On the adjacent vertex-distinguishing total colorings of some cubic graphs*

Yun Feng^{1,†} and Wensong Lin^{2,‡}

¹School of Mathematics and Computer Science,

Wuhan Polytechnic University, Wuhan 430023, PR China

²Department of Mathematics, Southeast University, Nanjing 210096, PR China

Abstract

Suppose G=(V,E) is a simple graph and $f:(V\cup E)\to\{1,2,\ldots,k\}$ is a proper total k-coloring of G. Let $C(u)=\{f(u)\}\cup\{f(uv):uv\in E(G)\}$ for each vertex u of G. The coloring f is said to be an adjacent vertex-distinguishing total coloring of G if $C(u)\neq C(v)$ for every $uv\in E(G)$. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G, and is denoted by $\chi_{at}(G)$. This paper considers three types of cubic graphs: a specific family of cubic hamiltonian graphs, snares and Generalized Petersen graphs. We prove that these cubic graphs have the same adjacent vertex-distinguishing total chromatic number 5. This is a step towards a problem that whether the bound $\chi_{at}(G) \leq 6$ is sharp for a graph G with maximum degree three.

Keywords: Adjacent vertex-distinguishing total coloring; Adjacent vertex-distinguishing total chromatic number; Cubic graphs; Snares; Generalized Petersen graphs

1 Introduction

Let G = (V, E) be a simple graph and $T(G) = V(G) \cup E(G)$ be the set of vertices and edges of G. A proper total k-coloring of G is a mapping $f: T(G) \to \{1, 2, ..., k\}$ such that no two adjacent or incident elements of

^{*}Supported by Natural Science Foundation of Jiangsu Province of China (No. BK20151399).

[†]E-mail address: fy20013275@163.com

[‡]Corresponding author. E-mail address: wslin@seu.edu.cn

T(G) receive the same color. Consider such a coloring f, denote by C(u) the color set $\{f(u)\}\cup\{f(uv):uv\in E(G)\}$ for each vertex u of G. The coloring f is said to be an adjacent vertex-distinguishing total coloring (AVDTC for short) if $C(u)\neq C(v)$ whenever $uv\in E(G)$. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G, and is denoted by $\chi_{at}(G)$. It was Zhang et al [13] who first introduced this kind of coloring.

It is worth to mention another related total coloring—neighbor sum distinguishing total coloring, which is defined as follows. In a total k-coloring f of G, let S(u) denote the total sum of colors of the edges incident to u and the color of u. The coloring f is said to be a neighbor sum distinguishing total coloring if for each edge uv, then $S(u) \neq S(v)$. The minimum k for which such a coloring of G exists is called the neighbor sum distinguishing total chromatic number of G, and is denoted by $\chi''_{nsd}(G)$. If f is a neighbor sum distinguishing total coloring, then clearly it is also an adjacent vertex-distinguishing total coloring. Thus $\chi_{at}(G) \leq \chi''_{nsd}(G)$ for any graph G. For results about neighbor sum distinguishing total chromatic number, we refer readers to [5-7].

Let $\Delta(G)$ and $\delta(G)$ be the maximum degree and minimum degree of a graph G respectively. By definition, it is obvious that $\chi_{at}(G) \geq \Delta(G) + 1$. The following simple observation was also made by Zhang et al [13].

Proposition 1 If G is a graph with two adjacent vertices of maximum degree, then $\chi_{at}(G) \geq \Delta(G) + 2$.

They also proposed the following conjecture.

Conjecture 2 If G is a simple graph, then $\chi_{at}(G) \leq \Delta(G) + 3$.

It is easy to prove that $\chi_{at}(G) \leq \Delta(G) + 2$ for bipartite graphs G [1]. Thus the conjecture is true for bipartite graphs. It was also confirmed for outerplanar graphs [10] and K_4 -minor free graphs [9]. Then the conjecture was proved for planar graphs with maximum degree at least 11 by Huang and Wang [2]. Recently, Wang and Huang [11] proved that $\chi_{at}(G) \leq \Delta(G) + 2$ for planar graphs with $\Delta(G) \geq 14$.

Wang in [8] showed that this conjecture is true for any graph G with $\Delta(G) = 3$. Short and concise proofs were given by Chen in [1] and Hulgan in [3], independently. However, many graphs with maximum degree three, including K_4 , $K_{3,3}$, and Petersen graphs, have an AVDTC with only 5 colors. Therefore, Hulgan in [3] proposed the following problem.

Problem 3 For a graph G with $\Delta(G) = 3$, is the bound $\chi_{at}(G) \leq 6$ sharp?

Actually, the following simple result tells us that we only need to focus on cubic graphs.

Proposition 4 Let G be a cubic graph, if H is a subgraph of G, then $\chi_{at}(H) \leq \chi_{at}(G)$.

Proof. Let $\chi_{at}(G) = k$, then $5 \le k \le 6$. Suppose f is a k-AVDTC of G. If $f|_H$, the restriction of f on H, is a k-AVDTC of H, then we are done, otherwise, there exist two adjacent vertices of degree 2 having the same color set. Consider suspend trail $v_0v_1v_2\dots v_tv_{t+1}$, i.e., a trail $v_0v_1v_2\dots v_tv_{t+1}$ such that $d_H(v_0) \ne 2 \ne d_H(v_{t+1})$, $d_H(v_i) = 2$, $i = 1, 2, \ldots, t$. Let $f|_H = f^{(1)}$, $C_{f|_H}(v_i) = C^{(1)}(v_i)$. If $C^{(1)}(v_1) = C^{(1)}(v_2)$, without loss of generality, assume $f(v_1) = 1$, $f(v_2) = 2$, $f(v_1v_2) = 3$, $f(v_1v_0) = 2$, $f(v_2v_3) = 1$. Then recolor v_2 by 4 if $f(v_3) \ne 4$ or 5 if $f(v_3) = 4$. The resulting coloring, denoted

by $f^{(2)}$, satisfies $C^{(2)}(v_1) \neq C^{(2)}(v_2)$. If $C^{(1)}(v_1) \neq C^{(1)}(v_2)$, then let $f^{(2)} = f^{(1)}$. For each vertex x of H we denote by $C^{(2)}(x)$ the color set of x under coloring $f^{(2)}$. If $C^{(2)}(v_2) \neq C^{(2)}(v_3)$, then let $f^{(3)} = f^{(2)}$, otherwise, we recolor the vertex v_3 similarly and denote the resulting coloring by $f^{(3)}$. Continuing in this way until $f^{(t)}$. For each suspend trail we do the above modifications. Then a k-AVDTC of H is obtained.

Due to the above Proposition, we only need to concentrate on cubic graphs. Now we consider three types of cubic graphs which are defined as follows.

Definition 5 Consider a class of cubic hamiltonian graphs as follows: there exists a hamiltonian cycle $u_1u_2...u_nv_nv_{n-1}...v_1$ such that all the matching edges are of the form u_iv_j $(1 \le i, j \le n)$, we use \mathcal{H}_{2n} to denote the set of this kind of cubic hamiltonian graphs.

The following definition can be found in [4].

Definition 6 Consider two disjoint n-cycles $i_1i_2...i_ni_1$ and $o_1o_2...o_no_1$. Let π denote a permutation on n elements. Add to these two cycles the set of edges $i_jo_{\pi(j)}$ $(1 \leq j \leq n)$. We call the family of such graphs n-snares. If π is the identity permutation, we call the graph a drum and denote it by D_n .

The well-known Generalized Petersen graph is defined below.

Definition 7 ([12]). Generalized Petersen graph G(n,k) $(n \geq 3, 1 \leq k < \frac{n}{2})$, is a graph with vertex set

$$\{u_0, u_1, \ldots, u_{n-1}, v_0, v_1, \ldots, v_{n-1}\},\$$

and edge set

$$\{u_iu_{i+1}, u_iv_i, v_iv_{i+k} : i = 0, 1, \dots, n-1\},\$$

where subscripts are taken modulo n.

In this paper, we prove that each of these cubic graphs has a 5-AVDTC.

2 Main results

Theorem 8 Let $n \geq 2$ be an integer. Then, for any graph $H_{2n} \in \mathcal{H}_{2n}$, $\chi_{at}(H_{2n}) = 5$.

Proof. Using the notations in definition 5, we suppose that u_1v_s , v_nu_t , v_1u_r and u_nv_w are edges in $E(H_{2n})$, where $2 \le s, r \le n$ and $1 \le t, w \le n-1$. By Proposition 1, $\chi_{at}(H_{2n}) \ge 5$. Thus it suffices to give a 5-AVDTC of H_{2n} . To this end, we prove the following two claims according to the parity of n.

Claim 1: If $n \geq 3$ and n is odd, then $\chi_{at}(H_{2n}) = 5$.

Initially, define a proper total 5-coloring f of H_{2n} as: alternately color the vertices u_1, u_2, \ldots, u_n by 3 and 4, and alternately color the edges $u_1u_2, u_2u_3, \ldots, u_{n-1}u_n$ by 2 and 1; alternately color the vertices v_1, v_2, \ldots, v_n by 1 and 2, and alternately color the edges $v_1v_2, \ldots, v_{n-1}v_n$ by 3 and 4; color u_1v_1 by 4 and u_nv_n by 2; color the remaining edges by 5.

Next, we construct a 5-AVDTC of H_{2n} by recoloring some vertices and edges (if necessary) according to the parity of s, t, r and w.

Case 1.1. If both s and t are odd, then f is a 5-AVDTC of H_{2n} .

Case 1.2. s is even and t is odd. If r is odd, then exchange the color of v_1 and v_1u_1 ; else, recolor u_r by 5, u_rv_1 by 4, v_1u_1 by 5, and u_1v_s by 1.

Case 1.3. s is odd and t is even. This case is similar to case 1.2. If w is odd, then exchange the color of u_n and u_nv_n ; else, recolor v_w by 5, v_wu_n by 2, u_nv_n by 5, and v_nu_t by 3.

Case 1.4. Both s and t are even.

- If r is odd, then exchange the color of v_1 and v_1u_1 . Further, if w is odd, then exchange the color of u_n and u_nv_n ; else, recolor v_w by 5, v_wu_n by 2, u_nv_n by 5, and v_nu_t by 3.
- If r is even, then recolor u_r by 5, u_rv_1 by 4, v_1u_1 by 5, u_1v_s by 1. Further, if w is odd, then exchange the color of u_n and u_nv_n ; else, recolor v_w by 5, v_wu_n by 2, u_nv_n by 5, and v_nu_t by 3.

Claim 2: If $n \geq 2$ and n is even, then $\chi_{at}(H_{2n}) = 5$.

The coloring strategy of claim 2 is similar to that of claim 1, therefore, we re-use the same coloring symbol f for this situation.

Properly total 5-coloring of H_{2n} in the same way as that of claim 1, except that $f(u_n v_n) = 1$. Then we construct a 5-AVDTC of H_{2n} by recoloring some vertices and edges (if necessary) according to the parity of s, t, r and w.

- Case 2.1. If s is odd and t is even, then f is a 5-AVDTC of H_{2n} .
- Case 2.2. Both s and t are odd. If w is even, then exchange the color of u_n and $u_n v_n$; else, recolor v_w by 5, $v_w u_n$ by 1, $u_n v_n$ by 5, and $v_n u_t$ by 4.
- Case 2.3. Both s and t are even. This case is similar to case 2.2. If r is odd, then exchange the color of v_1 and v_1u_1 ; else, recolor u_r by 5, u_rv_1 by 4, v_1u_1 by 5, and u_1v_s by 1.

Case 2.4. s is even and t is odd.

• If r is odd, then exchange the color of v_1 and v_1u_1 . Further, if w is

even, then exchange the color of u_n and u_nv_n ; else, recolor v_w by 5, v_wu_n by 1, u_nv_n by 5, and v_nu_t by 4.

If r is even, then recolor u_r by 5, u_rv₁ by 4, v₁u₁ by 5, u₁v_s by 1.
 Further, if w is even, then exchange the color of u_n and u_nv_n; else, recolor v_w by 5, v_wu_n by 1, u_nv_n by 5, and v_nu_t by 4.

We now turn to *n-snares*. The following three propositions come from [4].

Proposition 9 $\chi_{at}(D_n) = 5$.

Proposition 10 Let G be an even snare. Then $\chi_{at}(G) = 5$.

Proposition 11 Let G be an odd snare containing a C_4 . Then $\chi_{at}(G) = 5$.

We will deal with the final case, i.e., odd snares without C_4 . Since every 3-snare is a drum and the only 5-snare without C_4 is the Petersen graph, so we consider n-snares with $n \geq 7$ in the following context.

Lemma 12 Let G be an odd snare without C_4 . Then $\chi_{at}(G) = 5$.

Proof. By Proposition 1, $\chi_{at}(G) \geq 5$. Thus it suffices to give a 5-AVDTC G. Let the two cycles of G be $i_1i_2...i_ni_1$ and $o_1o_2...o_no_1$ with $i_no_n \in E(G)$. Suppose i_1o_s , $i_{n-1}o_t$, o_1i_r , $o_{n-1}i_w \in E(G)$, where $2 \leq s,t,r,w \leq n-2$, since G contains no C_4 .

Initially, define a proper total 5-coloring f of G as follows: alternately color the vertices $i_1, i_2, \ldots, i_{n-1}$ by 2 and 1, and alternately color the edges $i_1 i_2, i_2 i_3, \ldots, i_{n-2} i_{n-1}$ by 3 and 4, color i_n by 4, $i_n i_1$ by 1, $i_n i_{n-1}$ by 2;

alternately color the vertices $o_1, o_2, \ldots, o_{n-1}$ by 4 and 3, and alternately color the edges of $o_1 o_2, o_2 o_3, \ldots, o_{n-2} o_{n-1}$ by 1 and 2, color o_n by 2, $o_n o_1$ by 3, $o_n o_{n-1}$ by 4; color all the edges $i_t o_{\pi(t)}$ by 5, where $1 \le t \le n$.

Next, we construct a 5-AVDTC of G by recoloring some vertices and edges (if necessary) according to the parity of s, t, r and w.

Case 1. If all of s, t, r and w are odd, then f is a 5-AVDTC of G.

Case 2. Only one of s, t, r and w is even, without loss of generality, suppose s is even. Recolor $o_n i_n$ by 1, $i_n i_1$ by 5, $i_1 o_s$ by 4.

Case 3. Two of s, t, r and w are even. By symmetry, we only need to consider two subcases below.

Subcase 3.1. Both s and t are even. Recolor $o_n i_n$ by 1, i_n by 3, $i_n i_1$ by 2, i_1 by 5, $i_1 o_s$ by 4, $i_n i_{n-1}$ by 5, $i_{n-1} o_t$ by 4.

Subcase 3.2. Both s and r are even.

Subcase 3.2.1. |s - t| = 1.

Alternately recolor the edges $o_1 o_2, o_2 o_3, \ldots, o_{n-2} o_{n-1}$ by 2 and 1.

If s = t + 1 then we do the following recoloring. Firstly, recolor $i_1 i_n$ by 5, i_n by 3, $i_n o_n$ by 4, $o_n o_{n-1}$ by 3, o_{n-1} by 5, $o_{n-1} i_w$ by 1, $o_n o_1$ by 1. Secondly, exchange the color of o_t and $o_t o_{t+1}$, ie., $o_t o_s$, recolor o_s by 5, $o_s o_{s+1}$ by 3, $o_s i_1$ by 1. Suppose $o_{s+1} i_p \in E(G)$. If p is even, then $f(o_{s+1} i_p) = 5$, else, exchange the color of o_s and $o_s o_{s+1}$, i.e., $f(o_s) = 3$, $f(o_s o_{s+1}) = 5$. Recolor $o_{s+1} i_p$ by 1.

Now suppose t = s + 1. If s = 2, then recolor o_1 by 2, o_1o_2 by 4, o_2 (i.e., o_s) by 5, o_so_t by 3, o_si_1 by 1, i_1i_n by 5, i_ni_{n-1} by 4, i_n by 3, i_no_n by 2, o_n by 4, o_no_{n-1} by 3, o_{n-1} by 5, $o_{n-1}i_w$ by 1, o_no_1 by 1. If s > 2, then recolor o_so_t by 4, o_t by 5, o_si_1 by 1, o_ti_{n-1} by 1, i_1i_n by 5, i_{n-1} by 4, i_n by 3, i_no_n by 4, o_no_1 by 1, o_no_{n-1} by 3, o_{n-1} by 1.

Subcase 3.2.2. |s-t| > 1.

Firstly, exchange the color of $i_j i_{j+1}$ and i_{j+1} $(1 \le j \le n-2)$. Recolor i_n by 5, $i_n i_1$ by 4. Secondly, exchange the color of $o_j o_{j+1}$ and o_{j+1} $(1 \le j \le n-2)$. Recolor o_n by 3, $o_n o_1$ by 4, o_1 by 2, $o_n o_{n-1}$ by 2. Recolor $i_n o_n$ by 1.

We continue to do recoloring according to the value of s. If s=2, then recolor i_1o_s , i.e., i_1o_2 by 3, o_2o_1 by 5, o_1i_r by 3, i_r by 5. If s>2, then recolor i_1o_s by 3, o_so_{s-1} by 5. Suppose $o_{s-1}i_p \in E(G)$. If p is odd, then recolor $o_{s-1}i_p$ by 3, else, recolor i_p by 5, i_po_{s-1} by 3.

Case 4. Three of s, t, r and w are even. Without loss of generality, suppose s, t, and r are even.

Recolor $o_s i_1$ by 4, i_1 by 5, $i_1 i_n$ by 2, $i_n i_{n-1}$ by 1, i_{n-1} by 5, $i_{n-1} o_t$ by 4, $i_n o_n$ by 3, $o_n o_1$ by 5, $o_1 i_r$ by 2.

Case 5. All of s, t, r and w are even.

Recolor $o_s i_1$ by 4, i_1 by 5, $i_1 i_n$ by 2, $i_n i_{n-1}$ by 1, i_{n-1} by 5, $i_{n-1} o_t$ by 4, $i_n o_n$ by 3, $o_n o_{n-1}$ by 5, $o_{n-1} i_w$ by 2, $o_n o_1$ by 4, o_1 by 5, $o_1 i_r$ by 2.

Theorem 13 Let G be an n-snare with $n \geq 3$, then $\chi_{at}(G) = 5$.

Proof. Since Petersen graph has a 5-AVDTC, the conclusion follows by Proposition 9, Proposition 10, Proposition 11 and Lemma 12.

We conclude this section by proving that Generalized Petersen graphs have an AVDTC with only 5 colors. The greatest common divisor (gcd) of two positive integers a and b is the largest divisor common to a and b. For example, gcd (2, 7)=1, gcd (12, 18)=6, and gcd (15, 90)=15. Please keep in mind that subscripts are taken modulo n in the following.

Theorem 14 If $n \geq 3$ and $1 \leq k < \frac{n}{2}$, then $\chi_{at}(G(n,k)) = 5$.

Proof. By Proposition 1, $\chi_{at}(G(n,k)) \geq 5$, so it suffices to give a 5-AVDTC of G(n,k). Let $g=\gcd(n,k)$ and $p=\frac{n}{g}$. Observe that the subgraph induced by $v_0, v_1, \ldots, v_{n-1}$ is the disjoint union of g cycles with the same length p.

Case 1. n is even.

Subcase 1.1. p is even.

Alternately color the vertices $u_0, u_1, \ldots, u_{n-1}$ by 1 and 2, and alternately color the edges

 $u_0u_1,\ldots,u_{n-2}u_{n-1},u_{n-1}u_0$ by 3 and 4. For $0 \le i \le g-1$, alternately color the vertices of each cycle $v_iv_{i+k}\ldots v_{i+(p-1)k}$ by 3 and 4, and alternately color the edges of each cycle $v_iv_{i+k}\ldots v_{i+(p-1)k}$ by 1 and 2. For $0 \le i \le n-1$, color u_iv_i by 5. It is clear that, for $0 \le i \le n-1$,

$$C(u_i) = \begin{cases} \{1, 3, 4, 5\}, & i \text{ is even,} \\ \{2, 3, 4, 5\}, & i \text{ is odd.} \end{cases}$$
 (1)

And for $0 \le i \le g-1$, $0 \le j \le p-1$,

$$C(v_{i+jk}) = \begin{cases} \{1, 2, 3, 5\}, & j \text{ is even,} \\ \{1, 2, 4, 5\}, & j \text{ is odd.} \end{cases}$$
 (2)

Obviously, f is a 5-AVDTC of G(n, k).

Subcase 1.2. p is odd.

For $0 \le i \le n-1$, let

$$f(u_i) = \begin{cases} 1, & i \text{ is even,} \\ 2, & i \text{ is odd.} \end{cases}$$
 (3)

and

$$f(u_iu_{i+1}) = \begin{cases} 5, & i \text{ is even and } 0 \le i \le g-2, \\ 3, & i \text{ is even and } g \le i \le n-2, \\ 4, & \text{Otherwise.} \end{cases}$$

$$(4)$$

For $0 \le i \le g-1$, alternately color the vertices of $v_i v_{i+k} \dots v_{i+(p-2)k}$ by 4 and 3. Further, if i is even, then alternately color the edges of $v_iv_{i+k}\dots v_{i+(p-2)k}$ by 2 and 1, color $v_{i+(p-2)k}v_{i+(p-1)k}$ by 4, $v_{i+(p-1)k}$ by 2, $v_{i+(p-1)k}v_i$ by 1; if i is odd, then alternately color the edges of $v_iv_{i+k}\dots v_{i+(p-2)k}$ by 1 and 2, color $v_{i+(p-2)k}v_{i+(p-1)k}$ by 4, $v_{i+(p-1)k}$ by 1, $v_{i+(p-1)k}v_i$ by 2. Let

$$f(u_i v_i) = \begin{cases} 3, & 0 \le i \le g - 1, \\ 5, & g \le i \le n - 1. \end{cases}$$
 (5)

Obviously, f is a proper total 5-coloring of G(n, k).

From above coloring, we can obtain the color set of each vertex of G(n,k) as follows. For $0 \le i \le n-1$,

$$C(u_i) = \begin{cases} \{1, 3, 4, 5\}, & i \text{ is even,} \\ \{2, 3, 4, 5\}, & i \text{ is odd.} \end{cases}$$
 (6)

And for $0 \le i \le g - 1$, $0 \le j \le p - 1$,

$$C(v_{i+jk}) = \begin{cases} \{1,2,3,4\}, & j = 0, \\ \{1,2,3,5\}, & j \text{ is odd and } 1 \le j \le p-3, \\ \{1,2,4,5\}, & j \text{ is even and } 1 \le j \le p-1, \\ \{2,3,4,5\}, & i \text{ is even }, j = p-2, \\ \{1,3,4,5\}, & i \text{ is odd }, j = p-2. \end{cases}$$

$$(7)$$

It can be verified that f is a 5-AVDTC of G(n,k).

Case 2. n is odd. The Control of the

If g=1 then G(n,k) is an odd-snare. By Proposition 11 and Lemma 12, G(n,k) has a 5-AVDTC. Thus we assume $g \geq 3$. For $0 \leq i \leq n-1$, let

$$f(u_i) = \begin{cases} 5, & i = 0, \\ 4, & i = 1, \\ 5, & i = 2, \\ 1, & i \text{ is odd and } i \neq 1, \\ 2, & \text{otherwise.} \end{cases}$$
 (8)

$$f(u_{i}u_{i+1}) = \begin{cases} 1, & i = 0, \\ 2, & i = 1, \\ 4, & 2 \le i \le n-1 \text{ and } i \text{ is even,} \\ 5, & 3 \le i < g-1 \text{ and } i \text{ is odd,} \\ 3, & \text{otherwise.} \end{cases}$$
(9)

and

$$f(u_i v_i) = \begin{cases} 3, & 0 \le i \le g - 1, \\ 5, & \text{otherwise.} \end{cases}$$
 (10)

For $0 \le i \le g - 1$, let

$$f(v_i) = \begin{cases} 2, & i = 0, \\ 5, & i = 1, \\ 2, & i = 2, \\ 2, & 3 \le i \le g - 1 \text{ and } i \text{ is odd,} \\ 1, & \text{otherwise.} \end{cases}$$
(11)

For $0 \le i \le g-1$, since $i+(p-1)k=n-k+i \pmod n$, while (n-k+i)+(i+k)=n+2i, recall that n is odd, we conclude that i+(p-1)k and i+k have different parity. The remaining edges are colored in the following way.

For i=0,1,2, or $3 \leq i \leq g-1$ and i is odd. If i+k is even, then $f(v_{i+k})=1$ and $f(v_iv_{i+k})=4$, alternately color the vertices of $v_{i+2k}\dots v_{i+(p-1)k}$ by 3 and 4, and alternately color the edges of $v_{i+k}\dots v_{i+(p-1)k}v_i$ by 2 and 1. If i+(p-1)k is even, then $f(v_{i+(p-1)k})=1$ and $f(v_iv_{i+(p-1)k})=4$, alternately color the vertices of $v_{i+(p-2)k}\dots v_{i+k}$ by 3 and 4, and alternately color the edges of $v_{i+(p-1)k}\dots v_{i+k}v_i$ by 2 and 1.

For $3 \leq i \leq g-1$ and i is even. If i+k is odd, then $f(v_{i+k})=2$ and $f(v_iv_{i+k})=4$, alternately color the vertices of $v_{i+2k}\ldots v_{i+(p-1)k}$ by 3 and 4, and alternately color the edges of $v_{i+k}\ldots v_{i+(p-1)k}v_i$ by 1 and 2. If i+(p-1)k is odd, then $f(v_{i+(p-1)k})=2$ and $f(v_iv_{i+(p-1)k})=4$, alternately color the vertices of $v_{i+(p-2)k}\ldots v_{i+k}$ by 3 and 4, and alternately color the edges of $v_{i+(p-1)k}\ldots v_{i+k}v_i$ by 1 and 2.

It is obvious that f is a proper total 5-coloring of G(n,k). The color

set of each vertex of G(n, k) is presented as follows. For $0 \le i \le n - 1$,

$$C(u_i) = \begin{cases} \{1, 3, 4, 5\}, & i = 0, \\ \{1, 2, 3, 4\}, & i = 1, \\ \{2, 3, 4, 5\}, & i \text{ is even and } i \neq 0, \\ \{1, 3, 4, 5\}, & \text{otherwise.} \end{cases}$$
 (12)

For $0 \le i \le g-1$, $1 \le j \le p-1$, the color sets of vertices $v_{i+k}, \ldots, v_{i+(p-1)k}$ are $\{1, 2, 4, 5\}$ and $\{1, 2, 3, 5\}$ alternately or reverse. In addition, for $0 \le i \le g-1$,

$$C(v_i) = \begin{cases} \{1, 3, 4, 5\}, & i = 1, \\ \{1, 2, 3, 4\}, & \text{otherwise.} \end{cases}$$
 (13)

1

It can be verified that f is a 5-AVDTC of G(n, k).

3 Concluding remarks

In this work, we prove that a class of cubic hamiltonian graphs have an AVDTC with only 5 colors. We also solve the tough problem (Lemma 12 in this paper) that Hulgan didn't solve in his Ph.D. Thesis [4]. In addition, we totally determine that Generalized Petersen graphs have an AVDTC with only 5 colors. To our best knowledge, it is still challenging to answer the question that whether 5 is an upper bound for any cubic graph G. Our work provides a basis for attacking this problem.

References

[1] X. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta(G) = 3$, Discrete Math. 308 (2008) 4003-4007.

- [2] D. Huang and W. Wang, Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, Sci. Sin. Math. 42 (2012) 151-164 (in Chinese).
- [3] J. Hulgan, Concise proofs for adjacent vertex-distinguishing total colorings, Discrete Math. 309 (2009) 2548-2550.
- [4] J. Hulgan, Graph colorings with constraints, Ph.D. Thesis, The University of Memphis, May, 2010.
- [5] H. Li, L. Ding, B. Liu, and G. Wang, Neighbor sum distinguishing total colorings of planar graphs, J. Comb. Optim. 30(3) (2015) 675-688.
- [6] H. Li, B. Liu, and G. Wang, Neighbor sum distinguishing total colorings of K₄-minor free graphs, Front. Math. China 8(6) (2013) 1351-1366.
- [7] M. Pilśniak and M. Woźniak, On the adjacent-vertex-distinguishing index by sums in total proper colorings, http://www.ii.uj.edu.pl/preMD/index.php
- [8] H. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with $\Delta(G)=3$, J. Combin. Optim. 14 (2007) 87-109.
- [9] W. Wang and P. Wang, On adjacent-vertex-distinguishing total coloring of K₄-minor free graphs, Sci. Chin. Series A-Mathematics 39(12) (2009) 1462-1472.
- [10] Y. Wang and W. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J. Comb. Optim. 19 (2010) 123-133.

- [11] W. Wang and D. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014) 379-396.
- [12] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152-164.
- [13] Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu, and J. Wang, On adjacent-vertex-distinguishing total coloring of graphs, Sci. Chin. Series A-Mathematics 48(3) (2005) 289-299.