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Abstract

Suppose G = (V,E) is a simple graph and f : (VUE) —
{1,2,...,k} is a proper total k-coloring of G. Let C(u) = {f(u)} U
{f(uv) : uwv € E(G)} for each vertex u of G. The coloring f is
said to be an adjacent vertex-distinguishing total coloring of G if
C(u) # C(v) for every uv € E(G). The minimum k for which such a
coloring of G exists is called the adjacent vertex-distinguishing total
chromatic number of G, and is denoted by xa¢(G). This paper consid-
ers three types of cubic graphs: a specific family of cubic hamiltonian
graphs, snares and Generalized Petersen graphs. We prove that these
cubic graphs have the same adjacent vertex-distinguishing total chro-
matic number 5. This is a step towards a problem that whether the
bound x.:(G) < 6 is sharp for a graph G with maximum degree three.

Keywords: Adjacent vertex-distinguishing total coloring; Adjacent

vertex-distinguishing total chromatic number; Cubic graphs; Snares;
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1 Introduction

Let G = (V,E) be a simple graph and T(G) = V(G) U E(G) be the set
of vertices and edges of G. A proper total k-coloring of G is a mapping

£:T(G) = {1,2,...,k} such that no two adjacent or incident elements of
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T(G) receive the same color. Consider such a coloring f, denote by C'(u) the
color set {f(u)}U{ f(uv) : uv € E(G)} for each vertex u of G. The coloring
f is said to be an adjacent vertez-distinguishing total coloring (AVDTC for
short) if C(u) # C(v) whenever uv € E(G). The minimum k for which
such a coloring of G exists is called the adjacent vertez-distinguishing total
chromatic number of G, and is denoted by xa:(G). It was Zhang et al [13]

who first introduced this kind of coloring.

It is worth to mention another related total coloring—neighbor suin
distinguishing total coloring, which is defined as follows. In a total k-
coloring f of G, let S(u) denote the total sum of colors of the edges incident
to u and the color of u. The coloring f is said to be a neighbor sum
distinguishing total coloring if for each edge wv, then S(u) # S(v). The
minimum k for which such a coloring of G exists is called the neighbor sum
distinguishing total chromatic number of G, and is denoted by x,,4(G). If
f is a neighbor sum distinguishing total coloring, then clearly it is also an
adjacent vertex-distinguishing total coloring. Thus x.:(G) < x,.4(G) for
any graph G. For results about neighbor sum distinguishing total chromatic
number, we refer readers to [5-7].

Let A(G) and 6(G) be the maximun degree and minimuin degree of a
graph G respectively. By definition, it is obvious that xa¢(G) > A(G) + 1.

The following simple observation was also made by Zhang et al [13].

Proposition 1 If G is a graph with two adjacent vertices of mazimum

degree, then Xq:(G) 2> A(G) + 2.
They also proposed the following conjecture.

Conjecture 2 If G is a simple graph, then xat(G) < A(G) + 3.
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It is easy to prove that xa(G) < A(G) + 2 for bipartite graphs ¢
(1]. Thus the conjecture is true for bipartite graphs. It was also con-
firmed for outerplanar graphs [10] and K-minor free graphs (9. Then the
conjecture was proved for planar graphs with maximum degree at least
11 by Huang and Wang [2]. Recently, Wang and Huang [11] proved that
Xat(G) < A(G) 4 2 for planar graphs with A(G) > 14.

Wang in [8] showed that this conjecture is true for any graph G with
A(G) = 3. Short and concise proofs were given by Chen in [1] and Hulgan
in (3], independently. However, many graphs with maximum degree three,
including Ky, K33, and Petersen graphs, have an AVDTC with only 5

colors. Therefore, Hulgan in (3] proposed the following problern.
Problem 3 For a graph G with A(G) = 3, is the bound xat(G) < 6 sharp?

Actually, the following simple result tells us that we only need to focus

on cubic graphs.

Proposition 4 Let G be a cubic graph, if H is a subgraph of G, then

Xat(H) < Xat(G)-

Proof. Let xq:(G) =k, then 5 < k < 6. Suppose f is a k-AVDTC of G.
If f|g, the restriction of f on H, is a k-AVDTC of H, then we are done,
otherwise, there exist two adjacent vertices of degreé 2 having the same color
set. Consider suspend trail voviva. .. v¥e41, i€, a trail vovive.. . VeVeqy
such that dy(vo) # 2 # dg(vis1), dulvi) = 2, 1 =1,2,...,t. Let flg =
N, Cppp,(vi) = CO(w,). it CW(vy) = C(M(vy), without loss of generality,
assume f(vy) = 1, f(vg) = 2, f(viv2) = 3, f(v1v0) = 2, f(vzvs) = 1. Then

recolor vy by 4if f(vs) # 4 or 5 if f(va) = 4. The resulting coloring, denoted
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by f®, satisfies C(vy) # CD(va). If CW(v;) # CW (1), then let
f@ = fM, For each vertex = of H we denote by C(?)(z) the color set of »
under coloring £, 1f C? (1) # C@(v3), then let @) = f() otherwise,
we recolor the vertex v3 similarly and denote the resulting coloring by @)
Continuing in this way until f(!). For each suspend trail we do the above

modifications. Then a k-AVDTC of H is obtained. n

Due to the ahove Proposition, we only need to concentrate on cubijc

graphs. Now we consider three types of cubic graphs which are defined as

follows.

Definition 5 Consider a class of cubic hamiltonian graphs as follows: there
ezists a hamiltonian cycle ujuy . .. UnUpVn_1 ... V1 Such that all the match-
ing edges are of the form uv; (1 <4,j < n), we use Han to denote the set

of this kind of cubic hamiltonian graphs.

The following definition can be found in [4].

Definition 6 Consider two disjoint n-cycles i1iz...1n11 and 0102 . ..0,01.
Let m denote a permutation on n elements. Add to these two cycles the set
of edges i;0n(;y (1 < j < n). We call the family of such graphs n-snares.

If m is the identity permutation, we call the graph a drum and denote it by
Dn.

The well-known Generalized Petersen graph is defined below.

Definition 7 ([12]). Generalized Petersen graph G(n,k) (n 23,1 <k <

2), is a graph with vertex set

{uo, U1y, Un—1,V0,V1,-+ - Un-1},
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and edge set

(wiugpr, uv vvgg i =0,1,...,n =1},
where subscripts are taken modulo n.

In this paper, we prove that each of these cubic graphs has a 5-AVDTC.

2 Main results

Theorem 8 Let n > 2 be an integer. Then, for any graph Hj, € Hj,,

Xat(H2n) = 5.

Proof. Using the notations in definition 5, we suppose that uyve, voue, vyu,
and u, v, are edges in E(Hy,,), where 2 < s,r <nand1<t,w <n-1. By
Proposition 1, Xat(H2n) > 5. Thus it suffices to give a 5-AVDTC of Hj,.
To this end, we prove the following two claims according to the parity of n.

Claim 1: If n > 3 and n is odd, then xq:(H2n) = 5.

Initially, define a proper total 5-coloring f of Ha, as: alternately col-
or the vertices uj,u2,...,u, by 3 and 4, and alternately color the edges
U U2, UgU3, - . - , Un—1Un Dy 2 and 1; alternately color the vertices vy, vz, ..., v,
by 1 and 2, and alternately color the edges vivz,...,Un_1vn by 3 and 4;
color uyvy hy 4 and u,v, by 2; color the remaining edges by 5.

Next, we construct a 5-AVDTC of H,, by recoloring some vertices and
edges (if necessary) according to the parity of s,t,r and w.

Case 1.1. If both s and ¢ are odd, then f is a 5-AVDTC of Hj,.

Case 1.2. s is even and ¢ is odd. If r is odd, then exchange the color of

v; and vyu;; else, recolor u, by 5, u,v; by 4, vju; by 5, and uyvs by 1.
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Case 1.3. sis odd and t is even. This case is similar to case 1.2, [If 1~
is odd, then exchange the color of u,, and u,vy; else, recolor vy, by 5, v,, 1,
by 2, u,v, by 5, and v,uy by 3.

Case 1.4. Both s and t are even.

o If r is odd, then exchange the color of vy and viu;. Further, if w is
odd, then exchange the color of u, and u,vn; else, recolor vy by 5.

Vwln by 2, u,v, by 5, and v,u, by 3.

e If r is even, then recolor u, by 5, u,v; by 4, viuy by 5, ujvs by 1.
Further, if w is odd, then exchange the color of u, and unvn; else,

recolor vy, by 5, vyun by 2, upv, by 5, and vau, by 3.

Claim 2: If n > 2 and n is even, then xa¢(H2n) = 5.

The coloring strategy of claim 2 is similar to that of claim 1, therefore,
we re-use the same coloring symbol f for this situation.

Properly total 5-coloring of Hs, in the same way as that of claim 1,
except that f(u,v,) = 1. Then we construct a 5-AVDTC of Ha, by recol-

oring some vertices and edges (if necessary) according to the parity of s,¢,

and w.

Case 2.1. If s is odd and ¢ is even, then f is a 5-AVDTC of Hop,.

Case 2.2. Both s and ¢ are odd. If w is even, then exchange the color
of u,, and u,vy; else, recolor vy, by 5, v,u, by 1, u,v, by 5, and v,u, by 4.

Case 2.3. Both s and t are even. This case is similar to case 2.2. If r is
odd, then exchange the color of v; and v u;; else, recolor u, by 5, u,v1 by
4, viuy by 5, and uyvs by 1.

Case 2.4. s is even and t is odd.

e If r is odd, then exchange the color of v, and viu;. Further, if w is

190



even, then exchange the color of u,, and u,vy; else, recolor vy by 5.

Uelin bV 1, uav, by 5, and vu, hy 4.

e If r is even, then recolor u, by 5, u,vy by 4, vju; by 5, ujv, hy 1.
Further, if w is even, then exchange the color of u, and u,v,: else,

recolor vy by 5, veu, by 1, uqv, by 5, and vau, by 4.

We now turn to n-snares. The following three propositions come from

Proposition 9 \q:(D,) =5.
Proposition 10 Let G be an even snare. Then Xqt(G) = 5.
Proposition 11 Let G be an odd snare containing a Cs. Then xq:(G) = 5.

We will deal with the final case, i.e., odd snares without C;. Since
everv 3-snare is a drum and the only 5-snare without Cj is the Petersen

graph, so we consider n-snares with n > 7 in the following context.
Lemma 12 Let G be an odd snare without Cy. Then Xa:(G) = 5.

Proof. By Proposition 1, xe¢(G) > 5. Thus it suffices to give a 5-AVDTC
G. Let the two cycles of G be 1;i5...1,1; and 0,02...0,0; With 1,0, €
E(G). Suppose i,0s, in—10¢, 01ir, On_1iy € E(G), where 2 < s,t,r,w <
n — 2, since G contains no Cj.

Initially, define a proper total 5-coloring f of G as follows: alternately
color the vertices 1,12,...,1,~1 by 2 and 1, and alternately color the edges

ilig,i2i3,---sin—2irx—l by 3 and 4, color i, by 4, in1y by 1, tatn—y by 2;
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alternately color the vertices 0y,02,...,0n-1 by 4 and 3, and alternately
color the edges of 0,02,0703,...,0,-20,-) by 1 and 2, color 0,, by 2, 7n7
by 3, 0,0n-1 by 4; color all the edges i,0.(;) by 5, where 1 < t < n.

Next, we construct a 5-AVDTC of G by recoloring some vertices an
edges (if necessary) according to the parity of s,,r and w.

Case 1. If all of s,¢,r and w are odd, then f is a 5-AVDTC of G.

Case 2. Only one of s,t,r and w is even, without loss of generality,
suppose s is even. Recolor onin by 1, ini) by 5, 1,0, by 4.

Case 3. Two of s,t,7 and w are even. By symmetry, we only need to
consider two subcases helow.

Subcase 3.1. Both s and t are even. Recolor onin by 1, in by 3, in7; by
2, 11 by 5, 1,0, by 4, inin—1 by 5, i,—10; by 4.

Subcase 3.2. Both s and r are even.

Subcase 3.2.1. |s —¢| = 1.

Alternately recolor the edges 010y,0503, . ..,0p-20n-1 by 2 and 1.

If s = ¢t + 1 then we do the following recoloring. Firstly, recolor 7,i,
by 5, in by 3, in0n by 4, 0n0n_1 by 3, 051 by §, On-1tw by 1, 0p01 by
1. Secondly, exchange the color of o, and 0,0,,1, ie., 0¢0s, Tecolor os by
5, 050s+1 by 3, 0511 by 1. Suppose 05413, € E(G). If p is even, then
f(04411p) = 5, else, exchange the color of o, and 050441, 1.€., f(os) =3,

f(0505+1) = 5. Recolor o54+1ip by 1.

Now suppose t = s + 1. If s = 2, then recolor o; by 2, 0102 by 4, o2
i.e., 05) by 5, 050¢ by 3, 0511 by 1, d1in by 5, inin-1 by 4, in by 3, inon by
2, 0 by 4, 0n0n—1 by 3, 051 bY 5, 05_11w by 1, 0n01 by 1. If s > 2, then
recolor 0,0; by 4, 0, by 5, 0431 by 1, 04in—1 by 1, 18 by 5, tn—1 by 4, 7,

hy 3, in0n by 4, 0,01 hy 1, 0n0n—1 hy 3, 0n-1 by 1.
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Subcase 3.2.2. |s —t| > 1.

Firstly, exchange the color of i5ij,) and ij4) (1<) < n ~2). Recolor
in by 5, 1,11 by 4. Secondly, exchange the color of 050541 and 0j4 (1 £
j<n-2). Recolor o, by 3, 0n01 by 4, 0y by 2, 0,0,-1 by 2. Recolor i,0,
by 1.

We continue to do recoloring according to the value of 5. If s = 2, then
recolor 110y, i.e., 1102 by 3, 0301 by 5, 011, by 3, i, by 5. If s > 2, then
recolor 1105 by 3, 0,05—1 by 5. Suppose 0,_11p € E(G). If p is odd, then
recolor 0s—1tp by 3, else, recolor iy, hy 5, i,0,-1 by 3.

Case 4. Three of s,t,7 and w are even. Without loss of generality,
suppose $,t, and r are even.

Recolor o,47) by 4, iy by 5, iyin by 2, inin-1 by 1, in—1 by 5, in—10¢ by
4, 1,0, by 3, 0,01 by 5, 0%, hy 2.

Case 5. All of s,t,r and w are even.

Recolor o4iy by 4, iy by 5, i1in by 2, tnin—1 by 1, tn—1 by 5, 1n—10¢ by

4, in0n by 3, 0n0n_1 by 5, 0n—1iw by 2, 0401 by 4, 0; by 5, 017, by 2.

Theorem 13 Let G be an n-snare with n > 3, then xqt(G) = 5.

Proof. Since Petersen graph has a 5-AVDTC, the conclusion follows by

Proposition 9, Proposition 10, Proposition 11 and Lemmna 12. 0

We conclude this section by proving that Generalized Petersen graphs
have an AVDTC with only 5 colors. The greatest common divisor (ged) of
two positive integers a and b is the largest divisor common to a and b. For
example, ged (2, 7)=1, ged (12, 18)=6, and ged (15, 90)=15. Please keep

in mind that subscripts are taken modulo n in the following.
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Theorem 14 Ifn>3 and 1 €k < %)!, then xa(G(n,k)) = 6.

Proof. By Proposition 1, xat(G(n, k)) 2 5, so it suffices to give a 5-AVD'7 ¢
of G(n, k). Let g=ged(n, k) and p = = Observe that the subgraph indues|

¥ g, Uys e oy Uy 18 the disjoint union of g cycles with the same length p

Case 1. n is even,

Subcase 1.1, p is even.

Alternately color the vertices ug, uy,...,un—y by 1 and 2, and alter-
nately color the edges
UgUQy -y Un—gUn_1,Un_1Ug by 3 and 4. For 0 < ¢ < g — 1, alternately
color the vertices of each cycle v;viyk ... vig(p-1)k Dy 3 and 4, and alter-
nately color the edges of each cycle vivitk...Vip(p-1)c by 1 and 2. For

0<i<n-1,color ujv; by 5. It is clear that, for 0 <i <n -1,

_J {1,3,4,5}, iis even,
C(Ui) i { {21 3, 4)5}’ 1 15 odd. (1)

And for0<i<g—-1,0<j<p-1,

v J {1,2,3,5}, jis even,
Cloese) = { {1,2,4,5}, jis odd. (2)

Obviously, f is a 5-AVDTC of G(n,k).
Subcase 1.2. p is odd.

For0<i<n-1,let

1, 1 1s even,
Flu) ={ 9, iis odd. (3)

and 2841 :
5 tisevenand0<i<g—2,

fluiuip1) =< 3, iisevenandg<i<n-—2, ' (4)
4, Otherwise.

For 0 < i < g — 1, alternately color the vertices of v;viyk ... Vit(p—2)

by 4 and 3. Further, if ¢ is even, then alternately color the edges of
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WOk Viapogye by 2 and 1, color vigp-2peVisp-nye by 4, 0001
by 2, Vid(p-1)k ¥y h}' 1; if 1 is odd, then nlt,c-nmtrly color the edges af
Uhak e Uig(pa2)k |)}' 1 and 2, color Vis(p-2)kVis(p-1)k by 4, Cip(p-1)s by

l, l‘l‘(""l)k"l l)_" 2. Let

f(un,u').—_{ B, p2tZn-t, (5)

R

Obviously, f is a proper total 5-coloring of G(n, k).
From above coloring, we can obtain the color set of each vertex of

G(n, k) as follows. For 0 <i<n -1,

LY RL {1131 415}a lls even,
C(u') . { {213’415}! iis odd. (G)

And for0<i<g-1,0<;3<p-1,

({1,2,3,4}, "j =0,

{1,2,3,5}, jisoddand 1<j<p-3,

Clvitix) =4 {1,2,4,5}, jisevenand1<j<p-1, (7)
{2,3,4,5}, iiseven,j=p-2,

| {1,3,4,5}, iisodd, j=p-2.

It can be verified that f is a 5-AVDTC of G(n, k).

Case 2. n is odd.

If g = 1 then G(n, k) is an odd-snare. By Proposition 11 and Lemina
12, G(n, k) has a 5-AVDTC. Thus we assume g >3. For0<i<n-1, let

( 5 1=0,
48],
f(ui) = 9 5: 1= 27 (8)
1, iisoddandi#1,
[ 2, otherwise.
(1, i=0,
e F
fluguip) =4 4, 2<i<n-—1andiis even, (9)
5, 3<i<g-1and1iisodd,
| 3, otherwise.
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and
3, 03159—11

f(uv;) = { 5, otherwise. (1())

For0<i<g-—1,let

) i=0a

, =1,

, i=2, (11)
3J<i<g-1andiisodd,

otherwise.

fvi) = ¢

)

N BN U1 BN

"y
For 0 < i <g-—1,since i+ (p—1)k = n—k+i(modn), while
(n—k+1)+ @+ k) = n + 2i, recall that n is odd, we conclude that
i+ (p—1)k and i +k have different parity. The remaining edges are colored
in the following way.
For i = 0,1,2, or 3 < ¢ < g—1andiis odd. If i+ k is even,
then f(vitk) = 1 and f(v;viyk) = 4, alternately color the vertices of
Vig2k - - - Vit (p-1)k Dy 3 and 4, and alternately color the edges of vitk - - - Vig (p—1)k,
by 2 and 1. If i+(p—1)k is even, then f(vit(p—1)x) = 1 and f(vivip(p-1)k) =
4, alternately color the vertices of v;4 (p—2)k - - - Vitk DY 3 and 4, and alter-
nately color the edges of v;4(p—1)k - . - vi+x¥i by 2 and 1.
For 3<i<g—1andiiseven. Ifi+kisodd, then f(viyx) = 2
and f(v;vizr) = 4, alternately color the vertices of vitok - .. Viy(p—1)k by 3
and 4, and alternately color the edges of v;1k ... Vi+(p—1)k¥i by 1 and 2. If
i+(p—1)k is odd, then f(vit(p—1)k) = 2 and f(vivi4(p—1)k) = 4, alternately
color the vertices of v;y(p—2)k ... vitx by 3 and 4, and alternately color the
edges of Viy(p—1)k - - - Vi+k¥; Dy 1 and 2.

It is obvious that f is a proper total 5-coloring of G(n,k). The color
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sot of each vertex of G(n, k) is presented as follows, For 0 < i< n |,

{l,flpl,.’)}, i =0,
{1,2,3,4}), i=1,

C(u) = =
W) {2'3.4,5}. 1is even and 1 £ 0, (12)
{(1,3,4,5}, otherwise,
For0<i<g-1,1<j<p=1,the color sets of vertices vyy,..., Vs (p= 1)k

are {1,2,4,5} and {1,2,3,5} alternately or reverse. In addition, for 0 <

i<g9-1,
C ) — { : vk i | ] P '
il { {1,2,3,4}, otherwise. (13)

It can be verified that f is a 5-AVDTC of G(n, k).

3 Concluding remarks

In this work, we prove that a class of cubic hamiltonian graphs have an
AVDTC with only 5 colors. We also solve the tough problem (Lemma 12
in this paper) that Hulgan didn’t solve in his Ph.D. Thesis [4]. In addition,
we totally determine that Generalized Petersen graphs have an AVDTC
with only 5 colors. To our best knowledge, it is still challenging to answer
the question that whether 5 is an upper bound for any cubic graph G. Our

work provides a basis for attacking this problem.
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