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Abstract We survey Dudeney’s round table problem which
asks for a set of Hamilton cycles in the complete graph that
uniformly covers the 2-paths of the graph. The problem was
proposed about one hundred years ago but it is still unsettled.
We mention the history of the problem, known results, gener-
alizations, related designs, and some open problems.

1 Dudeney’s round table problem

Dudeney proposed a problem in his book [8] as follows:

“Seat the same n persons at a round table on (n —1)(n — 2)/2
occasions so that no person shall ever have the same two neigh-
bours twice. This is, of course, equivalent to saying that every
person must sit once, and once only, between every possible
pair.”

We call the problem Dudeney’s round table problem. Denoting the n
persons by 1,2,...,n, solutions for small n are obtained as follows. When
n = 3, we have {(1,2,3)}, when n = 4, we have {(1,2,3,4),(1,2,4,3),
(1,3,2,4)}, when n = 5, we have {(1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4),
(1,3,2,5,4), (1,4,2,3,5), (1,5,2,4,3)} for example, where (a, b, ..., ¢)
represents a cycle in which c is followed by a.

In graph terminology, the problem asks for a set of Hamilton cycles in
the complete graph K,, with the property that every path of length two
(2-path) of K, lies on exactly one of the cycles. (The length of a path is the
number of edges in the path.) We call such a set of cycles in K, a Dudeney
set in K,,. The cardinality of a Dudeney set in K, is (n — 1)(n — 2)/2.

Dudeney’s round table problem is equivalent to the problem of decom-
posing the line graph L(K},) of the complete graph K, into n-cycles with
the property that each of these n-cycles contains exactly one edge from
each of the n maximum cliques of L(K,) which arise out of the stars at the

vertices of K.
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It has been conjectured that there exists a solution of Dudeney’s round
table problem for every n people (n > 3); however, it is still unsettled.

Conjecture 1.1 (Dudeney)* There ezists a solution of Dudeney’s round
table problem for every n people (n > 3).

In this paper, we survey Dudeney’s round table problem. We mention
the history of the problem, known results, generalizations, related designs,

and some open problems.

2 The history of Dudeney’s round table prob-
lem

In 1899, Judson proposed the following problem in American Mathematical
Monthly [15]:

“Seven persons met at a summer resort, and agreed to remain
as many days as there are ways of sitting at a round table, so
that no one shall sit twice between the same two companions.
They remained fifteen days. It is required to show in what way
they may have been seated.”

In 1900, Judson showed solutions for 6 and 8 people and he wrote that
he had failed to get a solution for 7 people in Amer. Math. Monthly [16],
and the editor of the journal offered one year’s free subscription to the first
person to provide a solution for 7 people.

In 1904, Safford showed a solution for 7 people and expressed his belief
that it is the unique solution® and he also provided another solution for 6
people and he wrote that the solution appeared to be non-isomorphic to
the one given by Judson [45]. Safford showed that there are at most two
non-isomorphic solutions for 6 people (one is Judson’s solution, another
is Safford and Dickson’s solution) by exhaustive search [46], and Dickson
proved that the two solutions are, in fact, non-isomorphic [5].

In 1905, Dickson generalized the problem to seating n people and ob-
tained solutions for n = 6, 8,10, 12 using group theory [6).

Dudeney posed the problem for 6 people in the English newspaper Daily
Mail on 13th (the problem) and 16th (the answer) Octorber, 1905. Du-
deney posed the problem for 7 people in his book The Canterbury Puzzles

4 Dudeney wrote “I discovered a subtle method for solving all cases” in his book (7
(p- 237), but he appears never to have published the method. No one knows whether
he really discoverd it, but at least he must have believed that there are solutions for all
cases, so we may call it Dudeney’s conjecture.

S His belief is correct. We can see that the numbers of non-isomorphic solutions for
6, 7, and 8 people are 2, 1, and 1066610, respectively with the aid of a computer [39).



(7] (Problem 90), and he posed the problem for n people in his book Amuse-
ments in Mathematics [8] (Problem 273). Thus, the problem has become
popular and received his name.

Dudeney claims in Amusements in Mathematics to have recorded sched-
ules for 3 < n < 25 and n = 33. But he displays the solutions only for
3 < n <12 and he explains that good many mathematicians are still con-
sidering the case of n = 13 and he will not rob them of the pleasure of
solving it by showing the answer. Dudeney further writes in The Canter-
bury Puzzles that Bergholt solved the problem when n = p+1 (p is a prime),
Bewley found a general method for all even numbers, and the problem for
the odd numbers are extremely difficult, and for a long time no progress
could be made with their solution. And he writes “At last, however (though
not without much difficulty), I discovered a subtle method for solving all
cases.” As stated in a footnote of §1, he appears never to have provided
his method.

In 1971, Meally posed the problem of asking solutions for n = 13 and
any number n in the Journal of Recreational Mathematics [37]. Huang and
Rosa investigated the problem and gave a construction forn =p+1 (pis a
prime) and found solutions for n = 9,11, 13,15 with the aid of a computer
[13]. Nakamura independently gave solutions for n = 13,15,16 [38].

The problem is also treated in Rouse Ball and Coxeter’s book [4] (p.
49).

3 ' Known results for Dudeney’s round table
problem

Dudeney’s round table problem has been solved for the following n. We
list them in chronological order.

1. n=p+1 (pis a prime)°®
2. n=2p (p is a prime) [2, 3, 42]°
3. n=p°+1 (pis a prime, e > 1) [43]

4. n=p+2 (pis an odd prime and 2 is a primitive root of GF(p)) (9]

6 The easy case n = p+ 1 (p is a prime) has been solved by many people. Published
examples are [13, 42, 48).

7 Anderson constructed a perfect 1-factorization of K2, (p is a prime) in [2, 3]. We put
his papers on the list since a perfect 1-factorization induces a Dudeney set immediately

(see §5.2).
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5. n=p°+1% n=pg+1 (p,q are odd primes, e > 1); n = p°q¢f + 1
(p, g are distinct odd primes with p > 5, ¢ > 11, and e, f > 1) [10]°

6. n is even [18]

7. n=p+ 2 (pis an odd prime, 2 is the square of a primitive root of
GF(p) and p = 3 (mod 4)) [17] (Theorem 1.1)

8 n=p+2 (pis an odd prime and —2 is a primitive root of GF(p))
[17] (Theorem 1.2)

9. n=p+2 (pis an odd prime, 2 is the square of a primitive root of
GF(p), p=1 (mod 4), 3 is not a quadratic residue modulo p) [24]

10. n=p+ 2 (p is an odd prime, —2 is the square of a primitive root of
GF(p), and either

(10-1) p=1 (mod 4) and 3 is not a quadratic residue modulo p, or
(10-2) p =3 (mod 4) [24]

11. some sporadic cases (n = 11 [8]; 23,45 [9]; 27,29, 35, 37,41,47 [40];
75,91 [21]).

In conclusion it has been solved when n is even. In the case that n is
odd, it has been solved when n =2 +1 (e > 1),and n =p+2 (p is an
odd prime) with some conditions, and some sporadic cases. The smallest
values for which the conjecture remains unsolved are n = 51, 53.

4 Dudeney designs

Dudeney’s round table problem asks for a uniform covering of 2-paths with
Hamilton cycles in K,,. It is natural to consider Hamilton paths, k-cycles,
or k-paths instead of Hamilton cycles; and the complete bipartite graph,
the complete digraph, or the complete bipartite digraph instead of K,,.

A generalization of a Dudeney set has been considered by Heinrich et
al. [11]. Consider a graph G and a subgraph H of G. A D(G, H, ) design
is a multiset D of subgraphs of G, each isomorphic to H, so that every
2-path of G lies in exactly A subgraphs in D. Analogously, when G is a
directed graph (digraph) and H is a subgraph of G (a subgraph of a directed
graph means a directed subgraph), a D(G, H, \) design is a multiset D of

8 The methods for n = p® + 1 of the cases 3 and 5 are different. Note that p is a prime
including 2 in the case 3. .
9 The paper [10] was submitted earlier than the paper [18], but was published later.
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subgraphs of G, each isomorphic to H, so that every directed 2-path lies
in exactly A\ subgraphs in D. We call these designs Dudeney designs10 11,

A D(G, H, \) design is resolvable or vertez-resolvable if the subgraphs in
the design can be partitioned into classes so that every vertex of G appears
exactly once in each class. Each such class is called a parallel class of the
design. A D(G, H, \) design is edge-resolvable if the subgraphs in the design
can be partitioned into classes so that every edge of G appears exactly once
in each class. Arc-resolvable are defined similarly.

The following notation will be used. K, is the complete graph on n
vertices, K, ,, is the complete bipartite graph on partite sets with n ver-
tices each, C} is a cycle on k vertices, and P is a path on k vertices. K,
is the complete (loop-free) digraph on n vertices and K7, ,, is the complete
bipartite digraph on partite sets with n vertices each. K}; and Kj, ,, are di-
graphs which are obtained from K,, and K, ,, respectively, by substituting
two oppositely directed edges (arcs) for each edge. 6,; is a directed cycle
on k vertices and ?k is a directed path on k vertices.

The problems of constructing D(G, H, A) designs in which H is a cycle, a
path, a directed cycle, or a directed path have been solved for the following
cases. We say that a D(G, H, )\) design is solved if we have the necessary
and sufficient condition of n for the existence of the design.

1. D(Kp, P3,1) designs (trivial)*2, resolvable D(K,, P3,1) designs [11]
(Th. 2.9 (ii)), and edge-resolvable D(K,,, P3,1) designs [11] (Th.
2.11, 2.13 (i)

2. D(K,,Cs,1) designs (trivial)!3, resolvable D(K,,C3,1) designs [11]
(Th. 2.9 (i)), and edge-resolvable D(K,, Cs, 1) designs [11] (Th. 2.12,
2.13 (i)

3. D(K,, P4, \) designs'® [11] (Th. 2.20, Cor. 2.23), [35] (Th. 2.3)

10 For more general definition, see [11].

11 Applications of Dudeney designs are, for example, experimental designs balanced
for pairs of residual (carry-over) effects of treatments [49, 50]. k-Cycle or k-circuit
decompositions of K, are similar to Dudeney designs (A k-cycle [k-circuit] decomposition
of K, is a set of k-cycles [k-circuits] in K, so that every edge occurs on exactly one
of the cycles [circuits]), and their applications are in [14, 34, 44] for example. Since
these designs are balanced with respect to neighbors, they are generally called neighbor
designs. A Dudeney design is a kind of neighbor design.

12 A D(Kp, P3,1) design is trivially constructed by taking all 2-paths in K,,. As a
D(Kn, P3,1) design exists for all n, a D(Kn, P3, ) design trivially exists for all A and n
by taking A D(Ky, P;3,1) designs. We don’t put on the list such a trivial A-fold design.
The same applies hereinafter.

13 A D(Kn,C3,1) design is trivially constructed by taking all triangles in Kn.

14 From [11] (Th. 2.20, Cor. 2.23), we see that there is a D(Kn, P4, ) design if and
only if (i) A is even, or (ii) A is odd and n =0, 1,2 (mod 4).

51



4. D(Kan,C4,\) designs [12] and resolvable D(Ky, Cy,1) designs'® [26]
D(Kn, Ps, 1) designs (28, 36]
D(Kn, Ps, 1) designs [31, 32]
D(Ky,Cs, 1) designs [29]
D(
D(

o o

-~1
.

Kn, P;,1) designs [1]

b3 ?3, 1) designs (trivial), resolvable D(K;, ?3, 1) designs!®, and
arc-resolvable D(K, B3, 1) designs [11] (Th. 2.14)

10. D(K?, By,1) designs [11] (Th. 2.21, 2.22)

11. D(Kp n, P4,1) designs, resolvable D(K,, ., P4, 1) designs, and edge-
resolvable D(Kp n, P4,1) designs [11] (Th. 3.3)

12. D(Kn,n,C4, \) designs [20], resolvable D(K,, ,,, C4,1) designs [11] (Th.
3.1 (ii)), and edge-resolvable D(Kj, n, C4,1) designs [11] (Th. 3.1 (i))

13. D(K,‘,‘n,é‘;,/\) designs, resolvable D(K;’n,64,1) designs, and arc-
resolvable D(K;, ., Cs 1) designs [20]

14. D(K}, 5, C2n, 1) designs [19].

5 Related designs

In this section, we mention some designs related to Dudeney designs.

5.1 3-Designs

Let n, A be positive integers and let K be a set of positive integers with
K C{1,2,...,n}. A 3-(n,K,)) design, a 3-design in short, is a pair (X, B)
where X is an n-set of points and B is a multiset of subsets of X (blocks),
with the property that every 3-subset of X is contained in exactly A blocks
and the size of each block is a member of the set K ([12] p. 52). It is easy
to prove the following proposition.

Proposition 5.1 ([12] Lemma 1.3) Let n, ), 1 be positive integers and let
K be a set of positive integers with K C {1,2,...,n}. Let H be a graph.

15 There cannot exist edge-resolvable D(K,,,Cj, 1) designs [11] (p. 106).
16 Tt is known that there is a resolvable D(Ky, P3, 1) design for n > 3. Hence we obtain

a resolvable D(K,, ?3, 1) design for n > 3, by taking two directed 2-paths (a, b, cs and
(c, b, a; for each 2-path (a, b, c) in the D(Ky, P3,1) design.
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If there exists a 3-(n, K,\) design, and if for every k € K there ezists a
D(Kk, H, ) design, then there exists a D(K,, H,A\u) design.

Heinrich et al. constructed D(K,,C4,A) designs for all admissible n
and A applying Prop. 5.1 [12].

5.2 Perfect 1-factorizations

Let n > 4 be even. A 1-factorization of K, with the property that the
union of any two of its 1-factors is a Hamilton cycle is called a perfect 1-
factorization. It is easy to see that for a perfect 1-factorization F of K,
{FUF'| F,F' € F} is a Dudeney set of K;,, so we have the following
proposition.

Proposition 5.2 Let n > 4 be even. If there ezists a perfect 1-factorization
of Ky, then there ezists a D(K,,Cy,1) design.

The problem of constructing a perfect 1-factorization of K, is much
more difficult than constructing a Dudeney set, and perfect 1-factorizations
of K,, have been constructed only when n = p+1 and n = 2p (p is a prime)
and some sporadic cases [47, 51].

5.3 i-Perfect Hamilton decompositions

Let n > 5 be an odd integer and i be an integer with 2 <i < (n—1)/2. A
Hamilton decomposition H of K, is called i-perfect if the set of chords at
distance ¢ in the Hamilton cycles in # is the edge set of Kp [22].

Proposition 5.3 ([22] Theorem A) Let n > 5 be odd. If there ezists o
2-perfect Hamilton decomposition of K, , then there erists a Dudeney set

of Knt1.

It is known that there exists a 2-perfect Hamilton decomposition of K,
for odd n with 5 < n < 29 except n =9 [25].

Problem 5.4 Construct 2-perfect Hamilton decompositions of K,, for every
oddn > 11.

It is known that there exists a D(K,, Cp,1) design when n is even [18],
but the proof is long and complicated, so a simple proof is desirable. If
Problem 5.4 is solved, it would give a simple proof }”.

17 Before solving the existence problem of D(Kr, Cn,1) designs for even n, Kobayashi
et al. solved the existence problem of D(Kp,Cn,2) designs for even n [27]. The proof
is truly simple. Such a simple proof is desirable also for D(Kn,Cn, 1) design.
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5.4 Kotzig’s problem

Let n > 5 be odd. Kotzig defined a perfect .set of Hamiltor.z .decomfposi-
tions of K, in 1979 [33]. It is a set of Hamilton decompositions of K,

i Hamilton
" 40 Y such that each 2-path of Kn appears in one
i}iié”c{)? ,'Hl CJ};L lzJ} sufJ H,—o. This is an edge-resolvable Dudeney set of

K, in our terminology. He posed a problem.

) [11, 33] What is the smallest odd number n > g

; t 1 54
Problem 5.5 (Kotzig ¢ set of Hamilton decompositions of K.

for which there is @ perfec

There does not exist a perfect set of Hamilton decompositions of K,
when n = 5, 7,9, and there exists a perfect set of Hamilton decompositions
of K11 [41], 50 we see that the smallest number n of Problem 5.5 is n = 17

6 Open problems

For Dudeney designs D(G, H, A), the most interesting cases would be that
in which G is Kn, Knqn, Ky, or K ., and H is a Hamilton cycle or 5
Hamilton path!®. In this section, we list open problems for those designs
The following partial results are known. ’

Theorem 6.1 [18, '23] Let n > 3 be an integer.
(1) There ezists a D(Kn,Chp,1) design when n is even.
(2) There ezists a D(Kp, Cp,2) design when n is odd.

Theorem 6.2 [30] Let n > 3 be an integer.
(1) There ezists a D(Ky,, Py, 1) design whenn=0,1,3 (mod 4).
(2) There ezists a D(Kp, Py, 2) design when n=2 (mod 4).

Theorem 6.3 [30] Let n > 2 be an integer.
(1) There e.'msts ¢ D(Ky,5,Con,1) design when n=0,1,3 (mod 4).
(2) There ezists a D(Kyp n,Con,2) design when n =2 (mod 4).

We obtain the following corollaries immediately from the above theo-
rems.

Corollary of Theorem 6,1 Let n > 3 be an integer.
(1) There ezists a D(K;‘;,an, 1) design when n is even,
(2) There ezists a D(K*, 6,1,2) design when n is odd.

Corollary of Theorem 6.2 Let n > 3 be an integer.

18 The existence problem of D(Kp,Cn,1) designs is Dudeney’s round table problem,
and that of D(Kn, Pa,1) designs is called Dudeney’s counter table problem [30].
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(1) There exists a D(K},, ?n, 1) design when n =0,1,3 (mod 4).
(2) There erists a D(K;,?n,2) design when n =2 (mod 4).

Note that the existence problem of a D(K,*m, 62,., 1) design is solved
[19] as stated in §4. Thus, the remaining open problems are the following.

Problem 6.4 Solve the existence problems of the following Dudeney de-
SIgNS.

1. D(Kn,Cy,1) designs for odd n

2. D(Kn, Pn,1) designs for n with n = 2 (mod 4)

3. D(Kn,n,Can,1) designs for n with n = 2 (mod 4)
4. D(Knn, Pon, A) designs for n and \

5. D(K;,an, 1) designs for odd n

6. D(Kn, P, 1) designs for n with n = 2 (mod 4)
7. D(K3m» Pany A) designs for n and .

If design 1 exists, then design 2 exists by deleting one vertex, design 5
exists trivially, and design 3 exists [30] (Prop. 5.1). And if design 2 exists,
then design 6 exists trivially. That is, if design 1 exists, then designs 2, 3,
5, 6 exist. In this sense, the problem of constructing D(K,,Cy,,1) designs,
i.e., Dudeney’s round table problem has a fundamental position among
these existence problems!®.
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