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Abstract

Randié index and geometric-arithmetic index are two important
chemical indices. In this paper, we give the generalized Nordhaus-
Gaddum-type inequalities for the two kinds of chemical indices.
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1 Introduction

Let G = (V(G), E(G)) be a graph. The degree and the neighborhood
of a vertex u € V(G) is denoted by dg(u) and Ng(u) (or simply by d(u)
and N(u)), respectively. Given two adjacent vertices v and v of a graph
G, the Randié weight of the edge uv is R(uv) = (d(u)d(v))‘%, and the
Randié index of a graph G, R(G), is the sum of the Randi¢ weights of
its edges. Randié [9] proposed the important topological index in his re-
search on molecular structures, which is closely related with many chemical
properties. Fixing o € R — {0}, the general Randi¢ indez is defined as

Ra(G)= Y Ralw)= Y (dw)d(v))".

w€E(G) uve E(G)

Hence, R_1(G) is the ordinary Randié index of G. There are also a large
number of other chemical indices of molecular graphs.

In [10], Vuki¢evié¢ and Furtula defined a new topological index “geometric-
arithmetic index” of a graph G, denoted by GA(G) and is defined by

2/degg (u)degg (v)
degg(u) + dege(v)

GAG) = )
weE(G)
Let f(G) be a graph invariant. The Nordhaus—Gaddum Problem is to
determine sharp bounds for f(G) + f(G) and f(G)- f(G), as G ranges over
the class of all graphs of order n, and to characterize the extremal graphs,
i.e., graphs that achieve the bounds. A further problem is to determine the
set of all integer pairs (z,y) such that f(G) = z and f(G) = y for some
graph G of order n. We refer to this latter problem as the Realizability
problem. In their paper, Nordhaus and Gaddum (8] determined bounds for
x(G)+x(G) and x(G)-x(G), where x(G) denotes the chromatic number of
graph G. The characterization of the corresponding extremal graphs and
the realizability problem were resolved by Finck [6]. Nordhaus-Gaddum
type relations have received wide attention; see the recent survey (1] by
Aouchiche and Hansen. Let & > 2 be an integer.
A k-decomposition (G1,Ga,...,Gk) of a graph G is a partition of it-
s edge set to form k spanning subgraph Gi,Ga,...,G. That is, each
G; has the same vertices as G, and every edge of G belongs to exactly
one of G1, Ga, . ..,Gyk. For a graph parameter f, a positive integer &, and a

130



graph G, the Generalized Nordhaus-Gaddum Problem is to determine sharp
hounds for {Z:;l f(Gi): (Gy,Ga,...,Gy) is a decomposition of G } and

Hf:l f(Gi): (G1,Gs,...,Gy) is a decomnposition of G }
Das [3] got the Nordhaus-Gaddum type results for geometric-arithmetic
index. Zhang and Wu [12] obtained the Nordhaus-Gaddum type results for

Randié index.

Theorem 1.1 [12] Let G € G(n).
(1) Ifa >0, then () (252)™ < Ra(G) + Ra(@) < (3)(n — 1)2*.
(2) If <0, then (3)(n —1)** < Ra(G) + Ra(@) < (3) (251)™

In this paper, we study the generalized Nordhaus-Gaddum type results

for general Randié index and geometric-arithmetic index.

2 General Randié index

In this section, we give the generalized Nordhaus-Gaddum type results

for general Randi¢ index.

Theorem 2.1 Let k > 2 be an integer, and (G1,G1---,Gk) be a k-
decomposition of K. If o > 0, § = min{0(G1),6(G2),---,0(Gk)}, A =
max{A(G1),A(Ga),- - ,A(Gk)}, then

(;‘) 5°% < Ro(C1) + Ra(Ga) + -+ Ra(Gy) < k(Z) A2,

Moreover, the lower and upper bounds are sharp.
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Proof. For a graph K, = (V, E) of order n, let e(K,) = |E(K,)| and
= (’2‘) First we consider the upper bound. Since a > 0, we have

Ro(G1) + Ro(G3) + -+ + Ra(Gr)

= Z (dg,(w)dg, (v))* + Z (dcz(u)dGz(v))a+

uwveE(G,) uw€E(G2)

+ ) (dow(w)de, (v))*

wEE(Gx)
< &(G1)(A(G1))™ +€(G2)(A(G2))™ + -+ +(Gr) (A(Gk))*
< EG)(A(G))** + (A(G2))** + -+ + (A(GK))™]

< g(G)[A%* + A% ... + A%

N

k (”) A2,
Now we aim to the lower bound. It is clear that

Ro(G1) + Ra(G2) + - - - + Ro(Gk)

= ) (da@de;()*+ > (dg,(wde:(v))* +

w€EE(G,) w€eE(G2)
+ ) (dov(wde, (v)®
weE(Gyk)
> II (e (w)de,(v))e = [I (de:(u))te:e
quE(G ) uUGE(G )
> H (8)5 = N Y/(5)saNk
w€E(G;)

—  N(§)Pek — (™) gadk
o= 3
The lower and upper bound are sharp when G; is a I‘—;—l—regula,r graph. i

Similarly, we can get the bounds for a < 0.
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Theorem 2.2 Let k > 2 be an integer, and (G;,G1---,Gk) be a k-
decomposition of K. If a < 0, § = min{d(G1),6(G2), - ,6(G)}, A =
max{A(G,),A(G2), -+ ,A(Gk)}, then

k(;‘)Aza < Ra(G1) + Ra(Ga) ++++ + Ra(Gk) < (;‘)aaék.

Moreover, the upper and lower bounds are sharp.

3 Geometric-arithmetic index

Let G = (V(G), E(G)). If V(G) is the disjoint union of two nonempty
sets V1(G) and V,(G) such that every vertex in V;(G) has degree r and
every vertex in Vo(G) has degree s, then G is a (r, s)-semiregular graph.

When r = s, G is called a regular graph.
Das [3] first got the following lower bound of GA(G) for a connected

graph G.

Lemma 3.1 [3] Let G be a simple connected graph of m edges with mazi-
mum vertez degree A and minimum vertex degree §. Then

2mvV A6

I
GA(G) 2 A+§’

(3.1)

with equality holding in (3.1) if and only if G is isomorphic to a regular

graph or G is isomorphic to a bipartite semireqular graph.

In this section, we give the generalized Nordhaus-Gaddum type results

for geometric-arithmetic index.

Theorem 3.1 Let k > 2 be an integer, and (G1,Gy---,Gk) be a k-
decomposition of K,. § = min{6(G;),8(Gz),---,8(Gk)}, 6 = 6(G;) (1 <
i <k), A =max{A(G,),A(G2), -+ ,A(Gk)}, Ai = A(Gi) (1 <@ <k).
Let p; is the number of mazimum degree in G;, and p = min{p1, p2,--- , px}.

Let l; =maX{\/%:‘,",,/:—_‘ll_’—g‘i}, and | = max{l,la,--+ ,lx}. Then

=5 n\ 1 . PEAVAS
Z 11 (2) < GA(G1)+GA(G2)+- - -+GA(Gk) < (2) _Epk6+—_6+T°

Moreover, the upper and lower bounds are sharp.
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Proof. For a graph K, = (V, E) of order n, let (K,) = |E(K,)| and
N = ('2‘) From the definition of geometric-arithmetic index, we have

CRp CROL)

6+A 2

GAG) = )

viv;€E(G) di + d; viv;€E(G)

pA 2\/6A b pA pA\/JA <m_ Ié)
= 6+A 2 O+ A 2 )’

and hence
GA(G1) + GA(G2) + -+ + GA(Gk)

— Z 2___‘%_;_ Z ?.__Vd'd-7++ Z fl d"df

di + d] di + dJ v.-vjeE'(Gk)

viv;eE(G)

1AV A, \/51A1 A P1A1> 4 P2B2ve:Re (m2 _ P2A2>
N TT g 2 0 + Az 2

PeDr VoK Ak ( PkAk)
my —

v,-vjeE(Gg)

IA

TN, S+ A 2

1
= (my+mo+---+myg)— §(p1A1 +p2lz .- + prly)

+P1A1\/51A1 g p22v/02A2 Gy PrArvV o Ax
51+A1 62+A2 6k+Ak

(n)__m pkAVAS

IA

2 2 TR

We now consider the lower bound. From Lemma 3.1, we have

GA(G) = Z 2,/d;d; 2m\/_

di+d; = §6+A

v;v;eE(G)

Slncel,Z[>land1—L>0 wehavel-—-‘/ )(1——1\/_)>0
and hence

\4 Aiai B li

A; +6; = I2 31

1
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Therefore, we have

GA(G)) + GA(G2) + -+ -+ GA(Gy)

. Z g.__."d'd’_x. Z 3__\%4. - Z B d‘d{

. 3 ’ d, 3 . '
i G+ eBEn DY e 6o B 7 d;
> 2m1\/A161 + 2m2\/2§23 & hes e L /m:
- 61+ 4 02 + Ag o + Ay
> 2m111 2m212 kalk
> T >
241 1B+1 2 +1
2 : (2my 4 2ma + - -+ + 2my)

2+1

b 2l n
T o24+1\2)

The upper and upper bound are sharp when G; is a Zz!-regular graph.
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