari—j = fatr1 + 11+ fop1 — fas1
11 = fat1-5 = fat1-1-

Just as before, no two members of the Fibonacci sequence greater than 3, have
difference 11 and the contradiction follows.
If instead, j,k,l < n — 3, we have:

In-1+g; =g+ a
frat1 + 224 for1 — fat1—j = fat1 = fari—k + fot1 — fay1—
frn+1-5 —22 = frp1-k + fag1-

By Observation 1, the contradiction follows.

Case: i = n — 2. Finally we consider the case in which 2 =n — 2 and all of
j,k,1 < n—3. As before, suppose that the sequence is not well-spread. This
gives:

In—2+9g; =g+ q
forr + 11+ fog1 = faej = fos1 — fop1—k + o1 — frt1—
Fagi=5= 11 = fapiig+ farizi

By Observation 1, we obtain a contradiction and the result follows.
Thus the semi-involuted Fibonacci sequence is well-spread. O

Unfortunately, the semi-involuted Fibonacci sequence is not doubly well-
spread with the usual definition of p(F]) = 1. However, by instead setting
p(F}) = 2 the sequence becomes doubly well-spread. The proof requires a quick

observation.

Observation 2. Let z be one of 13,, 24, 35. Then any k< n, fopy1— fr #
provided n > 10.
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Proof. Suppose by way of contradiction that f,.; — fi = z for some k < n. We
consider two cases, k =n and k < n.
Case: k =n. If k =n, then we have f,_; = z. Sincen > 10, n—1> 9 and
S0 fn—1 > 34. The contradiction follows since 35 is not a Fibonacci number.
Case: k < n. If k < n, then we have f, + W = z, where W is the
remainder from the fact that f,_; = fi + W. Since f,, > 55, the contradiction
is immediate. a

Claim 3. Let F} = {g:}, be the n-term semi-involuted Fibonacci sequence

with n > 10 and set p(F}) = 2. Then F} is doubly well-spread, namely g, +
gn-1+2—gi — 9; # gk for any i, j,k € [n].

Proof. As in the proof of Claim 2, assume without loss of generality that i > j.
We first observe that:

Intn1+2=fotr1+33+ fnp1 +22+2
= 2fn41 + 57.

As before, we split the proof into cases depending on the value of ¢ and
pursue & contradiction in each instance.

Case: © < n—3. Suppose by way of contradiction that g, +gn_1+2—g;—g; =
gy, for some i,j <n—3 and k € [n]. Then:

2fn41+57—gi — g; = gk
2fn+1 4+ 57 — (fas1 = frr1-i) = (Fas1 = fay1-j) = gk
fny1—i + fag1-j +57=gx

If kK = n, then the last line becomes fp4+1—i+ fat+1-j = frnt+1—24, a contradiction
by Observation 1.

If K = n—1, then the last line becomes fni1—i + fnt1—5 = fry1 — 35, a
contradiction by Observation 1.

If kK = n — 2, then the last line becomes fn41—i + fat1—j = fay1 — 46, a
contradiction by Observation 1.

If k < n—3, then the last line becomes fn+1-i+ fat+1-j = frn+1—fny1-x—57.
Since n > 10, it can readily be observed that fn41 — 57 # fz + fy + f for any
z,y,z < n, giving us the necessary contradiction.

Case: i = n. Suppose by way of contradiction that g, +gn—1+2—9gn—9g; = g
for some j < n—1 and k € [n]. Then we have fny1 + 24 — gj = gx.

If k = n, then this becomes g; = —11; certainly a contradiction.

If kK = n — 1, then this becomes g; = 2, also a contradiction since the
minimum value of any g; = g1 = fa41 — fn > 2 for all n > 10.

If k = n — 2, then this becomes g; = 13. Observation 2 gives us the contra-
diction.

Finally, if K < n — 3, then we have: 24 = g; — fp41-k. If j < n — 3, then
we have a contradiction since 24 is a safe difference. If instead, j = n —1 or
j =n—2, then we have either frn41-k = frny1—2 or fnt1 — 13 respectively, also
contradictions by Observation 2.
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Case: i = n— 1. Suppose by way of contradiction that gn+gn-1+2—gn—1 -
g; = g for some j < n—2 and k € [n]. Then we have fns1 + 35 — gj = g&-

If k = n, then this becomes g; = 2; a contradiction since the minimum value
of any g; is g1 = fas1 — fa >2foralln > 10.

If k = n — 1, then this becomes g; = 13. Observation 2 gives us the contra-
diction.

If k = n — 2, then this becomes g; = 24. Observation 2 gives us the contra-
diction.

Finally, if k < n — 3, then we have: 35 = g; — fos1-%. If j < n — 3, then
we have a contradiction since 35 is a safe difference. If instead, j = n — 2, then
Observation 2 gives us the contradiction.

Case: i = n—2. Suppose by way of contradiction that g, 4+ ¢gn—1+2—gn-2—
g; = gk for some j <n—3 and k € [n]. Then we have 46 + fr1+1_;j = &-

If k = n, then this becomes fns1-j = fn+1 — 13; a contradiction by Obser-
vation 2.

If k = n — 1, then this becomes fn11—; = fa+1 — 24. Observation 2 gives us
the contradiction.

If k = n— 2, then this becomes fn41_j = fn31 —35. Observation 2 gives us
the contradiction.

Finally, if k < n—3, then we have: f,.:1—35= fo;1_x+ fas1-&- Since 35is
a safe difference, this provides the desired contradiction and the result follows.

O

Using the n-term semi-involuted Fibonacci sequence, we can construct an
edge magic labeling for K,, by Lemma 2 and an EMTL of K, U tK; with
t = gn+9n_1+2—g1—g2—n—(3) by Lemma 3, using p(F}) =2 as the smallest
edge label. This new construction allows the following bound for Mg(K,).

Theorem 2. For n > 10, we have:

n+1
Me(K,) < [—1— (H‘/g) ] +57— "2;".

NG 2

Proof. By Lemma 3, using the n-term semi-involuted Fibonacci sequence F} =
{g:}7_, with p(F}) = 2 we may construct an EMTL for K,UtK;. In the lemma,

88



t is exactly equal to the magic number of the labeling, so we have that:

ME(Kn)St=gn+gn—l+2“‘gl —0g2—n— (Z)
= (fa+1 +33) + (fa41 +22) + 2

= {err = Fartot) = Uns = Fosted) — = (’2")

=fo+ fa1+57T—n— (")

9
2
= far1 4 57=2 ;"
1
i 1 1+\/g mr 457 n2+n
=115 .

O

Whenever n > 10, this bound is strictly an improvement on that given by
the n-term truncated Fibonacci sequence.

4 Magic Numbers for Specific Complete Graphs

In this section we prove that Mg(K7) = 4, Mg(Ks) = 10 and Mg(Ky) = 19.
The lower bounds for much of this work depend on the nonexistence of well-
spread sequences satisfying the necessary conditions. This nonexistence was
shown using exhaustive computer searches created with C. The complete source
code for these searches is available by emailing the corresponding author, the
source code for the Ky problem is included in Appendix A.

Observation 3. For K4 we have Mg(K,4) = 1.

A labeling using one isolated vertex is illustrated in Figure 2, giving the upper
bound. For the lower bound, Corollary 2.1.1 in [2] states that the complete
graph K, is not edge-magic when n = 4(mod 8).

Theorem 3. The magic number of K7 is 4.

Proof. For the upper bound, observe that the sequence
A = {10,18,23,26,28,29, 30}

is a doubly well-spread sequence with p(A) = 1. Labeling the vertices with the
numbers from this sequence and giving the edge {29, 30} the label 1 gives magic
constant ¢ = 60 as in Lemma 3. The magic number for this labeling can be
calculated by finding the maximum label used and subtracting off the number
of labels used on the K7 itself, as the rest of the labels will need to be placed
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on the isolated vertices to make a total labeling. In this case, since p = 60
the maximum label will be 60 — (10 + 18) = 32 used on the {10,18} edge. So

Mg(K7) <32-28=4.
The lower bound comes from a computer search showing that there are no
doubly well-spread sequences that provide candidates for an EMTL of K7UtK,

when t < 3. O

Theorem 4. The magic number of Kg is 10.

Proof. To prove the upper bound, notice that A = {19, 25,31, 36,41, 43, 44,45}
is a doubly well-spread sequence with p(A) = 1. Constructing the labeling
using Lemma 3 gives magic constant p = 90 ans t = 46 — 36 = 10. Hence,

MEg(Ks) < 10.
The lower bound comes from a computer search showing that there are no

doubly well-spread sequences that provide candidates for an EMTL of Kg UtK,
when ¢t < 9. O

Theorem 5. The magic number of Kg 1s 19.

Proof. For the upper bound, notice that A = {26, 33, 40, 49, 54, 58, 59, 60, 62}
is a doubly well-spread sequence with p(A) = 1. Constructing the labeling
using Lemma 3 gives magic constant ;2 = 123 and t = 64 — 45 = 19 and thus,

Mg(K,) < 19.
The lower bound comes from a computer search showing that there are no
doubly well-spread sequences that provide candidates for an EMTL of Kq UtK,;

when t < 18. O

The patterns observed in the computer produced sequences and the basic
bounds on well-spread sequences lead us to the following conjecture:

Conjecture 1. It is possible to find an n-term doubly well-spread sequence with
largest term no larger than n? — 19.
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A Source code for confirming nonexistence of
well-spread
sequences needed in Section 4

// Well-spread Sequence producing code for K9 possible labelings

// Outline of Algorithm

// Initialize all the variables, especially important are M,
// the magic number, mu, the magic constant, toplabel, the
// largest label used in the labeling,

//and found, the number of sequences found.

// We declare x_1 to be the label of vertex 1,

// x_2 to be label of vertex 2, and so on.

// The top loop runs through all possible values for M
//between 0 and the upper bound

//given by the Fibonacci sequence;

// it breaks out upon finding all of the sequences satisfying
//the first M value reached.

// The x_i loops check each sequence in the order:

/] s 25,35 suve 509D
//then (1, 3, 4, . .), and (1, 4, . . .) . . . finally resetting
// to (2, 3, 4. . .) and going through all possible sequences.

// each loop incrementing one of the numbers in the sequence

// at a time. So in the first run through: we have the sequence
//(,2,3,4,5,6,7,8,9), the

// innermost loop increments the 9 until it reaches ’toplabel’,
//before kicking it back to the next (x_8) loop which

//changes the 8 to an 9 giving (1,2,3,4,5,6,9,10) and

// repeating the (x_9) loop. Once all of these have been checked,
// it kicks back to the x_7 and so on, checking every possible
//sequence of 9 numbers to see if it is doubly well-spread.

// Whenever a sequence is found, the found counter increments.
// Once this counter is nonzero, the loop is broken out of since
// we have found a possible candidate for a labeling as needed.
#include <iostream>

#include <string>

int main()
{ int mu=0; //declare magic constant to be 0.
int toplabel; //initialize the toplabel value to O.
int M; //declare M(9) to start at 0
int found =0; //declare sequences found counter to be 0.
for(M=0; M <=20; M++){
toplabel = M+45; //set upper toplabel on label numbers to
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max + deadpoints.
for(int x_1 = 2; x_1 <=toplabel-8; x_1++){
//Declare x_1 to be the first vertex label, run through
// all 1’s, then all 2’s, etc.
for(int x_2 = x_1+1; x_2<=toplabel-7; x_2++){
//Declare x_2 for v2 label test all 2’s, then 3’s and so on
int s_12=x_1+x_2;
//declare 812 to be edge sum for vl v2 edge.
for(int x_3 = x_2+1; x_3 <=toplabel-6; x_3++){
//checking all versions of the v3 label with x3
int s_13 = x_1+x_3; //declare more edge sums
int s_23 = x_2+x_3;
for(int x_4= x_3+1; x_4 <=toplabel-5; x_4++){
int s_14=x_1+x_4;
int s_24= x_2 + x_4; //more sums
int s_34 = x_3+x_4;
for(int x_5 = x_4+1; x_5 <=toplabel-4; x_5++){
int s_15=x_1 + x_5;
int s_25=x_2+x_5;
int s_35=x_3+x_5;
int s_45=x_4+x_5;
for(int x_6 =x_5+1; x_6 <=toplabel-3; x_6++){
int s_16=x_1+x_6;
int s_26=x_2+x_6;
int s_36=x_3+x_6;
int s_46 = x_4+x_6;
int s_56 = x_5+x_6;
for(int x_7=x_6+1; x_7 <=toplabel-2; x_7++){
int s_17= x_1+x_7;
int -8.27= x-21x_7;
int 8.37= X.3+x-7;
int s_47= x_4+x_T7;
int s_567= x_b+x_7;
int s_67 = x_6+x_7;
for(int x_8=x_7+1; x_8 <=toplabel-1; x_8++){
int s_18=x_1+x_8;
int s_28=x_2+x_8;
int s_38=x_3+x_8;
int s_48=x_4+x_8;
int s_568=x_5+x_8;
int s_68=x_6+x_8;
int s_78=x_7+x_8;
for(int x_9=x_8+1; x_9 <=toplabel; x_9++){

int s_19=x_1+x_9;
int s_29=x_2+x_9;
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int s_39=x_3+x_9;

int s_49=x_4+x_9;

int s_59=x_5+x_9;

int s_69=x_6+x_9;

int s_79=x_T7+x_9;

int s_89=x_8+x_9;

//compare each sum with every other sum, insuring

//they are not equal

1% 4

(s_12 '= s_23)&(s_12!=s_24)&(s_12 !=s_25)

g(s_12 !'= s_26)&(s_12 !=s_27)&(s_12 != s_28)
&(s_12 '=8_29) &

(s_13 != s_23)&(s_13!=s_24)&(s_13 !=s_25)
&(s_13 '= s_26)&(s_13 !=s_27)&(s_13 != s_28)
&(s_13 !=8s8_29) &

(s_14 '= s_23)&(s_14!=s_24)&(s_14 !=s_25)
&(s_14 '= s_26) &(s_14 '=s_27) &(s_14 '= s_28)
&(s_14 '= s_29) &

(s_15 !'= s_23)&(s_15!=5_24)&(s_15 !=s_25)
&(s_15 !'= s_26)&(s_15 !=s_27)&(s_15 != s_28)
&(s_15 !'= s_29) &

(s_16 != s_23)&(s_16!=s_24)&(s_16 !=s_25)
&(s_16 != s_26)&(s_16 1=s_27)&(s_16 != s_28)
&(s_16 !'= s_29) &

(s_17 '= s_23)&(s_17!=s_24)&(s_17 !'=s_25)
&(s_17 '= s_26)&(s_17 '=s_27)&(s_17 != s_28)
&(s_17 1= s_29) &

(s_18 !'= s_23)&(s_18!=s_24)&(s_18 !=s_25)
&(s_18 != s_26) &(s_18 !=s_27)&(s_18 != s_28)
&(s_18 != s_29) &

(5_19 !'= 5_23)&(s_19!=s_24)&(s_19 !=s_25)
&(s_19 '= s_26)&(s_19 !'=s_27)&(s_19 != s_28)
&(s_19 '=s_29) &

(s_12 '= s_34)&(s_12!=s_35)&(s_12 !=s_36)
&(s_12 1= s_37)&(s_12 '= s_38)&(s_12 != s_39) &

(5_13 1= s_34)&(s_13!=s_35)&(s_13 !=s_36)
&(s_13 1= s_37)&(s_13 != s_38)&(s_13 != s_39) &
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(s_14
&(s_14

(s_15

&(s_15 !

(s_16 !
&(s_16 !

(s_17

&(s_17 !

(s_18
&(s_18

(s_19

&(s_19 !

(s_12 !
&(s_12 !'=

(s_13
&(s_13

(s_14 !

&(s_14

(s_15
&(s_15

(s_16
&(s_16

(s_17 !
&(s_17 !

(s_18 !
&(s_18 !

(s_19

&(s_19 !

(s_12

&(s_12 !

=

:

1=
=

8_34)&(3_14!=S_35)&(8_14 I=5_36)
s_37)&(s_14 '= s_38)&(s_14 != s_39) &

= 5_34)&(s_15!=5_35)&(s_15 !=s_36)

s_37)&(s_15 = s_38)&(s_15 != s_39) &

s_34)&(s_161=s_35)&(s_16 !=s_36)
s_37) &(s_16 != s_38)&(s_16 != s_39) &

s_34)&(s_17!=s_35)&(s_17 1=s5_36)
s_37)&(s_17 '= s_38)&(s_17 != s_39) &

s_34)&(s_18!=s_35)&(s_18 !=s_36)

= s_37)&(s_18 != s_38)&(s_18 != 8_39) &

s_34)&(s_19'=s_35)&(s_19 !=s_36)
s_37)&(s_19 != s_38)&(s_19 != s_39) &

s_45)&(s_12!=s_46)&(s_12 !=s_47)
s_48)&(s_12 != s_49) &

= s5_45)&(s_13'=s_46)&(s_13 !=s_47)
= 5_48)&(s_13 != s_49) &

s_45)&(s_14'=s_46)&(s_14 '=s_47)
s_48) &(s_14 '= s_49) &

s_45)&(s_15!=s_46)&(s_15 !=s_47)
s_48) &(s_15 !'= s_49) &

s_45)&(s_16!=s_46)&(s_16 1=5_47)
s_48)&(s_16 != s_49) &

S_45)&(s_17!=s_46)&(s_17 !=s_47)
s_48) &(s_17 '= s_49) &

s_45)&(s_18!=s_46)&(s_18 \=s_47)
s_48) &(s_18 != s.49) &

S_45)&(s_19!=s_46)&(s_19 !'=s_47)
s_48)&(s_19 !'= s_49) &

s_56)&(s_12!=s_57)&(s_12 !=s_58)
s_59) &
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(s_13
&(s_13

(s_14 !
&(s_14 !

(s_15
&(s_15

(s_16
&(s_16

(s_17 !
&(s_17 !

(s_18 !

&(s_18

(s_19
&(s_19

(s.12 !

(s_13
(s_14
(s_15

(s_16 !=

(s_17
(s_18
(s_19
(s_12
(s_13
(s_14
(s_15
(s_16
(s_17
(s_18
(s_19
(s_12

(s_13 !

(s_14
(s_15
(s_16
(s_17

(s_18 !
(s_19 !

= s_89)
= s_89)

= s_89)

s_56)&(s_13!=s_57)&(s_13

= s_59) &

s_56)&(s_14!'=s_57)&(s_14

s_59) &

= s_56)&(s_15!=s_57)&(s_15
= s_59) &

= 5_56)&(s_16!=s_57)&(s_16
= s_59) &

s_56)&(s_17!=s_57)&(s_17

s_59) &

s_56)&(s_18
s_59) &

= s_56)&(s_19
= s_59) &

s_67)&(s_12
s_67)&(s_13

= s_67)&(s_14
= s_67)&(s_15

s_67)&(s_16

= s_67)&(s_17
= s5_67)&(s_18
= s_67)&(s_19
= s5_78)&(s_12

s_78)&(s_13
s_78)&(s_14

= s_78)&(s_15
= s_78)&(s_16

s_78)&(s_17

= 5_78)&(s_18
= s_78)&(s_19

s_89)
s_89)

s_89)

s_89)
s_89)

RP B RP RP RP RP R &

1=s_58)
!=s_58)
I=s_58)
I=s_58)
I=g5_58)
'= s_57)&(s_18 != s_58)
1= s_57)&(s_19 != s_58)
1= s_68)&(s_12 != s_69)
1= s_68)&(s_13 = s_69)
1= s_68)&(s_14 !'= s_69)
1= s_68)&(s_15 != s_69)
1= s_68)&(s_16 !'= s_69)
1= 5_68)&(s_17 != s_69)
1= 5_68)&(s_18 != s_69)
1= s_68)&(s_19 != s_69)
1= s5_79) &
1= s5_79) &
=s_79) &
1= s5_79) &
I=s5_79) &
I=s_79) &
1= s_79) &
1= s_79) &
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(s_23 != s_34)&(s_23!=s_35)&(s8_23 1=5_36)
&(s_23 !=s8_37)&(s_23 != s_38)&(s_23 != 8_39) &

(s_24 '= s_34)&(s_24!=s_35)&(s_24 1=5_36)
&(s_24 1=s_37)&(s_24 != s_38)&(s_24 != 8_39) &

(s_25 != s_34)&(s_251=5_35)&(s_25 1=5_36)
&(s_25 !=s_37)&(s_25 != 8_38)&(s_26 != 8_39) &

(s_26 != s_34)&(s_26!=s_35)&(s_26 1=s_36)
&(s_26 '=s8_37) &(s_26 1= 5_38)&(s_26 != s_39) &

(s_27 '= s_34)&(s_27!=s_35)&(s_27 !=8_36)
&(s_27 '=s_37)&(s_27 != s8_38)&(s_27 != 8_39) &

(s_28 != s_34)&(s_28!=s_35)&(s_28 !=s_36)
&(s_28 !=s_37)&(s_28 != s_38)&(s_28 != s5_39) &

(s_29 1= s_34)&(s_29!=s_35)&(s_29 !=s_36)
&(s_29 1=s_37)&(s_29 !'= s_38)&(s_29 != s_39) &

(s_23 '= s_45)&(s_23'=s_46)&(s_23 !=s_47)
&(s_23 != s_48)&(s_23 '= s5_49) &

(s_24 '= s_45)&(s_24!'=s_46)&(s_24 !=s_47)
&(s_24 '= s_48)&(s_24 '= s_49) &

(s_25 1= s_45)&(s_25'=s_46)&(s_25 !=s_47)
&(s_25 !'= s_48)&(s_25 != s_49) &

(s_26 != s_45)&(s_26!=s_46)&(s_26 !=s_47)
&(s_26 !'= s_48) &(s_26 != s_49) &

(s_27 '= s_45)&(s_27'=s_46)&(s_27 !'=s_47)
&(s_27 '= s_48)&(s_27 = s_49) &

(s_28 != s_45)&(s_28!=s_46)&(s_28 !=s_47)
&(s_28 != s_48)&(s_28 !'= s_49) &

(s_29 != s_45)&(s_29!=s_46)&(s_29 !=s_47)
&(s_29 != 5_48)&(s_29 '= s_49) &

(s_23 != s8_56)&(s_23!=s_57)&(s_23 1=s_58)
&(s_23 '= s_59) &

(s_24 '= s_56)&(s_24!=s_57)&(s_24 '=s_58)
&(s_24 !'= s_59) &
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(s_25
&£(s_25

(s_26
&(s_26

(s_27

&(s_27 !

(s_28
&(s_28
(s_29
&(s_29

s_56)&(s_25!=s_57)&(s_25

s_59) &

s_56)&(s_26!=s_57)&(s_26

s_59) &

s_56)&(s_27!=s_57)&(s_27

s_59) &

s_56)&(s_28!=s_5T7)&(s_28
= s5_59) &
= s_56)&(s_29!=s_57)&(s_29

s_59) &

s_67)&(s_23
s_67)&(s_24
s_67)&(s_25

= s_67)&(s_26
= s5_67)&(s_27
= s_67)&(s_28
= s_67)&(s_29
= s_78)&(s_23
= 5_78)&(s_24

s_78)&(s_25

= 5_78)&(s_26

s_78)&(s_27

= s_78)&(s_28

= s_89)
= s_89)

= s_89)
= s_89)

s_78)&(s_29

s_89)
s_89)

PR

s_89)

s_45)&(s_34

s_48)&(s_34 !

= 8_45)&(s_35 !=
= s_48)&(s_35
= s_45)&(s_36
= 5_48)&(s_36

s_45)&(s_37
s_48)&(s_37
S_45)&(s_38
s_48)&(s_38
s_45)&(s_39
8_48)&(s_39

= 5_68)&(s_23 !
= s_68)&(s_24 !
= s5_68)&(s_25 !
= s_68)&(s_26
= s_68)&(s_27
= s_68)&(s_28
= s_68)&(s_29 !
= s_79)
= §_79)
= s_T79)
= s_T79)
= s_79)
= s_79)
= s_79)

&

R

s_46)&(s_34 !

s_49) &

s_46)&(s_35 !

s_49) &

s_46)&(s_36 !

s_49) &

S_46)&(s_37 !

s_49) &

s_46)&(s_38 !

s_49) &

s_46)&(s_39 !

s_49) &
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I=s_58)
1=s_58)
I=5_58)
1=s5_58)

1=s_58)

s_69)
s_69)
s_69)

= s_69)
= s_69)
= 8_69)

s_69)

s_47)
s_47)
s_47)
s_47)
s_47)

s_47)

L R R = = 4



(s_34
&(s_34
(s_35
&(s_35
(s_36

&(s_36 !
(s_37 !

&(s_37
(s_38
&(s_38
(s_39
&(s_39

(s_34
(s_35
(s_36
(s_37
(s_38
(s_39
(s_34

(s_35 !

(s_36
(s_37
(s_38
(s_39
(s_34

(s_35 !
(s_36 !

(s_37
(s_38
(s_39

(s_45 !

&(s_45
(s_46
&(s_46
(s_47
&(s_47
(s_48
&(s_48
(s_49

&(s_49 !

(s_45
(s_46
(s_47

s_56)&(s_34
s_59) &

= 5_56)&(s_35 !
= s_59) &
8_56)&(s_36 !

s_59) &

s_56)&(s_37 !

s_59) &

= 5_56)&(s_38 !

s_59) &

= 5_56)&(s_39 !
= s_59) &

= 5_67)&(s_34
= 5_67)&(s_35
= 5_67)&(s_36
= s_67)&(s_37
= s_67)&(s_38
= 5_67)%(s_39

s_78)&(s_34
s_78)&(s_35
s_78)&(s_36

= s_78)&(s_37 !
s_78)&(s_38 !
= s5_78)&(s_39 !
= s5_89) &

s_89) &
s_89) &
s_89) &
s_89) &

&

= s_89)

s_56)&(s_45 !

s_59) &

= 8_56)&(s_46 !
= s_59) &
s_56)&(s_47 !
= 5_59) &
= 5_56)&(s_48 !
= s5_59) &
s_56)&(s_49 !

s_b9) &

s_67)&(s_45 !'=
= s_67)&(s_46
= s_67)&(s_47

8_57)&(s_34
s_57)&(s_35
s_b67)&(s_36
s_57)&(s_37
s_57)&(s_38
s_57)&(s_39

s_68)&(s_34
s_68)&(s_35

= s_68)&(s_36
= 5_68)&(s_37
= 5_68)&(s_38

s_68)&(s_39

=s_79) &
= s_T9)
= s_T79)

s_T79)

&
&
s_79) &
&
s_79) &

s_57)&(s_45
s_57)&(s_46
s_57)&(s_47
s_57)&(s_48
s_57)&(s_49

s_68)&(s_45
s_68)&(s_46

= 5_68)&(s_47
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1= s_58)
|= s_585
1= g_58)
1= s_58)
1= s_58)
1= s_58)
1= s_69)
I= 8_69)
I= 5_69)
I= 8_69)

I= 8_69)
1= 8_69)

1= s_58)
1= s_58)
1= 5_58)
I= s_58)

I1= s_58)

PR

I= s_69) &
1= 8_69) &
1= 5_69) &



(s_48 '= s_67)&(s_48 != s_68)&(s_48 != 5_69) &
(s_49 != s_67)&(s_49 !'= 5_68)&(s_49 !'= s5_69) &
(s_45 '= s_78)&(s_45 '=s_79) &
(s_46 !'= s_78)&(s_46 1= s_79) &
(s_47 != s_78)&(s_47 '=s_79) &
(s_48 !'= s_78)&(s_48 != s_79) &
(s_49 != s_78)&(s_49 != s_79) &
(s_45 != s_89) &
(s_46 != s_89) &
(s_47 '= s_89) &
(s_48 !'= s_89) &
(s_49 '= s_89) &
(s_56 != s_67)&(s_56 != s_68)&(s_56 != s_69) &
(s_57 '= s_67)&(s_57 != s_68)&(s_57 != s_69) &
(s_58 != s_67)&(s_58 != s_68)&(s_58 != 8_69) &
(s_59 != s_67)&(s_59 != s_68)&(s_59 != 8_69) &
(s_56 != s_78)&(s_56 != s_79) &
(s_57 !'= s_78)&(s_57 '= s_79) &
(s_58 != s_78)&(s_58 != s_79) &
(s_59 != s_78)&(s_59 != s8_79) &
(s_56 != s_89) &
(s_57 '= s_89) &
(s_58 != s_89) &
(s_59 != s_89) &
(s_67 != s_78)&(s_67 !'= s_79) &
(s_68 != s_78)&(s_68 != s_79)
(s_69 != s_78)&(s_69 '= s_79) &
(s_67 !'= s_89) &
(s_68 '= s_89) &
(s_69 !=s_89) &
(s_78 != s_89) &
(s_79 != s_89)
)

&

mu=s_89+1;
//check for the smallest value of edge label for edge 89.
//check to make sure that we can fill in each gap and none
// of the edge labels equal the vertex labels.

if(

(mu-s_12 <=toplabel) &
(mu-s_12!'= x_1)&(mu-s_12!=x_2)&(mu-s_12!=x_3)
& (mu-s_12!= x_4)&(mu-s_12!=x_5)&(mu-s_12!= x_6)
& (mu-s_12!=x_7)&(mu-s_12!= x_8)&(mu-s_12!= x_9) &

(mu-s_13!= x_1)&(mu-s_13!=x_2)&(mu-s_13!=x_3)

& (mu-s_13!= x_4)&(mu-s_13!=x_5)&(mu-s_13!= x_6)
& (mu-s_13!=x_7)&(mu-s_13!= x_8)&(mu-s_13!= x_9) &
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(mu-s_14!= x_1)&(mu-8_14!=x-2)&(mu—s_14!=x_3)
¢ (mu-s_14!= x_4)&(mu-s_14'=x_56)&(mu-s_14!= x_6)
% (mu-s_14!=x_7)&(mu-s_14!= x_8)&(mu-s_14!= x_9)

(mu-s_15!= x_1)&(mu-s_15!=x_2)&(mu-s_15!=x_3)
& (mu-s_15!= x_4)&(mu-s_15!=x_5)&(mu-s_15!= x_6)
& (mu-s_15'=x_7)&(mu-s_15!= x_8)&(mu-s_15!= x_9)

(mu-s_16!= x_1)&(mu-s_16!=x_2)&(mu-s_16'!=x_3)
& (mu-s_16'!= x_4)&(mu-s_16!=x_5)&(mu-s_16!= x_6)
& (mu-s_16'=x_7)&(mu-s_16!= x_8)&(mu-s_16!= x_9)

(mu-s_17!= x_1)&(mu-s_17!=x_2)&(mu-s_17!=x_3)
& (mu-s_17!'= x_4)&(mu-s_17!=x_5)&(mu-s_17!= x_6)
& (mu-s_17!'=x_7)&(mu-s_17!= x_8)&(mu-s_17!= x_9)

(mu-s_18!= x_1)&(mu-s_18!=x_2)&(mu-s_18!=x_3)
& (mu-s_18'= x_4)&(mu-s_18!=x_5)& (mu-s_18!= x_6)
&(mu-s_18'=x_7)&(mu-s_18!= x_8)&(mu-s_18!= x_9) &

(mu-s_19'= x_1)&(mu-s_19!=x_2)&(mu-s_19!=x_3)
& (mu-s_19'= x_4)&(mu-s_19!'=x_5)&(mu-s_19!= x_6)
& (mu-s_19'=x_7)&(mu-s_19!= x_8)&(mu-s_19!= x_9)

(mu-s_23!= x_1)&(mu-s_23!=x_2)&(mu-s_23!=x_3)
& (mu-s_23!= x_4)&(mu-s_23!=x_5)&(mu-s_23!= x_6)
& (mu-s_23!=x_7)&(mu-s_23!= x_8)&(mu-s_23!= x_9)

(mu-s_24!= x_1)&(mu-s_24!'=x_2)&(mu-s_24!=x_3)
& (mu-s_24!= x_4)&(mu-s_24!=x_5)&(mu-s_24!= x_6)

&

& (mu-s_24!'=x_7)&(mu-s_24!= x_8)&(mu-s_24!'= x_9) &

(mu-s_25!= x_1)&(mu-s_25!=x_2)&(mu-s_25!=x_3)
& (mu-s_25!= x_4)&(mu-s_25!=x_5)&(mu-s_25!= x_6)

& (mu-s_25!=x_7)&(mu-s_25!= x_8)&(mu-s_25'!= x_9) &

(mu-s_26'= x_1)&(mu-s_26!=x_2)&(mu-s_26!=x_3)
& (mu-s_26!= x_4)&(mu-s_26!=x_5)&(mu-s_26!= x_6)

& (mu-s_26!=x_7)&(mu-s_26!= x_8)&(mu-s_26!= x_9) &

(mu-s_27!'= x_1)&(mu-s_27!=x_2)&(mu-s_27!=x_3)
& (mu-s_27!'= x_4)&(mu-s_27!=x_5)&(mu-s_27!= x_6)

& (mu-s_27!=x_7)&(mu-s_27!= x_8)&(mu-s_27!= x_9) &

(mu-s_28!= x_1)&(mu-s_28!=x_2)&(mu-s_28!=x_3)
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& (mu-s_28'= x_4)&(mu-s_28!=x_5)&(mu-s_28!= x_6)
& (mu-s_28!=x_7)&(mu-s_28!= x_8)&(mu-s_28!= x_9) &

(mu-s_29!= x_1)&(mu-s_29!=x_2)&(m-s_29!=x_3)
& (mu-s_29!= x_4)&(mu-s_29!=x_5)&(mu-s_29!= x_6)
& (mu-s_29!'=x_7)&(mu-s_29!= x_8)&(mu-s_29!= x_9) &

(mu-s_34!'= x_1)&(mu-s_34!=x_2)&(mu-s_34!=x_3)
& (mu-s_34'= x_4)&(mu-s_34!=x_5)&(mu-s_34!= x_6)
& (mu-s_34!=x_7)&(mu-s_34!= x_8)&(mu-s_34!= x_9)&

(mu-s_35!= x_1)&(mu-s_35!=x_2)&(mu-s_35!=x_3)
¢ (mu-s_35!= x_4)&(mu-s_35!=x_5)&(mu-s_35!= x_6)
& (mu-s_35!=x_7)&(mu-s_35!= x_8)&(mu-s_35!= x_9) &

(mu-s_36!= x_1)&(mu-s_36!=x_2)&(mu-s_36!=x_3)
& (mu-s_36'= x_4)&(mu-s_36!=x_5)&(mu-s_36!= x_6)
& (mu-s_36!=x_7)&(mu-s_36!= x_8)&(mu-s_36!= x_9) &

(mu-s_37'= x_1)&(mu-s_37!=x_2)&(mu-s_37!=x_3)
& (mu-s_37!= x_4)&(mu-s_37!=x_5)&(mu-s_37!= x_6)
& (mu-s_37'=x_7)&(mu-s_37'!= x_8)&(mu-s_37!= x_9) &

(mu-s_38'= x_1)&(mu-s_38!=x_2)&(mu-s_38!=x_3)
& (mu-s_38!'= x_4)&(mu-s_38!=x_5)&(mu-s_38!= x_6)
& (mu-s_38!=x_7)&(mu-s_38!= x_8)&(mu-s_38!= x_9) &

(mu-s_39!= x_1)&(mu-s_39!=x_2)&(mu-s_39!=x_3)
& (mu-s_39!= x_4)&(mu-s_39!=x_5)&(mu-s_39!= x_6)
& (mu-s_39!'=x_7)&(mu-s_39!= x_8)&(mu-s_39!= x_9) &

(mu-s_45!'= x_1)&(mu-s_45!=x_2)&(mu-s_45!=x_3)
& (mu-s_45!= x_4)&(mu-s_45'=x_5)&(mu-s_45!= x_6)
& (mu-s_45!=x_7)&(mu-s_45!= x_8)&(mu-s_45!= x_9)&

(mu-s_46!= x_1)&(mu-s_46!=x_2)&(mu-s_46!=x_3)
& (mu-s_46!'= x_4)&(mu-s_46!=x_5)&(mu-s_46!= x_6)
& (mu-s_46!=x_7)&(mu-s_46!= x_8)&(mu-s_46!= x_9)&

(mu-s_47'= x_1)&(mu-s_47!=x_2)&(mu-s_47!=x_3)
& (mu-s_47!= x_4)&(mu-s_47!=x_5)&(m-s_47!= x_6)
& (mu-s_47!'=x_7)&(mu-s_47!= x_8)&(mu-s_47!= x_9)&

(mu-s_48!= x_1)&(mu-s_48!=x_2)&(mu-s_48!=x_3)

& (mu-s_48!= x_4)&(mu-s_48'=x_5)&(mu-s_48!= x_6)
& (mu-s_48!=x_7)&(mu-s_48!= x_8)&(mu-s_48!= x_9) &
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(mu-s_49!= x_1)&(mu-s_49!=x_2)&(mu-s_49!=x_3)
& (mu-s_49!= x_4)&(mu-s_49!=x_5)&(mu-s_49!= x_6)
& (mu-s_491=x_7)&(mu-s_49!= x_8)&(mu-s_49!= x_9)&

(mu-s_56!= x_1)&(mu-s_56!=x_2)&(mu-s_56!=x_3)
& (mu-s_56!= x_4)&(mu-s_56!=x_5)&(mu-s_56!= x_6)
& (mu-s_56!=x_7)&(mu-s_56!= x_8)&(mu-s_56!= x_9)&

(mu-s_57!= x_1)&(mu-s_57!=x_2)&(mu-s_57!=x_3)
& (mu-s_57!= x_4)&(mu-s_57!=x_5)&(mu-s_57!= x_6)
& (mu-s_57!=x_7)&(mu-s_57!= x_8)&(mu-s_67!= x_9)&

(mu-s_58!= x_1)&(mu-s_58!=x_2)&(mu-s_58!=x_3)
& (mu-s_58!= x_4)&(mu-s_58!=x_5)&(mu-s_58!= x_6)
& (mu-s_58!=x_7)&(mu-s_58!= x_8)&(mu-s_58!= x_9) &

(mu-s_59!= x_1)&(mu-s_59!=x_2)&(mu-s_569!=x_3)
& (mu-s_59!= x_4)&(mu-s_59!=x_5)&(mu-s_59!= x_6)
& (mu-s_59!=x_7)&(mu-s_59!= x_8)&(mu-s_59!= x_9)&

(mu-s_67'= x_1)&(mu-s_67'=x_2)&(mu-s_67!=x_3)
& (mu-s_67!'= x_4)&(mu-s_67!=x_5)&(mu-s_67!= x_6)
& (mu-s_67'=x_7)&(mu-s_67!= x_8)&(mu-s_67'!= x_9)&

(mu-s_68!= x_1)&(mu-s_68!=x_2)&(mu-s_68!=x_3)
& (mu-s_68!= x_4)&(mu-s_68!1=x_5)&(mu-s_68!= x_6)
& (mu-s_68!=x_7)&(mu-s_68!= x_8)&(mu-s_68!= x_9)&

(mu-s_69!= x_1)&(mu-s_69!=x_2)&(mu-s_69!=x_3)
& (mu-s_69!= x_4)&(mu-s_69!=x_5)&(mu-s_69!= x_6)
& (mu-s_69!=x_7)&(mu-s_69!= x_8)&(mu-s_69!= x_9)&

(mu-s_78!= x_1)&(mu-s_78!=x_2)&(mu-s_78!=x_3)
& (mu-s_78!= x_4)&(mu-s_78!=x_5)&(mu-s_78!= x_6)
& (mu-s_78!=x_7)&(mu-s_78!= x_8)&(mu-s_78!= x_9)&

(mu-s_79!'= x_1)&(mu-s_79!=x_2)&(mu-s_79!=x_3)
& (mu-s_79!'= x_4)&(mu-s_79!=x_5)&(mu-s_79!= x_6)
& (mu-s_79!=x_7)&(mu-s_79!= x_8)&(mu-s_79!= x_9)&

(mu-s_89!= x_1)&(mu-s_89!=x_2)&(mu-s_89!=x_3)
& (mu-s_89!= x_4)&(mu-s_89!=x_5)&(mu-s_89!= x_6)
& (mu-s_89!=x_7)&(mu-s_89!= x_8)&(mu-s_89!= x_9)

)

102



found = found +1;
//increment found counter if a sequence satisfies the
//conditions
std::cout <<"mu=" << mu << " M=" << M <<
" label:{" <<x_1 << ","<<x_2 << " "<< x_3 << ","<<x_4
<< "," << x5 << "," << x_6 <<","<<x_7T <<"," <<x_8
<" 5 " <<X_9 <<n}\nn ;}

//print sequence of labels

}
}
}
}
}
}
}
}
}
}
if (found >0){break;}
//breaks loop after finding all sequences that
// work for the first number of isolated vertices
//to have a sequence.
else{std::cout <<"M="<<M<<" none\n";}
}
F
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