ON THE CONSTRUCTION OF COGRAPH COLOR CRITICAL GRAPHS # DONOVAN R. HARE1 AND PENG ZHANG2 Department of Mathematics University of British Columbia Kelowna, British Columbia Canada V1V 1V7 ABSTRACT. A cograph is a simple graph that does not contain an induced path on 4 vertices. A graph G is k-e colorable if the vertices of G can be colored in k colors such that, for each color, the subgraph induced by the vertices assigned the color is a cograph. A graph that is k-e colorable and is not (k-1)-e colorable, but becomes (k-1)-e colorable whenever a vertex is removed, is called k-e critical graph. Two general constructions are provided that produce e critical graphs from color critical graphs and hypergraphs. A characterization is also given for when a general composition of graphs (pathjoins) is e critical. The characterization is used to provide an upper bound for the fewest number of vertices of a k-e critical graph. #### 1. Introduction For notational simplicity, we define for a positive integer t, $[t] = \{1, \ldots, t\}$. In the definitions that follow, let k be a positive integer. We reserve $C_k = \{c_1, \ldots, c_k\}$ to be a finite set of size k whose elements c_1, \ldots, c_k are called colors. Let G be a finite, undirected, simple graph with vertices V(G) and edges E(G). A function $\gamma: V(G) \to C_k$ is called a k-coloring of G (or coloring if k is not specified). The function γ is said to color G and to use colors from C_k . If for some vertex v and color c_i , $\gamma(v) = c_i$, then v is said to be colored c_i by γ (or just colored c_i if γ is understood). A set of vertices is monochromatic under γ if γ colors all the vertices of the set the same color. The color classes of γ are the elements of the partition $\{V_{c_1}, \ldots, V_{c_k}\}$ of preimages of members of C_k where $V_{c_i} = \gamma^{-1}(\{c_i\})$ for $i \in [k]$. E-mail address: 1donovan.hareQubc.ca, 2wifeyfQhotmail.com. Let \mathcal{B} be a (not necessarily finite) set of finite, undirected, simple graphs. A coloring γ of G using colors from C_k is a k- \mathfrak{B} coloring if the induced subgraph of each color class of γ is a member of \mathcal{B} (i.e. if $G[V_{c_i}] \in \mathcal{B}$ for all $i \in [k]$). A graph G is k- \mathfrak{B} colorable, if there exists a k- \mathfrak{B} coloring of G. The \mathfrak{B} chromatic number of G, denoted $\chi_{\mathfrak{B}}(G)$, is the minimum integer k for which G is k- \mathfrak{B} colorable. If $\chi_{\mathfrak{B}}(G) = k$, then graph G is said to be k- \mathfrak{B} chromatic. We define a 1- \mathfrak{B} critical graph to be K_1 , the single vertex graph. For $k \geq 2$, a k- \mathfrak{B} chromatic graph G is k- \mathfrak{B} critical if G - v is (k-1)- \mathfrak{B} colorable for all vertices $v \in V(G)$. Let \mathcal{E} be the set of finite empty graphs (no edges). Connecting the classical study of the chromatic number of graphs to the definitions here, a proper k-coloring of G is a k- ε -coloring of G. Moreover, G is k-colorable (respectively k-chromatic, k-vertex-critical) is equivalent to G is k- ε -colorable (respectively k- ε -chromatic, k- ε -critical). These definitions extend to hypergraphs (edges need not have size two). A hypergraph whose edges all have the same size is called a *uniform* hypergraph. A proper k-coloring of G is a k- ε -coloring of G (i.e. no edge is monochromatic). A graph or hypergraph G is k-critical, however, if G is k-chromatic and G-e is (k-1)-colorable for each edge e of G. Graphs and uniform hypergraphs that are k-critical have been extensively studied and exist for all k and edge sizes (see Toft [9]). Two graphs are disjoint if they have no vertex in common. If H_1 and H_2 are two disjoint graphs, then their disjoint union, $H_1 \cup H_2$, is the graph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1) \cup E(H_2)$. Moroever, their join, $H_1 \oplus H_2$, is the graph obtained from their disjoint union by adding every edge that has one of its vertices in $V(H_1)$ and the other in $V(H_2)$. The complement of a graph G, denoted \overline{G} , is the graph with vertices $V(\overline{G}) = V(G)$ and edges $E(\overline{G}) = \{uv : u, v \in V(\overline{G}), uv \notin E(G)\}$. Let P_{ℓ} be a path on ℓ vertices. A cograph (complement reducible graph, see [4]) is a graph that contains no induced P_{ℓ} subgraph. Let \mathcal{C} be the set of all cographs. This paper sets its focus on constructions of graphs that are k-ecritical. In 1968, Chartrand, Geller and Hedetniemi [2] introduced the ℓ -chromatic number of a graph, denoted χ_{ℓ} , which is equivalent to the \mathfrak{B} chromatic number when \mathfrak{B} is the set of graphs that do not contain a $P_{\ell+1}$ (regardless of whether the path is induced or not). Cockayne [3] defined the P-chromatic number where P is a property that defines the elements of \mathfrak{B} . The number was denoted by χ_P and was defined in the more general context of uniform hypergraphs. Mynhardt and Broere [8] were the first to show that for each k, there exists a graph G with $\chi_{\mathcal{C}}(G) > k$. Moreover, Brown and Corneil [1] first defined k-ccritical graphs and gave a construction that showed they exist for all k. In both of these papers, the results were in terms of the more general k-g-colorings. A k-e-coloring is called a P_4 -coloring in [8] and a $-P_4$ k-coloring in [1]. In 2010, Gimbel and Nešetřil [6] showed how colorings fit in an axiomatization of well-studied coloring functions. They also provided bounds and complexity results for the chromatic number which they called the c-chromatic number, denoted c(G). Most recently, Dorbec, Montassier and Ochem [5] constructed 3-chromatic triangle-free planar graphs as well as proving some associated complexity results. Trivally, every k-coloring of a graph G is also a k-coloring of G. Moreover, since the complement of a P_4 is also a P_4 subgraph, a coloring is a coloring of G if and only if it is coloring of the complement of G (as observed in [6]). The main results of this paper are Constructions 6 and 11, and to a somewhat lesser degree, Lemmas 3 and 4. We now describe the significance of the results. Although every k-echromatic graph contains a k-ecritical subgraph, until now only one general construction was known to produce k-ecritical graphs explicitly. This construction was provided by Brown and Corneil [1] when they introduced the topic in the more general context of k-gcritical graphs. The construction uses k-gcritical graphs as input to build (k+1)-gcritical graphs. In this paper, Lemma 3 extends the construction for ecolorings, by allowing s-ecritical graphs, $s \leq k$, to be used as input. Lemma 3 gives a complete characterization of the inputs for which the construction produces (k+1)-ecritical graphs. Consequently, new (k+1)-ecritical graphs are described explicitly. The natural quest to determine the fewest number of vertices in a k-critical graph begins with a partial answer in Lemma 4. The construction of Lemma 3 is used in Lemma 4 to find an upper bound to this parameter that is polynomial in k. Constructions 6 and 11 produce a critical graph from a color critical hypergraph or graph. For $k \geq 3$, both constructions can be used to produce an infinite set of k-critical graphs. In contrast, only two non-isomorphic 3-critical graphs are produced from Lemma 3 or the construction in [1] (and only a finite number of k-critical graphs if each of the input graphs are built from the construction as well). For $k \leq 4$, Construction 11 produces k-critical graphs that are outerplanar whereas all graphs produced by Construction 6 are nonplanar. We conclude the paper with some observations regarding the 4-critical planar graphs produced by the constructions. #### 2. COLORING PATH-JOINS We start this section with a definition of a graph that will be used throughout the paper. **Definition 1.** For $t \geq 2$, let H_1, \ldots, H_t be a sequence of disjoint graphs. The t-path-join (or just path-join) of the sequence is defined to be $$P(H_1,\ldots,H_t)=\bigcup_{i=1}^{t-1}(H_i\oplus H_{i+1}).$$ Each of the H_i is called an element of the path-join. Path-join graphs have a structure that is sufficiently general but at the same time controls where any induced P_4 subgraphs might be contained. The next lemma makes this last statement precise. The lemma is not new but is provided in this form for quick reference later. **Lemma 2.** Let $t \in \{2,3,4\}$ and H_1, \ldots, H_t be disjoint graphs. If P is an induced P_4 of $P(H_1, \ldots, H_t)$, then either - (1) for some $i \in [t]$, P is a subgraph of H_i , or - (2) t = 4 and for all $i \in [4]$, P contains a vertex from H_i . Proof. Suppose (1) is not true. Using the language of Golumbic[7]¹, since the path P is an induced subgraph of the composition graph $G = P_t(H_1, \ldots, H_t) = P(H_1, \ldots, H_t)$, E(P) is contained in an implication class A of G and hence contained in its symmetric closure \hat{A} . Thus by Theorem 5.8 of [7], since (1) is not true, $\hat{A} \cap E(H_i) = \emptyset$ for all $i \in [t]$. Moreover, since $\overline{G} = \overline{P_t(H_1, \ldots, H_t)} = \overline{P_t(\overline{H_1}, \ldots, \overline{H_t})}$ and $\overline{P} \cong P_4$, $E(\overline{P})$ is contained in the symmetric closure \hat{B} of some implication class B of \overline{G} implying $\hat{B} \cap E(\overline{H_i}) = \emptyset$ for all $i \in [t]$. Thus, for $i \in [t]$, no pair of vertices of P are contained in H_i and (2) is true. We now focus our attention on 4-path-join graphs and provide a complete characterization of their ecoloring properties. **Lemma 3.** Let H_1 , H_2 , H_3 and H_4 be disjoint graphs and let $k_i = \chi_{\mathcal{C}}(H_i)$ for $i \in [4]$ with maximum $k^{\max} = \max\{k_1, k_2, k_3, k_4\}$ and sum $k^{\Sigma} = k_1 + k_2 + k_3 + k_4$. Let $G = P(H_1, H_2, H_3, H_4)$. For every positive integer ℓ , - (1) G is ℓ -ecolorable if and only if $\ell \geq \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$, - (2) G is ℓ -echromatic if and only if $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$, and - (3) G is ℓ -excritical if and only if $\ell \geq k^{\max} + 1$, $k^{\Sigma} = 3(\ell 1) + 1$, and H_i is k_i -excritical for all $i \in [4]$. ¹In particular, the use of the terms composition graph and implication class in this proof. *Proof.* In what follows, let ℓ be a some positive integer. Suppose there exists an ℓ -ecoloring, $\gamma: V(G) \to C_{\ell}$, of G. For $i \in [4]$, $j \in [\ell]$, let $$I(H_i, c_j) = \begin{cases} 1 & \text{if } \gamma(v) = c_j \text{ for some vertex } v \text{ in } H_i \\ 0 & \text{otherwise.} \end{cases}$$ We shall count the number of these subgraph/color pairs in two ways. For $j \in [\ell]$, let $I_j = \{i \in [4] : \text{some vertex } v \text{ of } H_i \text{ has } \gamma(v) = c_j\}$. Now, if $|I_j| = 4$ for some $j \in [\ell]$, then there is an induced P_4 of G all of whose vertices are colored c_j under $\gamma(v)$ formed by selecting a single vertex colored c_j from each of H_1, H_2, H_3, H_4 guaranteed by the size of I_j . This contradicts that γ is a ℓ -coloring. Thus $|I_j| \leq 3$ for all $j \in [\ell]$ and hence $$\sum_{j=1}^{\ell} \sum_{i=1}^{4} I(H_i, c_j) = \sum_{j=1}^{\ell} |I_j| \le 3\ell.$$ On the other hand, considering the induced colorings $\gamma_i = \gamma|_{V(H_i)}$ for $i \in [4]$, we have $\ell \geq k^{\max}$ and $$\sum_{i=1}^{4} \sum_{j=1}^{\ell} I(H_i, c_j) = \sum_{i=1}^{4} |\gamma_i(V(H_i))| \ge \sum_{i=1}^{4} \chi_{\mathfrak{C}}(H_i) = k^{\Sigma}.$$ Thus we have $k^{\Sigma} \leq 3\ell$ and hence $\ell \geq \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. Suppose now that $\ell \geq \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. We shall construct an ℓ -ecoloring of G. For $i \in [4]$, let $k'_i = \ell - k_i$. Then $k'_1 + k'_2 + k'_3 + k'_4 = 4\ell - k^{\Sigma} \geq \ell$. Hence we can find a covering B'_1, B'_2, B'_3, B'_4 of the set of colors C_{ℓ} such that $C_{\ell} = B'_1 \cup B'_2 \cup B'_3 \cup B'_4$ and $|B'_i| = k'_i$ (note that some of these sets may be empty). Now for each $i \in [4]$, $\chi_{\mathfrak{C}}(H_i) = k_i$, and so there exists a k_i -ecoloring of H_i , $\gamma_i : V(H_i) \to C_{\ell} \setminus B'_i$. Let $\gamma : V(G) \to C_{\ell}$ be the functional extension of $\gamma_1, \gamma_2, \gamma_3, \gamma_4$. We claim that γ is a ℓ -ecoloring of G. By Lemma 2, an induced P_4 , P, of G is either contained in H_i for some $i \in [4]$, or P contains a vertex from each element of the path-join G. If P is contained in an H_i , then P is not monochromatic under $\gamma_i = \gamma|_{V(H_i)}$. Suppose therefore that P contains a vertex from each element of the path-join G. Consider an arbitrary color c_j of C_{ℓ} . By construction, $c_j \in B'_i$ for some $i \in [4]$ and hence γ_i does not use c_j to color the vertices of H_i . Thus the vertex of P in H_i is not colored c_j under γ . Since c_j is arbitrary, P is not monochromatic under γ . Hence G is ℓ -ecolorable. Therefore (1) is true. Part (2) follows by applying (1) twice to G with the fact that two integers satisfy $\ell-1 < \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\} \le \ell$ if and only if $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. We use the following in the next two paragraphs. Consider a vertex h of some H_t , $t \in [4]$. If H_t contains only vertex h, then $k^{\Sigma} \leq 3k^{\max} + 1$ since each $k_i \leq k^{\max}$, and $k_t = 1$. Moreover, we can k^{\max} -ecolor each of the other elements of the path-join G to get a k^{\max} -coloring of G-h (note that in this case, H_t is 1-corrical). Otherwise, if H_t has more than one vertex, let $H'_t = H_t - h$ and define $x(h) = k_t - \chi_{\mathfrak{C}}(H_t - h) \in \{0, 1\}$. For $i \in [4]$, $i \neq t$, let $H'_i = H_i$. Then the path-join $G'_h = P(H'_1, H'_2, H'_3, H'_4) = G - h$ satisfies $\chi_{\mathfrak{C}}(H'_1) + \chi_{\mathfrak{C}}(H'_2) + \chi_{\mathfrak{C}}(H'_3) + \chi_{\mathfrak{C}}(H'_4) = k^{\Sigma} - x(h)$. Suppose now, that G is ℓ -critical. By (2), $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. If $\ell = k^{\max}$, then we have $\chi_{\mathfrak{C}}(H_i) = k^{\max}$ for some $i \in [4]$, and by choosing $h \in V(H_j)$ for some $j \in [4]$, $j \neq i$, we find that H_i is a subgraph of G - h with $\chi_{\mathfrak{C}}(G - h) \geq \chi_{\mathfrak{C}}(H_i) = k^{\max} = \ell$, a contradiction. Thus $\ell \geq k^{\max} + 1$. We therefore have $\ell = \lceil k^{\Sigma}/3 \rceil$ and hence $k^{\Sigma} \geq 3(\ell - 1) + 1$. Now consider G - h for a vertex h of some H_t , $t \in [4]$. If $V(H_t) = \{h\}$, then, from the previous paragraph, H_t is 1-critical, $k^{\Sigma} \leq 3k^{\max} + 1$ and we can k^{\max} -ccolor G - h and so $\ell - 1 \leq k^{\max}$. Thus $\ell - 1 = k^{\max}$ and hence $k^{\Sigma} \leq 3(\ell - 1) + 1$. If $V(H_t) \neq \{h\}$, then, again from the previous paragraph, G - h is $(\ell - 1)$ -ccolorable implies by (1) that $\ell - 1 \geq \left\lceil \frac{k^{\Sigma} - x(h)}{3} \right\rceil \geq \frac{k^{\Sigma} - 1}{3}$. But $\ell = \lceil k^{\Sigma}/3 \rceil$ and so x(h) = 1. Hence, H_t is k_t -critical and $k^{\Sigma} \leq 3(\ell - 1) + 1$. In both cases, we have that $k^{\Sigma} = 3(\ell - 1) + 1$ and H_t is k_t -critical. Conversely, suppose $\ell \geq k^{\max} + 1$, $k^{\Sigma} = 3(\ell - 1) + 1$, and each H_i is k_i -ecritical, $i \in [4]$. Then $\lceil k^{\Sigma}/3 \rceil = \ell$ and so $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. Thus by (2), G is ℓ -echromatic. Consider a vertex h of some H_t , $t \in [4]$. If H_t contains only vertex h, then from above, G - h is k^{\max} -ecolorable and hence $(\ell - 1)$ -ecolorable since $\ell - 1 \geq k^{\max}$. Otherwise, x(h) = 1 since H_t is k_t -ecritical and G - h is a path-join $G' = (H'_1, H'_2, H'_3, H'_4)$ with $\chi_{\mathcal{C}}(H'_1) + \chi_{\mathcal{C}}(H'_2) + \chi_{\mathcal{C}}(H'_3) + \chi_{\mathcal{C}}(H'_4) = k^{\Sigma} - 1$, and $\lceil k^{\Sigma - 1}/3 \rceil = \ell - 1 \geq k^{\max}$. Thus by (1), G - h is $(\ell - 1)$ -ecolorable. Therefore, G is ℓ -ecritical and (3) is true. The path-join $P(G_1, G_2, G_3, G_4)$ for disjoint copies of a graph G is described as the composition graph $P_4[G]$ in Mynhardt and Broere [8]. Applying Lemma 1 of [8], they showed that $\chi_{\mathfrak{C}}(P_4[G]) > \chi_{\mathfrak{C}}(G)$ for all graphs G. Using Lemma 3, we have that $\chi_{\mathfrak{C}}(P_4[G]) = \left\lceil \frac{4\chi_{\mathfrak{C}}(G)}{3} \right\rceil$ as well as that $P_4[G]$ is s-critical if and only if $s \equiv 2 \mod 4$ and G is $(\frac{3}{4}(s-2) + 1)$ -critical. When P is chosen to be the cograph property, Theorem 2.8 of [1] is implied by Lemma 3 using the case when $H_1 \cong K_1$ and $k_2 = k_3 = k_4$. Note that G in Theorem 2.8 is forced to be P_4 for the cograph property since the only 2-critical graph is P_4 . Since there is only one 1-ccritical graph, namely K_1 , only one 2-ccritical 4-path-join graph can be constructed. We define $PJ_2 = P(H_1, H_2, H_3, H_4)$ where each element is isomorphic to K_1 . For $k \geq 2$, define $PJ_{k+1} = 1$ ²Described as the composition graph $P_4[G, G, G, G]$ in [7]. $P(H_1, H_2, H_3, H_4)$ with disjoint elements where for $i \in [3]$, H_i is a copy of PJ_k , and H_4 is a copy of K_1 . Using Lemma 3 inductively, we have that PJ_{k+1} is (k+1)-critical. This was proven first in Theorem 2.8 of Brown and Corneil [1] where the graph PJ_3 and its complement were first described. Gimbel and Nešetřil [6] also describe PJ_3 but give it the notation $(P_4)'$. It is natural to ask questions regarding the structure of those k-critical graphs with the fewest number vertices. For $k \ge 1$, we define f(k) to be the fewest number vertices of a k-critical graph and in what follows, let A_k be a k-critical graph with f(k) vertices. From the previous paragraphs, we have f(1) = 1 and f(2) = 4. Question 1 in the Remarks of [1] may be rephrased, when restricted to the property of cographs and using the terminology of this paper, to ask whether the smallest (k+1)-critical graph is a $P(A_k, A_k, A_k, K_1)$ (or its complement). The authors answered Question 1 negatively at the end of the paper by mentioning that the circulant graph of order 11 with distances $\{1,4\}$ is 3-critical, thus showing $f(3) \leq 11$. A 10 vertex 4-regular 3-critical graph named J (and implicitly a 5-regular one forming the complement of J) is given in [6]. A computational search reported in [10] found no 3-critical graph on less than 10 vertices. Thus f(3) = 10. A variety of ecritical graphs can be constructed from Lemma 3. For example, for k=4 (abusing the notation), both path-joins $P(J,J,K_1)$ and $P(J,J,PJ_2,PJ_2)$ are 4-ecritical graphs, the first with 31 vertices, the second with 28 vertices. Although the answer to Question 1 was already resolved, $P(J,J,PJ_2,PJ_2)$ illustrates that the answer is still negative when the question of whether the smallest 4-path-join k-ecritical graph is a $P(A_{k-1},A_{k-1},A_{k-1},K_1)$ (or its complement). Moreover, $P(A_{k-1},A_{k-1},A_{k-1},K_1)$ provides the upper bound $f(k) \leq 3^{k-1} + 3^{k-2}$. The following lemma improves this upper bound for f(k) and disproves Conjecture 3.20 of [10] that $f(k) = 2^k + 2^{k-1} + 1$. **Lemma 4.** For $k \geq 4$, the fewest number of vertices of a k-ecritical graph satisfies $$f(k) < \left(\frac{10}{4^5}\right) k^{\frac{1}{\log_4(5)-1}} < \left(\frac{10}{4^5}\right) k^{6.22}.$$ *Proof.* For each positive integer k', $k' \leq k$, every k-critical graph contains a k'-critical graph (see Theorem 2.3 of [1]). Hence f is monotonically increasing. Using (3) of Lemma 3, each row of Table 1 lists a k-critical graph, a (loose but useful) recursive upper bound on the number of vertices of the graph, and the statement that $\lfloor \frac{4}{5}k \rfloor$ is an upper bound to the input of f used for the recursive upper bound. The information in the table thus proves for $k \geq 4$ (i.e. $t \geq 1$) that $$(1) f(k) \leq 4f\left(\left\lfloor \frac{4}{5}k\right\rfloor\right).$$ TABLE 1. k-ecritical graphs with bounds on the number of vertices. | k | k-ecritical graph | upper bound on the number of vertices | $\left\lfloor \frac{4}{5}k \right\rfloor \geq$ | |--------|---------------------------------------------|---------------------------------------|------------------------------------------------| | 4t | $P(A_{3t-1}, A_{3t-1}, A_{3t}, A_{3t})$ | 4f(3t) | 3t | | 4t + 1 | $P(A_{3t}, A_{3t}, A_{3t}, A_{3t+1})$ | 4f(3t+1) | 3t + 1 | | 4t + 2 | $P(A_{3t+1}, A_{3t+1}, A_{3t+1}, A_{3t+1})$ | 4f(3t+1) | 3t + 1 | | | $P(A_{3t+1}, A_{3t+2}, A_{3t+2}, A_{3t+2})$ | 4f(3t+2) | 3t + 2 | Let $k \geq 4$, $r+1 = \left\lceil \log_{\left(\frac{5}{4}\right)}(k) \right\rceil$, and note that $r+1 \geq 7$. Using the monotonicity of f, the recursive inequality from (1), and the fact $\lfloor x \lfloor y \rfloor \rfloor \leq \lfloor xy \rfloor$ for all nonnegative reals x, y, each once per recursive step, we have $$f(k) \leq f\left(\left\lfloor \left(\frac{5}{4}\right)^{r+1}\right\rfloor\right) \leq 4f\left(\left\lfloor \frac{4}{5} \left\lfloor \left(\frac{5}{4}\right)^{r+1}\right\rfloor\right)\right) \leq 4f\left(\left\lfloor \left(\frac{5}{4}\right)^{r}\right\rfloor\right)$$ $$\leq 4^{2}f\left(\left\lfloor \frac{4}{5} \left\lfloor \left(\frac{5}{4}\right)^{r}\right\rfloor\right)\right) \leq 4^{2}f\left(\left\lfloor \left(\frac{5}{4}\right)^{r-1}\right\rfloor\right)$$ $$\leq \cdots \leq 4^{r-5}f\left(\left\lfloor \left(\frac{5}{4}\right)^{6}\right\rfloor\right)$$ $$= 4^{r-5}f(3) < \left(\frac{10}{4^{5}}\right)4^{\log_{(5/4)}(k)} = \left(\frac{10}{4^{5}}\right)k^{\frac{1}{\log_{4}(5)-1}}.$$ We finish this section by proving a strong coloring property of PJ_k that will be used in Lemma 9 for one of the main constructions. **Lemma 5.** Let $k \geq 2$. For every non-constant function $m: V(PJ_k) \to C_k$, there is a k-coloring $\gamma: V(PJ_k) \to C_k$ such that $\gamma(v) \neq m(v)$ for all vertices v of PJ_k . *Proof.* For $k \geq 2$, let S(k) be the statement of lemma for the given k. We will prove S(k) is true by induction. For a given non-constant function $m: V(PJ_2) \to \{c_1, c_2\}$, we define γ such that $\gamma(v)$ is the only color of $C_2 \setminus \{m(v)\}$ for all $v \in V(PJ_2)$. Since m is non-constant, γ is as well, and hence γ is a 2-coloring of PJ_2 , a P_4 , with $\gamma(v) \neq m(v)$ for all vertices v of PJ_2 . Thus S(2) is true. Suppose now that S(k) is true for some $k \geq 2$ and consider PJ_{k+1} with a non-constant function $m: V(PJ_{k+1}) \to C_{k+1}$. Then $PJ_{k+1} = P(H_1, H_2, H_3, H_4)$ with disjoint elements where for $i \in [3]$, H_i is a copy of PJ_k , and H_4 is a copy of K_1 . For all $i \in [3]$, define $m_i = m|_{V(H_i)}$ and let w be the vertex of H_4 . Case 1: For all $i \in [3]$, m_i is constant on $V(H_i)$. For all $i \in [3]$, let $j_i \in [k+1]$ be such that $m_i(u) = c_{j_i}$ for all $u \in V(H_i)$. Since m is non-constant on $V(PJ_{k+1})$, there exists $t \in [3]$ such that $c_{j_t} \neq m(w)$. Since each H_i is k-ecolorable, let γ_i be a k ecoloring $\gamma_i : V(H_i) \to (C_{k+1} \setminus \{c_{j_i}\})$. Then $\gamma_i(u) \neq c_{j_i} = m_i(u)$ for all $u \in V(H_i)$. Letting $\gamma : V(PJ_{k+1}) \to C_{k+1}$ be the functional extension of $\gamma_1, \gamma_2, \gamma_3$ with $\gamma(w) = c_{j_i} \neq m(w)$, we have $\gamma(u) \neq m(u)$ for all $u \in V(PJ_{k+1})$. Moreover any induced P_4 not contained in an element of the path-join PJ_{k+1} includes vertex w and a vertex h_t from H_t with $\gamma(w) = c_{j_t} \neq \gamma_t(h_t) = \gamma(h_t)$, and thus is not monochromatic under γ . Therefore, γ is a desired (k+1)-ecoloring and S(k+1) is true. Case 2: For some $t \in [3]$, m_t is non-constant on $V(H_t)$. Consider the set of colors $R = m_t(V(H_t))$. We are interested in assigning an appropriate color to w by finding a color $c_j \neq m(w)$ that is not in R, or can be removed from R, so that we can apply the induction hypothesis S(k). If there exists $c_j \in C_{k+1}$ such that $c_j \neq m(w)$ and $c_j \notin R$, then since $R \subseteq C_{k+1} \setminus \{c_j\}$, by S(k), there exists a k-ecoloring $\gamma_t : V(H_t) \to C_{k+1} \setminus \{c_j\}$ such that $\gamma_t(u) \neq m_t(u)$ for all $u \in V(H_t)$. FIGURE 1. A reduction of an m to an m' for PJ_3 that is a Case 2 example with t=2 and c_j the color grey. Otherwise, $C_{k+1} \setminus \{m(w)\} \subseteq R$ and since $k+1 \geq 3$, $|R \setminus \{m(w)\}| \geq 2$ (see Figure 1). Thus, another non-constant function m'_t can be constructed from m_t by choosing an arbitrary color $c_j \in R \setminus \{m(w)\}$ and replacing it with m(w). For all $i \in [3]$, define $m'_i : V(H_i) \to (C_{k+1} \setminus \{c_j\})$ such that for all $u \in V(H_i)$, $$m_i'(u) = \left\{ egin{array}{ll} m(w) & ext{if } m_i(u) = c_j \ m_i(u) & ext{otherwise.} \end{array} ight.$$ By S(k), there exists a k-coloring $\gamma_t : V(H_t) \to C_{k+1} \setminus \{c_j\}$ such that $\gamma_t(u) \neq m'_t(u)$ for all $u \in V(H_t)$. For $u \in V(H_t)$, $m_t(u) =$ c_j implies $\gamma_t(u) \neq c_j = m_t(u)$, and $m_t(u) \neq c_j$ implies $\gamma_t(u) \neq m'_t(u) = m_t(u)$. Thus $\gamma_t(u) \neq m_t(u)$ for all $u \in V(H_t)$. In either of these two cases, we start the definition of γ : $V(PJ_{k+1}) \to C_{k+1}$ with $\gamma(w) = c_j$ and $\gamma|_{V(H_{k})} = \gamma_k$. Consider now H_{ℓ} where $\ell \in [3]$, $\ell \neq t$. Define $R_{\ell} = m_{\ell}(V(H_{\ell}))$. If $|R_{\ell}| = 1$, then let $C' = C_{k+1} \setminus R_{\ell}$ and let $\gamma_{\ell} : V(H_{\ell}) \to C'$ be a k-coloring of H_{ℓ} . Implicitly, $\gamma(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. If $2 \leq |R_{\ell}| \leq k$, then let $C' \subset C_{k+1}$ such that |C'| = k and $R \subseteq C'$. By S(k), there exists a k-coloring $\gamma_{\ell} : V(H_{\ell}) \to C'$ with $\gamma(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. Finally, if $|R_{\ell}| = k+1$, then since $k+1 \geq 3$, $m'_{\ell} : V(H_{\ell}) \to (C_{k+1} \setminus \{c_j\})$ as defined above, is nonconstant, and so by S(k), there exists $\gamma_{\ell} : V(H_{\ell}) \to C_{k+1} \setminus \{c_j\}$ such that $\gamma_{\ell}(u) \neq m'_{\ell}(u)$ for all $u \in V(H_{\ell})$. An argument identical to the one used for γ_{ℓ} can be used here to give $\gamma_{\ell}(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. In each of these cases regarding the size of $|R_{\ell}|$, we find a k-coloring γ_{ℓ} of H_{ℓ} using colors from C_{k+1} such that $\gamma_{\ell}(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. Finishing the definition of γ , we let $\gamma_{V(H_{\ell})} = \gamma_{\ell}$ (see Figure 2). FIGURE 2. A 3-ecoloring γ of PJ_3 that is obtained from Case 2 with t=2 and c_i the color grey. Finally, γ is a (k+1)-ecoloring of $V(PJ_{k+1})$ since each element H_i , $i \in [3]$, has k-ecoloring using k colors from C_{k+1} , and any induced P_4 not contained in an element of the path-join PJ_{k+1} includes vertex w and a vertex h_t from H_t with $\gamma(w) = c_j \neq \gamma_t(h_t) = \gamma(h_t)$, and thus is not monochromatic under γ . Therefore S(k+1) is true. ### 3. MAIN CONSTRUCTIONS This section provides two general constructions of (k+1)-critical graphs. The first construction, Construction 6, is built from a (k+1)-critical hypergraph while the second one, Construction 11, is built from a (k+1)-critical graph. Both constructions force any induced P_4 subgraph to either contain some part of the hypergraph/graph they are built from or to be contained in a k-critical subgraph (i.e. see Lemmas 8 and 12). Construction 6. With $k \geq 2$ and $n = |V(PJ_k)|$, let \mathcal{F} be an nuniform (k+1)-critical hypergraph. For each edge $F \in \mathcal{F}$, let H_F^1 , H_F^2 and H_F^3 be three disjoint k-critical graphs with $H_F^1 \cong PJ_k$ and let $H_F = P(H_F^1, H_F^2, H_F^3)$. The graphs H_F , $F \in \mathcal{F}$, are required to be pairwise disjoint and to not share any vertex in common with \mathcal{F} . For each $F \in \mathcal{F}$, let M_F be a matching between vertices of F and H_F^1 . With $H = \bigoplus_{F \in \mathcal{F}} H_F$ and $SU = \bigcup_{F \in \mathcal{F}} M_F$, define $G = H \cup SU$. Note that each vertex v of degree d in \mathcal{F} is the center of a star $K_{1,d}$ in SU. Thus SU is a union of stars. Moreover, note G contains no edges between vertices of \mathcal{F} . See Figure 3. FIGURE 3. The subgraphs M_F and H_F of the graph G from Construction 6 obtained from a hyperedge $F \in \mathcal{F}$. # Example 7. Let $k \geq 2$, $n = |V(PJ_k)| = \frac{1}{2}(3^k - 1)$ and $m = |E(PJ_k)| = 3^{k-1}(3^k - 2k - 1)/4$ edges. Let H be a set of $h = (n-1)k + 1 = \frac{3}{2}k(3^{k-1} - 1) + 1$ vertices, and \mathcal{F} be the set all subsets of size n from H. Then \mathcal{F} is an n-uniform (k+1)-critical hypergraph.³ For each $F \in \mathcal{F}$ and $i \in [3]$, let $H_F^i \cong PJ_k$. Then graph G from Construction 6 has $h + \binom{h}{n}(3n)$ vertices and $\binom{h}{n}(3m+n+2n^2)$ edges. For k=2, this G has 427 vertices and 1575 edges. The next two lemmas will be used to show that the graphs from 6 are (k+1)-ecritical. **Lemma 8.** If G is a graph constructed using Construction 6, and P is an induced P_4 contained in G, then either - (1) P contains an edge of SU, or - (2) P is contained in H_F^i for some $F \in \mathcal{F}$ and for some $i \in [3]$. Proof. Let P be an induced P_4 of the given graph G. Suppose P does not contain an edge of SU. Since every edge of G incident with a vertex of \mathcal{F} is an edge of SU, all of the vertices of P are contained in H. Moreover, H is the disjoint union of the H_F subgraphs it contains and thus P is contained in H_F for some $F \in \mathcal{F}$. By definition $H_F = PJ(H_F^1, H_F^2, H_F^3)$ and so by Lemma 2, P is contained in H_F^i for some $i \in [3]$. We use the following definition to identify the vertices of the edges of the matching M_F . For each $F \in \mathcal{F}$, let $\mu_F : V(H_F^1) \to F$ be defined for $u \in V(H_F^1)$ by $\mu_F(u) = v$ where $uv \in M_F$. This function is well-defined since M_F is a matching between vertices of F and H_F^1 . The next lemma provides an important connection between the structure of the hypergraph and the graphs that replace its edges. **Lemma 9.** Let $F \in \mathcal{F}$ and let $\phi : F \to C_{k+1}$. Then there exists a k-ecoloring $\gamma_F : H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$ if and only if for all $c_j \in C_k$, $\phi(F) \neq \{c_j\}$. *Proof.* Let F and ϕ be given. Suppose there exists a k-ecoloring $\gamma_F: H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Now H_F^1 is k-echromatic and $\gamma_F|_{H_F^1}$ is k-ecoloring of H_F^1 . Thus for every $c_j \in C_k$, there exists some $u_{c_j} \in V(H_F^1)$ such that $\gamma_F(u_{c_j}) = \gamma_F|_{H_F^1}(u_{c_j}) = c_j$. Let $v = \mu_F(u_{c_j})$, the vertex of F matched to u_{c_j} under M_F . Thus $c_j = \gamma_F(u_{c_j}) \neq \phi(v)$ and since $\phi(v) \in \phi(F), \phi(F) \neq \{c_j\}$. ³Note that *n*-uniform (k+1)-critical hypergraphs with *t* vertices exist if and only if $t \ge (n-1)k + 1$ (see Toft [9]), and thus for a fixed k and n, there are an infinite number of them. Suppose, conversely, for all $c_j \in C_k$, $\phi(F) \neq \{c_j\}$. If $\phi(F) = \{c_{k+1}\}$, then for $i \in [3]$, let $\gamma_i : V(H_F^i) \to C_k$ be any k-ecoloring, and let γ be the functional extension of γ_1 , γ_2 and γ_3 . Thus for all $u \in V(H_F^1)$, $\gamma(u) \neq c_{k+1} = \phi(\mu_F(u))$. If $\phi(F) \neq \{c_{k+1}\}$, then let $c_j \in \phi(F) \cap C_k$ and since $k \geq 2$, let $c_\ell \in C_k$ such that $c_\ell \neq c_j$. Define $m: V(H_F^1) \to C_k$ such that for all $u \in V(H_F^1)$, $$m(u) = \begin{cases} c_{\ell} & \text{if } \phi(\mu_F(u)) = c_{k+1} \\ \phi(\mu_F(u)) & \text{otherwise.} \end{cases}$$ Then m is not constant on $V(H_F^1)$ since $\{c_j, c_\ell\} \subseteq m(V(H_F^1))$. By Lemma 5, there is a k-ecoloring $\gamma_1 : H_F^1 \to C_k$ such that $\gamma_1(u) \neq m(u)$ for all $u \in V(H_F^1)$. Thus, for all $u \in V(H_F^1)$, $\gamma_1(u) \neq \phi(\mu_F(u))$. Let γ_2 and γ_3 be any k-ecolorings of H_F^2 and H_F^3 respectively using colors from C_k . Finally, let γ be the functional extension of γ_1, γ_2 and γ_3 . By Lemma 2, if P is an induced P_4 of H_F , P is contained in $V(H_F^i)$ for some $i \in [3]$ and hence is not monochromatic under γ_i . Thus γ is a k-ecoloring of H_F with $\gamma_1(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. **Theorem 10.** A graph G constructed using Construction 6 is (k+1)-ecritical. *Proof.* Let G be a graph constructed using Construction 6. We first show that G is (k+1)-ecolorable. Let $\phi: V(\mathcal{F}) \to C_{k+1}$ be a proper (k+1)-coloring of the hypergraph \mathcal{F} . For each edge $F \in \mathcal{F}$, $\phi|_F(F) = \phi(F)$ is not monochromatic. By Lemma 9, there exist a k-ecoloring $\gamma_F: H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Putting these colorings together, let $\gamma: G \to C_{k+1}$ be the functional extensions of ϕ and γ_F for all $F \in \mathcal{F}$. If P is an induced P_4 of P_6 , then by Lemma 8, either P contains an edge $u\mu_F(u) \in M_F$ with $\gamma(u) = \gamma_F(u) \neq \phi(\mu_F(u)) = \gamma(\mu_F(u))$, or P is contained in P_6 for some $P_6 \in \mathcal{F}$. In either case, P is not monochromatic under γ . Thus γ is a (k+1)-ecoloring of P_6 . We now show that G is not k-ecolorable. Suppose, to the contrary, that there is a k-ecoloring $\sigma: V(G) \to C_k$. Then $\sigma|_{V(\mathcal{F})}$ is a k-coloring of \mathcal{F} . Since \mathcal{F} is not k-colorable, there exists an edge $F \in \mathcal{F}$ that is monochromatic under σ . Hence, $\sigma(F) = \{c_j\}$ for some $c_j \in C_k$. We also have that $\sigma|_{H_F}$ is a k-ecoloring of H_F . Thus by Lemma 9, there exists $u \in V(H_F^1)$ such that $\sigma(u) = \sigma(\mu_F(u)) = c_j$. Since $\sigma|_{H_F^i}$ is a k-ecoloring of H_F^i for $i \in \{2,3\}$ there exists $u_i \in H_F^i$ such that $\sigma(u_i) = c_j$. Thus $u_3u_2u\mu_F(u)$ is an induced P_4 in G that is monochromatic under σ , a contradiction. Thus no such σ exits. Finally, we show that G is k-critical. Let v be a vertex of G. Case 1: $v \in V(\mathcal{F})$. If $v \in V(\mathcal{F})$, then since \mathcal{F} is (k+1)-critical, there is a proper (k+1)-coloring $\phi: V(\mathcal{F}) \to C_{k+1}$ so that v is the only vertex of \mathcal{F} colored c_{k+1} . Since no edge F of \mathcal{F} is monochromatic, by Lemma 9, there exist a k-coloring $\gamma_F: V(H_F) \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Let $\gamma: G \to C_{k+1}$ be the functional extensions of ϕ and γ_F for all $F \in \mathcal{F}$. As above, γ is a (k+1)-coloring of G. Note, however, that v is the only vertex colored c_{k+1} . Thus $\gamma|_{V(G-v)}$ is a k-coloring of $G \to v$. Case 2: $v \in V(H_{F'})$ for some $F' \in \mathcal{F}$. Since \mathcal{F} is (k+1)-critical, there is a k-coloring $\phi:V(\mathcal{F})\to C_k$ so that F' is the only monochromatic edge of \mathcal{F} under ϕ . By rearranging the colors, we may assume, without loss of generality, that $\phi(F')=\{c_k\}$. For $i\in[3]$, let $u_i\in V(H^i_{F'})$ such that $u_j=v$ for some $j\in[3]$. Since each $H^i_{F'}$ is k-critical, $i\in[3]$, there exists a k-coloring $\gamma^i_{F'}:H^i_{F'}\to C_k$ such that the only vertex colored c_k in $H^i_{F'}$ is u_i . Define $\gamma_{F'}$ to be the functional extension of $\gamma^1_{F'},\gamma^2_{F'}$, and $\gamma^3_{F'}$. For $F \in \mathcal{F}$, $F \neq F'$, $\phi|_F$ is a function $\phi|_F : F \to C_k$ such that $\phi|_F(F)$ is not monochromatic. Thus by Lemma 9, there exists a k-ecoloring $\gamma_F : H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Now define $\gamma:V(G)\to C_k$ to be the functional extension of ϕ and γ_F for all $F \in \mathcal{F}$. Although γ is not a k-ecoloring of G, the induced P_4 s that are monochromatic under γ have an intentionally restricted form. Let P be an induced P_4 of G that is monochromatic under γ . If P is contained in H_F^i for some $F \in \mathcal{F}$ and for some $i \in [3]$, then P is not monochromatic under γ_F^i and hence γ . Thus this cannot be the case and so, by Lemma 8, P contains some edge e of SU. The only edge in SU that is monochromatic under γ is $u_1\mu_{F'}(u_1)$, since for $F \in \mathcal{F}$, if $F \neq F'$, then $\gamma(u) = \gamma_F(u) \neq 0$ $\phi(\mu_F(u)) = \gamma(\mu_F(u))$, and if F = F', then $\gamma(F) = \{c_k\}$ and the only vertex colored c_k in H_F^1 under γ is u_1 . Since P is connected, P is thus contained in $H_{F'} \cup M_{F'}$ with only the edge $u_1 \mu_{F'}(u_1)$ from $M_{F'}$. The only other two vertices in $H_{F'}$ colored c_k under γ are u_2 and u_3 . Thus $P = u_3 u_2 u_1 \mu_{F'}(u_1)$ is the only induced P_4 in G that is monochromatic under γ . Therefore, $G - v = G - u_j$ has k-ecoloring $\gamma|_{G-v}$. We now turn to a completely different construction inspired by the 3-ccritical outerplanar graph of Figure 2 in [6]. Construction 11. For $k \geq 1$, let F be a (k+1)-critical graph with n vertices, v_1, \ldots, v_n , and let H_1, \ldots, H_n be disjoint k-e-critical graphs with vertices disjoint from F. Define $$G = F \cup \left(\bigcup_{i=1}^{n} \{v_i\} \oplus H_i\right).$$ Note that for k = 1, the graph G of Construction 11 is just P_4 . An example of Construction 11 is drawn in Figure 4. FIGURE 4. Example of 3-ccritical graph using Construction 11 where F is the 5-cycle and $H_i \cong P_4$, $i \in [5]$. **Lemma 12.** If G is a graph constructed using Construction 11, and P is an induced P_4 contained in G, then either - (1) P contains an edge of F, or - (2) P is a subgraph of H_j for some $j \in [n]$. *Proof.* Let P be an induced P_4 of a graph G. Suppose P does not contain an edge of F. Then P is a subgraph of $\{v_j\} \oplus H_j$ for some $j \in [n]$. By Lemma 2, P is a subgraph of H_j . **Theorem 13.** A graph G constructed using Construction 11 is (k+1)-c critical. *Proof.* Let G be a graph constructed using Construction 11. We first prove that G is not k-colorable. Suppose, to the contrary, G has a k-coloring γ using colors from C_k . The restriction of γ to V(F) is not a proper k-coloring of F since F is (k+1)-chromatic. Thus there exists an edge $f_i f_j$ of F such that $\gamma(f_i) = \gamma(f_j) = c_l$ for some $c_l \in C_k$. Since H_i and H_j are not (k-1)-colorable, the restriction of γ to either graph is not a (k-1)-ecoloring, and hence H_i has a vertex h_i with $\gamma(h_i) = c_l$ and H_j has a vertex h_j with $\gamma(h_j) = c_l$. The induced path $h_i f_i f_j h_j$ is a P_4 in G whose vertices are all colored c_l by γ , a contradiction. Thus no such γ exists. We now prove that G is (k+1)-colorable. The graph F has a proper (k+1)-coloring ϕ using colors from $C_{k+1} = C_k \cup \{c_{k+1}\}$. For each H_i , $i \in [n]$, let η_i be a k-coloring of H_i using colors from C_k . We define $\gamma^{(1)}: V(G) \to C_{k+1}$ to be the functional extension of the n+1 colorings ϕ , η_1, \ldots, η_n . Let P be an induced P_4 of G. If P contains an edge $f_i f_j$ of F, then $\gamma^{(1)}(f_i) = \phi(f_i) \neq \phi(f_j) = \gamma^{(1)}(f_j)$ and thus V(P) is not monochromatic under $\gamma^{(1)}$. Otherwise, by Lemma 12(2), P is a subgraph of H_j for some $j \in [n]$ and hence V(P) is not monochromatic under $\eta_j = \gamma^{(1)}|_{V(H_j)}$. Thus $\gamma^{(1)}$ is a (k+1)-ecoloring of G. We now show that G is (k+1)-ecritical. Consider $G - v_i$ for some $i \in [n]$. There exists a proper k-coloring ϕ_i of $F - v_i$ using colors from C_k . We define $\gamma^{(2)} : V(G) \to C_k$ to be the functional extension of the n+1 colorings ϕ_i , η_1, \ldots, η_n . The location of any given P_4 in G is such that it either contains an edge of F or is a subgraph of H_j for some $j \in [n]$. In either case, the set of its vertices is not monochromatic by $\gamma^{(2)}$. Thus $G - v_i$ is k-colorable. Finally, consider G - v where $v \in V(H_t)$ for some $t \in [n]$. Since F is (k+1)-critical, F has an edge incident with v_t . Thus, let $e = v_s v_t$ for some $s \in [n]$, $s \neq t$. There exists a proper k-coloring ϵ of F - e using colors from C_k since F is (k+1)-critical. Every such coloring colors v_s and v_t the same color. We may suppose therefore that $\epsilon(v_s) = c_l = \epsilon(v_t)$ for some $l \in [k]$. Let η'_t be a (k-1)-coloring of $H_t - v$ using colors from $C_k \setminus \{c_l\}$. For $i \in [n]$, $i \neq t$, let $\eta'_i = \eta_i$, as defined above. Define $\gamma^{(3)}: V(G) \to C_k$ to be the functional extension of the n+1 colorings ϵ , η'_1, \ldots, η'_n . Suppose P is an induced P_4 of G-v. If P is contained in H_j for some $j \in [n]$, then V(P) is not monochromatic under $\gamma^{(3)}$ since $\gamma^{(3)}(V(P)) = \eta'_j(V(P))$. Otherwise, by Lemma 12(1), P contains an edge of F. Since V(F) = V(F-e), the k-coloring ϵ of F-e is a k-coloring of F. Moreover, since ϵ is a proper k-coloring of F-e, e is the only edge of F whose vertices are colored the same by ϵ . If P contains an edge of F different from v_sv_t , then V(P) must not be monochromatic under ϵ and hence under $\gamma^{(3)}$ since $\gamma^{(3)}(V(P)) = \epsilon(V(P))$. We may assume, therefore, that P contains only one edge from F and that this edge is v_sv_t . Since P does not contain a 3-cycle, P can contain at most one vertex of any H_i , for $i \in \{s,t\}$. Thus P must contain a vertex of $H_t - v$. This vertex is not colored c_l by $\gamma^{(3)}$ since $\gamma^{(3)}(V(H_t - v)) = \eta'_t(V(H_t - v)) \subseteq C_k \setminus \{c_l\}$. Now $v_t \in V(P)$ and $\gamma^{(3)}(v_t) = \epsilon(v_t) = c_l$ and so V(P) is not monochromatic under $\gamma^{(3)}$. Hence $\gamma^{(3)}$ is a k-ecoloring of G - v. Therefore G is (k+1)-ecritical. Since the 3-critical graphs are simply odd cycles and the only 2-ecritical graph is P_4 , every 3-ecritical graph G from Construction 11 has 15+10s vertices for some $s\geq 0$ and is not only planar but also outerplanar. Thus, every 4-ecritical graph from Construction 11 is planar when 3-ecritical graphs H_i are produced from Construction 11 as well, and the 4-critical graph F is chosen to be planar (e.g. $F\cong K_4$, amongst many others). Using Construction 11 with F as an odd-wheel on 2(a+1) vertices (a 4-critical planar graph) produces 4-ecritical planar graphs with 32(a+1)+10b vertices, $a\geq 1$, $b\geq 0$. Starting with F as a 4-critical planar graph on 7 vertices, Construction 11 produces 4-ecritical planar graphs on 112+10b vertices, $b\geq 0$. Thus there are 4-ecritical planar graphs on 2t vertices for all $t\geq 76$. The 3-ccritical planar graphs produced using Construction 11 have many triangles. There do exist, however, 3-ccritical planar graphs that have no triangles (i.e. see the construction for 3-cchromatic triangle-free planar graphs of [5]). ## ACKNOWLEDGEMENTS The second author's M.Sc. thesis [10] contains many of the results found here. ## REFERENCES - [1] J. I. Brown and D. G. Corneil. On generalized graph colourings. J. of Graph Theory, 11:87-99, 1987. - [2] G. Chartrand, D. P. Geller, and S. Hedetniemi. A generalization of the chromatic number. *Math. Proc. Cambridge Philos. Soc.*, 64(02):265, 1968. - [3] E. J. Cockayne. Colour classes for r-graphs. Canad. Math. Bull., 15(3):349-354, 1972. - [4] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. Discret. Appl. Math., 3:163-174, 1981. - [5] P. Dorbec, M. Montassier, and P. Ochem. Vertex partitions of graphs into cographs and stars. J. Graph Theory, 75(1):75-90, 2014. - [6] J. Gimbel and J. Nešetřil. Partitions of graphs into cographs. Discrete Math., 310(24):3437-3445, 2010. - [7] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, 2004. - [8] C. M. Mynhardt and I. Broere. Generalized colorings of graphs. In Graph Theory with Applications to Algorithms and Computer Science, pages 583-594. John Wiley & Sons, Inc., New York, NY, USA, 1985. - [9] B. Toft. On Colour-critical hypergraphs. In A. Hajnal, R. Rado, and V. Sôs, editors, Infin. Finite Sets, volume 10, pages 1445-1457. North-Holland Publ. Co., 1975. - [10] P. Zhang. A study on generalized solution concepts in constraint satisfaction and graph colouring. Master's thesis, University of British Columbia, 2014.