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Abstract:
Constructions are given for non-cubic, edge-critical Hamilton laceable

bigraphs with 3m edges on 2m vertices for all m > 4. The significance of this result
is that it shows the conjectured hard upper bound of 3m edges for edge-critical
bigraphs on 2m vertices is populated by both cubic and non-cubic cases for all m.
This is unlike the situation for the hard 3m-edge lower bound for edge-stable
bigraphs where the bound is populated exclusively by cubics.

1. Introduction:

A bigraph is equitable if the two parts have the same cardinality and
Hamilton laceable if there exists a Hamilton path between every pair of vertices in
different parts. The bigraphs of interest here are all equitable on 2m vertices but
may or may not be Hamilton laceable. Let G be a graph, not necessarily bipartite,
which exhibits a graph property and G the E element collection of sub-graphs
formed by deleting each edge in turn from G. G is edge-stable with respect to the
property if every graph in G exhibits the property or edge-critical if none do. It is
easy to see that 3m edges is a hard lower bound for edge-stability with respect to
Hamilton laceability for equitable bipartite graphs on 2m vertices since no vertex
can have degree 2 and cubic examples abound: the m-prisms and the Mobius
ladders for example. In [1] it was conjectured 3m is a hard upper bound for the
number of edges an edge- critical bigraph can have. The conjecture was based on
the fact that Weisstein’s m-crossed prisms [4] when V = 0 mod 4 and Simmons’
sausage graphs [3] when V = 2 mod 4 provide cubic examples for all m > 5, plus
the known existence of a few isolated “four leaf clover’ non-cubic cases with 3m
edges. The conjecture is still open. What will be shown here is that non-cubic cases,
far from being rare, exist for all m.>4.

The smallest m for which such a graph could exist is m=4. Up to
isomorphism there are only two Hamilton laceable candidate bigraphs on 8 vertices.
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Graph la is not edge-critical since the punctured graphresulting from deleting edge
1-2 (or 1-8) is Hamilton laceable. Graph 1b though is easily shown to be edge-
critical. By symmetry the edges can be partitioned into two groupings of transitive
edges; the four incident on a vertex of degree 2 and the eight incident on a vertex

of degree 4. Deletion of an edge in the first group results in a vertex of degree |
which cannot be an interior vertex in a path. Deletion of an edge in the second
group results in two adjacent vertices of degree 2, either in a circular segment cut
off by another edge from that group, or an arrangement easily converted to that
form by simply interchanging vertices 1 and 5 while preserving edges. There cannot
be a Hamilton path between the endpoints of that edge since they form a cut-set in
the punctured graph. The graph in Figure 1b is therefore the smallest example of a
non-cubic, edge-critical Hamilton laceable bigraph.

This is a convenient place to introduce the notation we will use to denote
non-cubic, edge-critical Hamilton laceable bigraphs. The degrees, and
multiplicities, of the vertices in each part which differ from 3 will be grouped in
parentheses. Vertices of degree 3 will be lumped together and shown outside the
parentheses. The bigraph in Figure 1a would be denoted by (4,2), 3¢ and the one in
Figure 1b by (4%,2%), 3*. As mentioned earlier, these are the only two possibilities
when m=4. (4,2)(4,2), 3° would denote a bigraph with vertices of degree 4 and 2
in each part, for which an edge-critical example does exist as will be shown in the

next section.

2. The case m = 5:
Ten vertices are too few to accommodate the iterative constructions used

for larger values of m, so a case by case analysis is forced for (4,2), 3% ; (42,22, 3¢
(4,2)(4,2), 35 ; (5,2%), 3" and (5,2) (4,2), 3°.

There are many ways five chords can be assigned to C,, consistent with a
(4,2), 3® bigraph, all of which reduce to one of four non-isomorphic candidate

bigraphs;
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The graph in Figure 2d is not Hamilton laceable but the other three are, hosting 110,
112 and 126 Hamilton paths respectively. None of the Hamilton laceable cases are
edge critical however, since the punctured graphs resulting from deleting edge 1-10
are all Hamilton laceable. Therefore, there are no edge-critical (4,2), 3® bigraphs,
unlike the situation for larger m where it will be shown a (4,2), 3> bigraph always
exists.

At the other extreme, (5,2%) requires a vertex in one part be connected to
every vertex in the other part and forces two of the other vertices to be of degree 2.
There are only two possibilities; (5,22)(4,2), 3°and (5,2%), 3. (5,2%)(4,2), 3° has only
a single isomorph realization, Figure 3c, which is not Hamilton laceable. (5,2%),37
has two non-isomorphic realizations, Figures 3a and 3b: the first of which is
Hamilton laceable, the second of which is not. The bigraph in Figure 3a is not edge-
critical however, since the punctured graph resulting from deleting edge

1-6 is Hamilton laceable.

Figure 3
That leaves only the two cases, (4%,2?), 3¢ and (4,2)(4,2), 3%, both of

which, fortunately for the objective of showing there are non-cubic edge-critical
bigraphs for all m, have edge-critical realizations; Figure 4.
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3. Thecasesm> 5:

In the preceeding sections it was shown that only a single (42,22), 3* edge-
critical Hamilton laceable bigraph exists when m = 4 and the pair, (42,22), 3 and
(4,2)(4,2), 3°, of such bigraphs when m= 5. The number of non-cubic edge-critical
bigraphs undoubtably grows rapidly with m, but since only their existence is of
concern here, it suffices to show there exists a (4,2), 3*™2 graph for all m > 5. This
will be done by defining two starter edge-critical Hamilton laceable graphs, one for
even m and one for odd m, and a sub-graph on four vertices which can be spliced
into the starter graphs arbitrarily many times to increase m by increments of 2 while
preserving Hamilton laceability and edge criticality. There are only two choices for
the sub-graph on four vertices; a pair of parallel edges or a pair of crossed edges,
i.e. asquare or a twisted square. To accommodate vertex parity, parallel edges
could only be spliced into host edges of opposite orientation and crossed edges into
host edges of like orientation. For reasons that will become apparent, a crossed pair
of edges, or CPE hereafter, will be the chosen sub-graph.

The results from splicing a CPE into a graph can be very erratic. Let G be
a bigraph on 2m vertices. There are three possibilities: G is either Hamilton laceable
oritisnot. Ifitis Hamilton laceable, it is either edge-critical or it is not. Call these
three graph types A, B and C. It is easy to construct examples for all nine
possibilities in which a graph of an arbitrary type has extensions to each of the three
types, depending on which pair of edges in G are chosen to host the spliced CPE.
For the intended application to extending bigraphs by splicing in CPE that is about
as bad as it could be; every type has extensions to every other type. For the
purposes of this paper what is needed are a pair of type C bigraphs, one for even m
and one for odd m, which can be extended indefinitely to type C bigraphs.

Three of the graphs in Figures 1 and 2 represent all three graph types:
graph 2d is type A, 1a is type B and 1b is type C. As luck would have it there are
pairs of host edges in each of these three graphs which, when a CPE is spliced into
them, produce extended graphs of all three types. For example, in 1a if the splice
is made between edges 1-4 and 1-6 the extended graph is type A, if between edges
2-3 and 7-8 it is of type B and if between edges 3-4 and 6-7 it is of type C. It is
important to know that such erratic results can occur. It is not important to show all
of the constructions. An exception are graphs 1a and 2a which are “seeds” for the
starter bigraphs. Neither is type C, but both become type C by splicing a CPE into
edges 3-4 and 6-7 in the first case and into edges 3-4 and 8-9 in the other. These
will be the starter graphs used here: 5a for even m and 5b for odd m.



a (1a extended) b (2a extended)
Figure 5

In each case, computer testing has verified that splicing additional CPE parallel to
the bold pairs in Figure 5 results in type C bigraphs for the first five extensions.
Five is not an arbitrary choice, but is rather the number of extensions required to
support an argument in the proof of Theorem 1.

Weisstein’s m-crossed prisms replace the edges linking matching vertices
in the base m-gons in an m-prism with crossed pairs of edges, i.e. with m copies of
a CPE: obviously V = 0 mod 4. In [2] these graphs were shown to be edge-critical
with respect to Hamilton laceability for m 26. A simple link to join the ends of an
“opened” m-crossed prism, Figure 6, resulting in graphs resembling ring bologna,
provides examples of edge-critical graphs for V = 2 mod 4 form > 5 [3].

Figure 6

The inductive proofs that m-crossed prisms and the closely related sausage
bigraphs are Hamilton laceable and edge-critical [2,3] depended critically on the
fact that there are only a few easily described spanning paths possible in a chain of
CPE’s, closed or open, and argued a few special cases for the sausage bigraphs
when one or both endpoints, or a deleted edge, were in the link. In a rare bit of
serendipity almost the same proof technique can be used here.

Although the following observations barely warrant being dignified as a
lemma, their importance to the proof of Theorem 1 does.

Lemma 1: Let G be a bigraph in which there exists a Hamilton path between
endpoints x and y and which contains a pair of adjacent CPE, neither of which
hosts x or y, then there exists a Hamilton path between x and y in a reduced G with
one of the CPE deleted.

Proof:

A Hamilton path through a CPE connecting endpoints x and y not in the CPE
simply spans the four vertices in the CPE and exits on the side opposite the one on
which it entered. This is possible in six ways as shown in Figure 7; two ways when
the path enters on both rails and four when it enters on only one.
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Figure 7

Of interest is the case in which there are two adjacent such CPE’s, i.e
neither hosts an endpoint of the Hamilton path. The emergent edges from the
lefthand CPE must match the entrant edges of the righthand CPE, so there are only
twelve possible paths through the two: E followed by E is not possible, E followed
by F is and has the same effect on the path as C in a single CPE. In fact every pair
of concatenated paths through the two CPE’s is equivalent to some path through a
single CPE: summarized in Figure 8. The paths through the lefthand CPE are
indexed on the left of the arrays, the path through the righthand CPE on the top.

C D E F

A B C|-C - E .
Al A 8 D . D F
B| B A E E .
F F 0
Figure 8

It might at first seem the inverse operation, replacing a path through a
single CPE with an equivalent concatenation of paths through two adjacent CPE’s,
would be an easy way to show Hamilton laceability or edge criticality of bigraphs
formed by splicing in a CPE. It is not, since both the contraction and the expansion
presupposes neither an endpoint of the assumed Hamilton path nor the deleted edge
in testing edge criticality are in the pair of adjacent CPE’s; something that is not

- true in general but will be for the constructions considered in Theorem 1.

k-crossed bigraphs are a vertex join of a CPE* , k>1, (the left hand
subgraph in Figure 9) with a bigraph B (the subfigure in the right hand circle in
Figure 9) where the two rail edges at one end of the CPE" are incident on a single
vertex in B and the two at the other end are not.
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The restriction that the rail edges at the ends of the CPE* not both lie on common
vertices in B is to leave open the possibility for k-crossed bigraphs to be Hamilton
laceable. They couldn’t be if both ends were incident on single vertices since that
pair of vertices would be a cutset in the graph. The single exception is when B is an
edge so that the k-crossed bigraph would simply be the sausage bigraph shown in
Figure 6.The condition is necessary, but not sufficient, as shown by the two k-
crossed bigraphs in Figure 10: those in 10a are Hamilton laceable (and edge
critical) while those in 10b are neither. '

Figure 10

Lemma 2: Let G be a Hamilton laceable k-crossed bigraph. Deleting any edge in
CPE* causes G to no longer be Hamilton laceable.

Proof:

There is a pair of vertices associated with each edge in the CPE* in Figure 9 which
cannot have a Hamilton path between them if that edge is deleted. We first note that
there are only two isomorphism classes of edges in the CPE": those internal to a
CPE and those connecting adjacent CPE’s. The convention will be that edges
connecting CPE are on the side opposite the common vertex; 1 in Figure 9. A k-
crossed bigraph is invariant under a half twist of the right hand portion of the CPE*
at the midpoint of any CPE, which simply converts the crossed edges in that CPE
into edges on the rail and vice versa.

Ifedge d-e in Figure 11ais deleted, there cannot be Hamilton path between
vertices 1 and b. Since vertices d and e are interior points in the assumed Hamilton
path, the bold sub-paths are forced. If b connects to g the path is forced to close
prematurely leaving at least vertices a, d and c isolated. If b connects to c either the
path on 1 spanning the vertices to its left is isolated, or else the vertices themselves
are isolated. In either case a Hamilton path cannot exist.
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If edge e-f in Figure 11b is deleted, there cannot be a Hamilton path
between vertices 1 and d. Since vertices e and f are interior points in the assumed
Hamilton path, the bold sub-paths are forced. If g connects to h the path closes
prematurely isolating vertices to the left of d. If g does not connect to h the path
either returns through g-f leaving vertices to the left of 1 isolated or else closes to
vertex 1 prematurely. In either case a Hamilton path cannot exist.

Theorem 1: There exist (4,2), 3*™2edge-critical Hamilton laceable bigraphs for all
m26.

Proof:

The proof will be divided into two parts. First it will be shown that CPE* extensions
of the starters in Figure 5 are Hamilton laceable. Then it will be shown that they are
edge-critical.

b d b h
..m ..m
< f3
a f 3 die f

a b
Figure 12

Figure 12 shows the starter graphs redrawn as k-crossed bigraphs. Associate a k-bit
binary number with CPE*, where a 1 indicates that at least one endpoint of the
assumed Hamilton path is in the associated CPE. By Lemma 1 a 0 in the k-tuple can
be extended to a 00 in a (k+1)-tuple of a Hamilton path in the k-crossed bigraph
with CPE*"!. For example if it is known that a k-crossed bigraph is Hamilton
laceable for CPE', Lemma 1 guarantees the k-crossed bigraph with CPE> has
Hamilton paths for all endpoint pairs except for one associated with 4-tuple 0110.
A path can reverse direction in a CPE if and only if an endpoint is in it which means
it is possible to have a pair of adjacent CPE, represented by 1's in the associated k-
tuple, which have no edge of the Hamilton path joining them; endpoints x and y in
Figure 13. A CPE could not be interpolated between the host CPE for x and y, i.e.
a 0 interpolated between the pair 11 in k-tuple 0110 to form 01010, since the four
vertices in it would be isolated in the extension of the Hamilton path.

X v
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Figure 13



At the time starter bigraphs 5a and 5b were defined it was remarked that it had been
computer verified that extensions for k<5 were all Hamilton laceable and edge-
critical. The binary 5-tuples with at most two 1's can be extended to all binary 6-
tuples with at most two 1's using Lemma 1. Therefore the CPE* extensions of the
starters in Figure 5 are all Hamilton laceable.

The proof that the extensions are also edge-critical will be by
contradiction. Since the first five extensions have been shown to be edge-critical,
either all extensions are edge-critical or there is a least k, say k’, for which there
exists an edge in the extension which can be deleted and the punctured graph will
still be Hamilton laceable. Lemma 1 says that if there is an edge in a Hamilton
laceable k-crossed bigraph whose deletetion leaves a Hamilton laceable punctured
graph, it can’t be in the CPE") i.e. it must be one of the bold edges in either 12a or
12b. k’ > § so the k’-tuples associated with Hamilton paths in the extension which
fails to be edge-critical must have a pair of adjacent 0's which by Lemma 1 can be
reduced to k=k’-1. In other words, every pair of endpoints x and y that have a
Hamilton path between them in the extension by CPE*must also have had a
Hamilton path between them in the extension by CPE¥"!, which contradicts the
assumption k’ was the least value of k for which there existed an edge whose
deletion left a Hamilton laceable punctured bigraph.

Therefore the (4,2), 32™2 bigraphs introduced here are all edge-critical with
respect to Hamilton laceability for m >6.

4. Conclusion, etc.:

Non-cubic edge-critical bigraphs on 2m vertices having 3m edges have
been exhibited for all m>4. The incidental motivation was the conjecture that no
such bigraph can have more edges. It was shown that there is a unique (42,2%), 3*
such bigraph when m = 4, a pair of (42,27, 3° and (4,2)(4,2), 3 bigraphs when
m =5 and at least a (4,2),3?™ bigraph for all m>6. The (4,2),3>™ cases, however,
are almost cubic, not just because they have 3m edges, but because there is a simple
operation which transforms them into the archetypical cubic edge-critical bigraphs:

m-crossed prisms when m is even and sausage bigraphs when m is odd. In either
case the operation consists of simply pivoting an edge in a starter bigraph about one
of it’s endpoints to a different endpoint for the other.

For m even, pivot edge a-c in Figure 12 to become edge a-e. The result is
a pair of adjacent CPE’s, as shown in Figure 14, i.e. a sub-graph of an m-crossed
prism.
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For m odd, pivot edge h-c in Figure 12 to become edge h-e. The result is the
sausage bigraph link shown in Figure 6.

The etc. in the heading of this section refers to non-cubic edge-critical
bigraphs in general, i.e. to cases not so simply related to cubics. There are 19
partitions of integers <12 into parts >4. There are 29 ways these parts can be
assigned to two sets. Each such assignment is a potential degree sequence of
supernumerary vertices for a family of non-cubic edge-critical bigraphs. 12 was
chosen as the limiting case since it is the smallest integer which could have three
parts, i.e. which could lead to (4> ,-) or (4%-)(4,-) bigraphs. A computer search found
edge-critical bigraphs realizing all 29 possibilities, often with several non-
isomorphic realizations. For example, unique (4°,2%), 3¢ and (4%,2%)(4,2),3'° cases
were found on 12 and 16 vertices respectively and a, probably not minimal or
unique, (12, 2°),3% edge-critical case on 36 vertices, i.e. an edge-critical bigraph

with a vertex of degree 12. This suggests the 3m-edge upper bound for edge
criticality is probably densely populated by non-cubic bigraphs as m increases,
making the bound all the more remarkable if true.
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