ON THE CONSTRUCTION OF COGRAPH COLOR CRITICAL GRAPHS

DONOVAN R. HARE1 AND PENG ZHANG2

Department of Mathematics
University of British Columbia
Kelowna, British Columbia
Canada V1V 1V7

ABSTRACT. A cograph is a simple graph that does not contain an induced path on 4 vertices. A graph G is k-e colorable if the vertices of G can be colored in k colors such that, for each color, the subgraph induced by the vertices assigned the color is a cograph. A graph that is k-e colorable and is not (k-1)-e colorable, but becomes (k-1)-e colorable whenever a vertex is removed, is called k-e critical graph. Two general constructions are provided that produce e critical graphs from color critical graphs and hypergraphs. A characterization is also given for when a general composition of graphs (pathjoins) is e critical. The characterization is used to provide an upper bound for the fewest number of vertices of a k-e critical graph.

1. Introduction

For notational simplicity, we define for a positive integer t, $[t] = \{1, \ldots, t\}$. In the definitions that follow, let k be a positive integer. We reserve $C_k = \{c_1, \ldots, c_k\}$ to be a finite set of size k whose elements c_1, \ldots, c_k are called colors. Let G be a finite, undirected, simple graph with vertices V(G) and edges E(G). A function $\gamma: V(G) \to C_k$ is called a k-coloring of G (or coloring if k is not specified). The function γ is said to color G and to use colors from C_k . If for some vertex v and color c_i , $\gamma(v) = c_i$, then v is said to be colored c_i by γ (or just colored c_i if γ is understood). A set of vertices is monochromatic under γ if γ colors all the vertices of the set the same color. The color classes of γ are the elements of the partition $\{V_{c_1}, \ldots, V_{c_k}\}$ of preimages of members of C_k where $V_{c_i} = \gamma^{-1}(\{c_i\})$ for $i \in [k]$.

E-mail address: 1donovan.hareQubc.ca, 2wifeyfQhotmail.com.

Let \mathcal{B} be a (not necessarily finite) set of finite, undirected, simple graphs. A coloring γ of G using colors from C_k is a k- \mathfrak{B} coloring if the induced subgraph of each color class of γ is a member of \mathcal{B} (i.e. if $G[V_{c_i}] \in \mathcal{B}$ for all $i \in [k]$). A graph G is k- \mathfrak{B} colorable, if there exists a k- \mathfrak{B} coloring of G. The \mathfrak{B} chromatic number of G, denoted $\chi_{\mathfrak{B}}(G)$, is the minimum integer k for which G is k- \mathfrak{B} colorable. If $\chi_{\mathfrak{B}}(G) = k$, then graph G is said to be k- \mathfrak{B} chromatic. We define a 1- \mathfrak{B} critical graph to be K_1 , the single vertex graph. For $k \geq 2$, a k- \mathfrak{B} chromatic graph G is k- \mathfrak{B} critical if G - v is (k-1)- \mathfrak{B} colorable for all vertices $v \in V(G)$.

Let \mathcal{E} be the set of finite empty graphs (no edges). Connecting the classical study of the chromatic number of graphs to the definitions here, a proper k-coloring of G is a k- ε -coloring of G. Moreover, G is k-colorable (respectively k-chromatic, k-vertex-critical) is equivalent to G is k- ε -colorable (respectively k- ε -chromatic, k- ε -critical). These definitions extend to hypergraphs (edges need not have size two). A hypergraph whose edges all have the same size is called a *uniform* hypergraph. A proper k-coloring of G is a k- ε -coloring of G (i.e. no edge is monochromatic). A graph or hypergraph G is k-critical, however, if G is k-chromatic and G-e is (k-1)-colorable for each edge e of G. Graphs and uniform hypergraphs that are k-critical have been extensively studied and exist for all k and edge sizes (see Toft [9]).

Two graphs are disjoint if they have no vertex in common. If H_1 and H_2 are two disjoint graphs, then their disjoint union, $H_1 \cup H_2$, is the graph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1) \cup E(H_2)$. Moroever, their join, $H_1 \oplus H_2$, is the graph obtained from their disjoint union by adding every edge that has one of its vertices in $V(H_1)$ and the other in $V(H_2)$. The complement of a graph G, denoted \overline{G} , is the graph with vertices $V(\overline{G}) = V(G)$ and edges $E(\overline{G}) = \{uv : u, v \in V(\overline{G}), uv \notin E(G)\}$.

Let P_{ℓ} be a path on ℓ vertices. A cograph (complement reducible graph, see [4]) is a graph that contains no induced P_{ℓ} subgraph. Let \mathcal{C} be the set of all cographs. This paper sets its focus on constructions of graphs that are k-ecritical.

In 1968, Chartrand, Geller and Hedetniemi [2] introduced the ℓ -chromatic number of a graph, denoted χ_{ℓ} , which is equivalent to the \mathfrak{B} chromatic number when \mathfrak{B} is the set of graphs that do not contain a $P_{\ell+1}$ (regardless of whether the path is induced or not). Cockayne [3] defined the P-chromatic number where P is a property that defines the elements of \mathfrak{B} . The number was denoted by χ_P and was defined in the more general context of uniform hypergraphs.

Mynhardt and Broere [8] were the first to show that for each k, there exists a graph G with $\chi_{\mathcal{C}}(G) > k$. Moreover, Brown and Corneil [1] first defined k-ccritical graphs and gave a construction that showed they exist for all k. In both of these papers, the results were in terms of the more

general k-g-colorings. A k-e-coloring is called a P_4 -coloring in [8] and a $-P_4$ k-coloring in [1].

In 2010, Gimbel and Nešetřil [6] showed how colorings fit in an axiomatization of well-studied coloring functions. They also provided bounds and complexity results for the chromatic number which they called the c-chromatic number, denoted c(G). Most recently, Dorbec, Montassier and Ochem [5] constructed 3-chromatic triangle-free planar graphs as well as proving some associated complexity results.

Trivally, every k-coloring of a graph G is also a k-coloring of G. Moreover, since the complement of a P_4 is also a P_4 subgraph, a coloring is a coloring of G if and only if it is coloring of the complement of G (as observed in [6]).

The main results of this paper are Constructions 6 and 11, and to a somewhat lesser degree, Lemmas 3 and 4. We now describe the significance of the results.

Although every k-echromatic graph contains a k-ecritical subgraph, until now only one general construction was known to produce k-ecritical graphs explicitly. This construction was provided by Brown and Corneil [1] when they introduced the topic in the more general context of k-gcritical graphs. The construction uses k-gcritical graphs as input to build (k+1)-gcritical graphs. In this paper, Lemma 3 extends the construction for ecolorings, by allowing s-ecritical graphs, $s \leq k$, to be used as input. Lemma 3 gives a complete characterization of the inputs for which the construction produces (k+1)-ecritical graphs. Consequently, new (k+1)-ecritical graphs are described explicitly.

The natural quest to determine the fewest number of vertices in a k-critical graph begins with a partial answer in Lemma 4. The construction of Lemma 3 is used in Lemma 4 to find an upper bound to this parameter that is polynomial in k.

Constructions 6 and 11 produce a critical graph from a color critical hypergraph or graph. For $k \geq 3$, both constructions can be used to produce an infinite set of k-critical graphs. In contrast, only two non-isomorphic 3-critical graphs are produced from Lemma 3 or the construction in [1] (and only a finite number of k-critical graphs if each of the input graphs are built from the construction as well). For $k \leq 4$, Construction 11 produces k-critical graphs that are outerplanar whereas all graphs produced by Construction 6 are nonplanar. We conclude the paper with some observations regarding the 4-critical planar graphs produced by the constructions.

2. COLORING PATH-JOINS

We start this section with a definition of a graph that will be used throughout the paper.

Definition 1. For $t \geq 2$, let H_1, \ldots, H_t be a sequence of disjoint graphs. The t-path-join (or just path-join) of the sequence is defined to be

$$P(H_1,\ldots,H_t)=\bigcup_{i=1}^{t-1}(H_i\oplus H_{i+1}).$$

Each of the H_i is called an element of the path-join.

Path-join graphs have a structure that is sufficiently general but at the same time controls where any induced P_4 subgraphs might be contained. The next lemma makes this last statement precise. The lemma is not new but is provided in this form for quick reference later.

Lemma 2. Let $t \in \{2,3,4\}$ and H_1, \ldots, H_t be disjoint graphs. If P is an induced P_4 of $P(H_1, \ldots, H_t)$, then either

- (1) for some $i \in [t]$, P is a subgraph of H_i , or
- (2) t = 4 and for all $i \in [4]$, P contains a vertex from H_i .

Proof. Suppose (1) is not true. Using the language of Golumbic[7]¹, since the path P is an induced subgraph of the composition graph $G = P_t(H_1, \ldots, H_t) = P(H_1, \ldots, H_t)$, E(P) is contained in an implication class A of G and hence contained in its symmetric closure \hat{A} . Thus by Theorem 5.8 of [7], since (1) is not true, $\hat{A} \cap E(H_i) = \emptyset$ for all $i \in [t]$. Moreover, since $\overline{G} = \overline{P_t(H_1, \ldots, H_t)} = \overline{P_t(\overline{H_1}, \ldots, \overline{H_t})}$ and $\overline{P} \cong P_4$, $E(\overline{P})$ is contained in the symmetric closure \hat{B} of some implication class B of \overline{G} implying $\hat{B} \cap E(\overline{H_i}) = \emptyset$ for all $i \in [t]$. Thus, for $i \in [t]$, no pair of vertices of P are contained in H_i and (2) is true.

We now focus our attention on 4-path-join graphs and provide a complete characterization of their ecoloring properties.

Lemma 3. Let H_1 , H_2 , H_3 and H_4 be disjoint graphs and let $k_i = \chi_{\mathcal{C}}(H_i)$ for $i \in [4]$ with maximum $k^{\max} = \max\{k_1, k_2, k_3, k_4\}$ and sum $k^{\Sigma} = k_1 + k_2 + k_3 + k_4$. Let $G = P(H_1, H_2, H_3, H_4)$. For every positive integer ℓ ,

- (1) G is ℓ -ecolorable if and only if $\ell \geq \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$,
- (2) G is ℓ -echromatic if and only if $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$, and
- (3) G is ℓ -excritical if and only if $\ell \geq k^{\max} + 1$, $k^{\Sigma} = 3(\ell 1) + 1$, and H_i is k_i -excritical for all $i \in [4]$.

¹In particular, the use of the terms composition graph and implication class in this proof.

Proof. In what follows, let ℓ be a some positive integer.

Suppose there exists an ℓ -ecoloring, $\gamma: V(G) \to C_{\ell}$, of G. For $i \in [4]$, $j \in [\ell]$, let

$$I(H_i, c_j) = \begin{cases} 1 & \text{if } \gamma(v) = c_j \text{ for some vertex } v \text{ in } H_i \\ 0 & \text{otherwise.} \end{cases}$$

We shall count the number of these subgraph/color pairs in two ways.

For $j \in [\ell]$, let $I_j = \{i \in [4] : \text{some vertex } v \text{ of } H_i \text{ has } \gamma(v) = c_j\}$. Now, if $|I_j| = 4$ for some $j \in [\ell]$, then there is an induced P_4 of G all of whose vertices are colored c_j under $\gamma(v)$ formed by selecting a single vertex colored c_j from each of H_1, H_2, H_3, H_4 guaranteed by the size of I_j . This contradicts that γ is a ℓ -coloring. Thus $|I_j| \leq 3$ for all $j \in [\ell]$ and hence

$$\sum_{j=1}^{\ell} \sum_{i=1}^{4} I(H_i, c_j) = \sum_{j=1}^{\ell} |I_j| \le 3\ell.$$

On the other hand, considering the induced colorings $\gamma_i = \gamma|_{V(H_i)}$ for $i \in [4]$, we have $\ell \geq k^{\max}$ and

$$\sum_{i=1}^{4} \sum_{j=1}^{\ell} I(H_i, c_j) = \sum_{i=1}^{4} |\gamma_i(V(H_i))| \ge \sum_{i=1}^{4} \chi_{\mathfrak{C}}(H_i) = k^{\Sigma}.$$

Thus we have $k^{\Sigma} \leq 3\ell$ and hence $\ell \geq \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$.

Suppose now that $\ell \geq \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. We shall construct an ℓ -ecoloring of G. For $i \in [4]$, let $k'_i = \ell - k_i$. Then $k'_1 + k'_2 + k'_3 + k'_4 = 4\ell - k^{\Sigma} \geq \ell$. Hence we can find a covering B'_1, B'_2, B'_3, B'_4 of the set of colors C_{ℓ} such that $C_{\ell} = B'_1 \cup B'_2 \cup B'_3 \cup B'_4$ and $|B'_i| = k'_i$ (note that some of these sets may be empty). Now for each $i \in [4]$, $\chi_{\mathfrak{C}}(H_i) = k_i$, and so there exists a k_i -ecoloring of H_i , $\gamma_i : V(H_i) \to C_{\ell} \setminus B'_i$. Let $\gamma : V(G) \to C_{\ell}$ be the functional extension of $\gamma_1, \gamma_2, \gamma_3, \gamma_4$. We claim that γ is a ℓ -ecoloring of G. By Lemma 2, an induced P_4 , P, of G is either contained in H_i for some $i \in [4]$, or P contains a vertex from each element of the path-join G. If P is contained in an H_i , then P is not monochromatic under $\gamma_i = \gamma|_{V(H_i)}$. Suppose therefore that P contains a vertex from each element of the path-join G. Consider an arbitrary color c_j of C_{ℓ} . By construction, $c_j \in B'_i$ for some $i \in [4]$ and hence γ_i does not use c_j to color the vertices of H_i . Thus the vertex of P in H_i is not colored c_j under γ . Since c_j is arbitrary, P is not monochromatic under γ . Hence G is ℓ -ecolorable.

Therefore (1) is true.

Part (2) follows by applying (1) twice to G with the fact that two integers satisfy $\ell-1 < \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\} \le \ell$ if and only if $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$.

We use the following in the next two paragraphs. Consider a vertex h of some H_t , $t \in [4]$. If H_t contains only vertex h, then $k^{\Sigma} \leq 3k^{\max} + 1$ since each $k_i \leq k^{\max}$, and $k_t = 1$. Moreover, we can k^{\max} -ecolor each of the other

elements of the path-join G to get a k^{\max} -coloring of G-h (note that in this case, H_t is 1-corrical). Otherwise, if H_t has more than one vertex, let $H'_t = H_t - h$ and define $x(h) = k_t - \chi_{\mathfrak{C}}(H_t - h) \in \{0, 1\}$. For $i \in [4]$, $i \neq t$, let $H'_i = H_i$. Then the path-join $G'_h = P(H'_1, H'_2, H'_3, H'_4) = G - h$ satisfies $\chi_{\mathfrak{C}}(H'_1) + \chi_{\mathfrak{C}}(H'_2) + \chi_{\mathfrak{C}}(H'_3) + \chi_{\mathfrak{C}}(H'_4) = k^{\Sigma} - x(h)$.

Suppose now, that G is ℓ -critical. By (2), $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. If $\ell = k^{\max}$, then we have $\chi_{\mathfrak{C}}(H_i) = k^{\max}$ for some $i \in [4]$, and by choosing $h \in V(H_j)$ for some $j \in [4]$, $j \neq i$, we find that H_i is a subgraph of G - h with $\chi_{\mathfrak{C}}(G - h) \geq \chi_{\mathfrak{C}}(H_i) = k^{\max} = \ell$, a contradiction. Thus $\ell \geq k^{\max} + 1$. We therefore have $\ell = \lceil k^{\Sigma}/3 \rceil$ and hence $k^{\Sigma} \geq 3(\ell - 1) + 1$. Now consider G - h for a vertex h of some H_t , $t \in [4]$. If $V(H_t) = \{h\}$, then, from the previous paragraph, H_t is 1-critical, $k^{\Sigma} \leq 3k^{\max} + 1$ and we can k^{\max} -ccolor G - h and so $\ell - 1 \leq k^{\max}$. Thus $\ell - 1 = k^{\max}$ and hence $k^{\Sigma} \leq 3(\ell - 1) + 1$. If $V(H_t) \neq \{h\}$, then, again from the previous paragraph, G - h is $(\ell - 1)$ -ccolorable implies by (1) that $\ell - 1 \geq \left\lceil \frac{k^{\Sigma} - x(h)}{3} \right\rceil \geq \frac{k^{\Sigma} - 1}{3}$. But $\ell = \lceil k^{\Sigma}/3 \rceil$ and so x(h) = 1. Hence, H_t is k_t -critical and $k^{\Sigma} \leq 3(\ell - 1) + 1$. In both cases, we have that $k^{\Sigma} = 3(\ell - 1) + 1$ and H_t is k_t -critical.

Conversely, suppose $\ell \geq k^{\max} + 1$, $k^{\Sigma} = 3(\ell - 1) + 1$, and each H_i is k_i -ecritical, $i \in [4]$. Then $\lceil k^{\Sigma}/3 \rceil = \ell$ and so $\ell = \max\{k^{\max}, \lceil k^{\Sigma}/3 \rceil\}$. Thus by (2), G is ℓ -echromatic. Consider a vertex h of some H_t , $t \in [4]$. If H_t contains only vertex h, then from above, G - h is k^{\max} -ecolorable and hence $(\ell - 1)$ -ecolorable since $\ell - 1 \geq k^{\max}$. Otherwise, x(h) = 1 since H_t is k_t -ecritical and G - h is a path-join $G' = (H'_1, H'_2, H'_3, H'_4)$ with $\chi_{\mathcal{C}}(H'_1) + \chi_{\mathcal{C}}(H'_2) + \chi_{\mathcal{C}}(H'_3) + \chi_{\mathcal{C}}(H'_4) = k^{\Sigma} - 1$, and $\lceil k^{\Sigma - 1}/3 \rceil = \ell - 1 \geq k^{\max}$. Thus by (1), G - h is $(\ell - 1)$ -ecolorable. Therefore, G is ℓ -ecritical and (3) is true.

The path-join $P(G_1, G_2, G_3, G_4)$ for disjoint copies of a graph G is described as the composition graph $P_4[G]$ in Mynhardt and Broere [8]. Applying Lemma 1 of [8], they showed that $\chi_{\mathfrak{C}}(P_4[G]) > \chi_{\mathfrak{C}}(G)$ for all graphs G. Using Lemma 3, we have that $\chi_{\mathfrak{C}}(P_4[G]) = \left\lceil \frac{4\chi_{\mathfrak{C}}(G)}{3} \right\rceil$ as well as that $P_4[G]$ is s-critical if and only if $s \equiv 2 \mod 4$ and G is $(\frac{3}{4}(s-2) + 1)$ -critical.

When P is chosen to be the cograph property, Theorem 2.8 of [1] is implied by Lemma 3 using the case when $H_1 \cong K_1$ and $k_2 = k_3 = k_4$. Note that G in Theorem 2.8 is forced to be P_4 for the cograph property since the only 2-critical graph is P_4 .

Since there is only one 1-ccritical graph, namely K_1 , only one 2-ccritical 4-path-join graph can be constructed. We define $PJ_2 = P(H_1, H_2, H_3, H_4)$ where each element is isomorphic to K_1 . For $k \geq 2$, define $PJ_{k+1} = 1$

²Described as the composition graph $P_4[G, G, G, G]$ in [7].

 $P(H_1, H_2, H_3, H_4)$ with disjoint elements where for $i \in [3]$, H_i is a copy of PJ_k , and H_4 is a copy of K_1 . Using Lemma 3 inductively, we have that PJ_{k+1} is (k+1)-critical. This was proven first in Theorem 2.8 of Brown and Corneil [1] where the graph PJ_3 and its complement were first described. Gimbel and Nešetřil [6] also describe PJ_3 but give it the notation $(P_4)'$.

It is natural to ask questions regarding the structure of those k-critical graphs with the fewest number vertices. For $k \ge 1$, we define f(k) to be the fewest number vertices of a k-critical graph and in what follows, let A_k be a k-critical graph with f(k) vertices. From the previous paragraphs, we have f(1) = 1 and f(2) = 4.

Question 1 in the Remarks of [1] may be rephrased, when restricted to the property of cographs and using the terminology of this paper, to ask whether the smallest (k+1)-critical graph is a $P(A_k, A_k, A_k, K_1)$ (or its complement). The authors answered Question 1 negatively at the end of the paper by mentioning that the circulant graph of order 11 with distances $\{1,4\}$ is 3-critical, thus showing $f(3) \leq 11$. A 10 vertex 4-regular 3-critical graph named J (and implicitly a 5-regular one forming the complement of J) is given in [6]. A computational search reported in [10] found no 3-critical graph on less than 10 vertices. Thus f(3) = 10.

A variety of ecritical graphs can be constructed from Lemma 3. For example, for k=4 (abusing the notation), both path-joins $P(J,J,K_1)$ and $P(J,J,PJ_2,PJ_2)$ are 4-ecritical graphs, the first with 31 vertices, the second with 28 vertices. Although the answer to Question 1 was already resolved, $P(J,J,PJ_2,PJ_2)$ illustrates that the answer is still negative when the question of whether the smallest 4-path-join k-ecritical graph is a $P(A_{k-1},A_{k-1},A_{k-1},K_1)$ (or its complement). Moreover, $P(A_{k-1},A_{k-1},A_{k-1},K_1)$ provides the upper bound $f(k) \leq 3^{k-1} + 3^{k-2}$. The following lemma improves this upper bound for f(k) and disproves Conjecture 3.20 of [10] that $f(k) = 2^k + 2^{k-1} + 1$.

Lemma 4. For $k \geq 4$, the fewest number of vertices of a k-ecritical graph satisfies

$$f(k) < \left(\frac{10}{4^5}\right) k^{\frac{1}{\log_4(5)-1}} < \left(\frac{10}{4^5}\right) k^{6.22}.$$

Proof. For each positive integer k', $k' \leq k$, every k-critical graph contains a k'-critical graph (see Theorem 2.3 of [1]). Hence f is monotonically increasing.

Using (3) of Lemma 3, each row of Table 1 lists a k-critical graph, a (loose but useful) recursive upper bound on the number of vertices of the graph, and the statement that $\lfloor \frac{4}{5}k \rfloor$ is an upper bound to the input of f used for the recursive upper bound. The information in the table thus

proves for $k \geq 4$ (i.e. $t \geq 1$) that

$$(1) f(k) \leq 4f\left(\left\lfloor \frac{4}{5}k\right\rfloor\right).$$

TABLE 1. k-ecritical graphs with bounds on the number of vertices.

k	k-ecritical graph	upper bound on the number of vertices	$\left\lfloor \frac{4}{5}k \right\rfloor \geq$
4t	$P(A_{3t-1}, A_{3t-1}, A_{3t}, A_{3t})$	4f(3t)	3t
4t + 1	$P(A_{3t}, A_{3t}, A_{3t}, A_{3t+1})$	4f(3t+1)	3t + 1
4t + 2	$P(A_{3t+1}, A_{3t+1}, A_{3t+1}, A_{3t+1})$	4f(3t+1)	3t + 1
	$P(A_{3t+1}, A_{3t+2}, A_{3t+2}, A_{3t+2})$	4f(3t+2)	3t + 2

Let $k \geq 4$, $r+1 = \left\lceil \log_{\left(\frac{5}{4}\right)}(k) \right\rceil$, and note that $r+1 \geq 7$. Using the monotonicity of f, the recursive inequality from (1), and the fact $\lfloor x \lfloor y \rfloor \rfloor \leq \lfloor xy \rfloor$ for all nonnegative reals x, y, each once per recursive step, we have

$$f(k) \leq f\left(\left\lfloor \left(\frac{5}{4}\right)^{r+1}\right\rfloor\right) \leq 4f\left(\left\lfloor \frac{4}{5} \left\lfloor \left(\frac{5}{4}\right)^{r+1}\right\rfloor\right)\right) \leq 4f\left(\left\lfloor \left(\frac{5}{4}\right)^{r}\right\rfloor\right)$$

$$\leq 4^{2}f\left(\left\lfloor \frac{4}{5} \left\lfloor \left(\frac{5}{4}\right)^{r}\right\rfloor\right)\right) \leq 4^{2}f\left(\left\lfloor \left(\frac{5}{4}\right)^{r-1}\right\rfloor\right)$$

$$\leq \cdots \leq 4^{r-5}f\left(\left\lfloor \left(\frac{5}{4}\right)^{6}\right\rfloor\right)$$

$$= 4^{r-5}f(3) < \left(\frac{10}{4^{5}}\right)4^{\log_{(5/4)}(k)} = \left(\frac{10}{4^{5}}\right)k^{\frac{1}{\log_{4}(5)-1}}.$$

We finish this section by proving a strong coloring property of PJ_k that will be used in Lemma 9 for one of the main constructions.

Lemma 5. Let $k \geq 2$. For every non-constant function $m: V(PJ_k) \to C_k$, there is a k-coloring $\gamma: V(PJ_k) \to C_k$ such that $\gamma(v) \neq m(v)$ for all vertices v of PJ_k .

Proof. For $k \geq 2$, let S(k) be the statement of lemma for the given k. We will prove S(k) is true by induction.

For a given non-constant function $m: V(PJ_2) \to \{c_1, c_2\}$, we define γ such that $\gamma(v)$ is the only color of $C_2 \setminus \{m(v)\}$ for all $v \in V(PJ_2)$. Since m is non-constant, γ is as well, and hence γ is a 2-coloring of PJ_2 , a P_4 , with $\gamma(v) \neq m(v)$ for all vertices v of PJ_2 . Thus S(2) is true.

Suppose now that S(k) is true for some $k \geq 2$ and consider PJ_{k+1} with a non-constant function $m: V(PJ_{k+1}) \to C_{k+1}$. Then $PJ_{k+1} = P(H_1, H_2, H_3, H_4)$ with disjoint elements where for $i \in [3]$, H_i is a copy of PJ_k , and H_4 is a copy of K_1 . For all $i \in [3]$, define $m_i = m|_{V(H_i)}$ and let w be the vertex of H_4 .

Case 1: For all $i \in [3]$, m_i is constant on $V(H_i)$.

For all $i \in [3]$, let $j_i \in [k+1]$ be such that $m_i(u) = c_{j_i}$ for all $u \in V(H_i)$. Since m is non-constant on $V(PJ_{k+1})$, there exists $t \in [3]$ such that $c_{j_t} \neq m(w)$. Since each H_i is k-ecolorable, let γ_i be a k ecoloring $\gamma_i : V(H_i) \to (C_{k+1} \setminus \{c_{j_i}\})$. Then $\gamma_i(u) \neq c_{j_i} = m_i(u)$ for all $u \in V(H_i)$. Letting $\gamma : V(PJ_{k+1}) \to C_{k+1}$ be the functional extension of $\gamma_1, \gamma_2, \gamma_3$ with $\gamma(w) = c_{j_i} \neq m(w)$, we have $\gamma(u) \neq m(u)$ for all $u \in V(PJ_{k+1})$. Moreover any induced P_4 not contained in an element of the path-join PJ_{k+1} includes vertex w and a vertex h_t from H_t with $\gamma(w) = c_{j_t} \neq \gamma_t(h_t) = \gamma(h_t)$, and thus is not monochromatic under γ . Therefore, γ is a desired (k+1)-ecoloring and S(k+1) is true.

Case 2: For some $t \in [3]$, m_t is non-constant on $V(H_t)$.

Consider the set of colors $R = m_t(V(H_t))$. We are interested in assigning an appropriate color to w by finding a color $c_j \neq m(w)$ that is not in R, or can be removed from R, so that we can apply the induction hypothesis S(k).

If there exists $c_j \in C_{k+1}$ such that $c_j \neq m(w)$ and $c_j \notin R$, then since $R \subseteq C_{k+1} \setminus \{c_j\}$, by S(k), there exists a k-ecoloring $\gamma_t : V(H_t) \to C_{k+1} \setminus \{c_j\}$ such that $\gamma_t(u) \neq m_t(u)$ for all $u \in V(H_t)$.

FIGURE 1. A reduction of an m to an m' for PJ_3 that is a Case 2 example with t=2 and c_j the color grey.

Otherwise, $C_{k+1} \setminus \{m(w)\} \subseteq R$ and since $k+1 \geq 3$, $|R \setminus \{m(w)\}| \geq 2$ (see Figure 1). Thus, another non-constant function m'_t can be constructed from m_t by choosing an arbitrary color $c_j \in R \setminus \{m(w)\}$ and replacing it with m(w). For all $i \in [3]$, define $m'_i : V(H_i) \to (C_{k+1} \setminus \{c_j\})$ such that for all $u \in V(H_i)$,

$$m_i'(u) = \left\{ egin{array}{ll} m(w) & ext{if } m_i(u) = c_j \ m_i(u) & ext{otherwise.} \end{array}
ight.$$

By S(k), there exists a k-coloring $\gamma_t : V(H_t) \to C_{k+1} \setminus \{c_j\}$ such that $\gamma_t(u) \neq m'_t(u)$ for all $u \in V(H_t)$. For $u \in V(H_t)$, $m_t(u) =$

 c_j implies $\gamma_t(u) \neq c_j = m_t(u)$, and $m_t(u) \neq c_j$ implies $\gamma_t(u) \neq m'_t(u) = m_t(u)$. Thus $\gamma_t(u) \neq m_t(u)$ for all $u \in V(H_t)$.

In either of these two cases, we start the definition of γ :

 $V(PJ_{k+1}) \to C_{k+1}$ with $\gamma(w) = c_j$ and $\gamma|_{V(H_{k})} = \gamma_k$.

Consider now H_{ℓ} where $\ell \in [3]$, $\ell \neq t$. Define $R_{\ell} = m_{\ell}(V(H_{\ell}))$. If $|R_{\ell}| = 1$, then let $C' = C_{k+1} \setminus R_{\ell}$ and let $\gamma_{\ell} : V(H_{\ell}) \to C'$ be a k-coloring of H_{ℓ} . Implicitly, $\gamma(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. If $2 \leq |R_{\ell}| \leq k$, then let $C' \subset C_{k+1}$ such that |C'| = k and $R \subseteq C'$. By S(k), there exists a k-coloring $\gamma_{\ell} : V(H_{\ell}) \to C'$ with $\gamma(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. Finally, if $|R_{\ell}| = k+1$, then since $k+1 \geq 3$, $m'_{\ell} : V(H_{\ell}) \to (C_{k+1} \setminus \{c_j\})$ as defined above, is nonconstant, and so by S(k), there exists $\gamma_{\ell} : V(H_{\ell}) \to C_{k+1} \setminus \{c_j\}$ such that $\gamma_{\ell}(u) \neq m'_{\ell}(u)$ for all $u \in V(H_{\ell})$. An argument identical to the one used for γ_{ℓ} can be used here to give $\gamma_{\ell}(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. In each of these cases regarding the size of $|R_{\ell}|$, we find a k-coloring γ_{ℓ} of H_{ℓ} using colors from C_{k+1} such that $\gamma_{\ell}(u) \neq m_{\ell}(u)$ for all $u \in V(H_{\ell})$. Finishing the definition of γ , we let $\gamma_{V(H_{\ell})} = \gamma_{\ell}$ (see Figure 2).

FIGURE 2. A 3-ecoloring γ of PJ_3 that is obtained from Case 2 with t=2 and c_i the color grey.

Finally, γ is a (k+1)-ecoloring of $V(PJ_{k+1})$ since each element H_i , $i \in [3]$, has k-ecoloring using k colors from C_{k+1} , and any induced P_4 not contained in an element of the path-join PJ_{k+1} includes vertex w and a vertex h_t from H_t with $\gamma(w) = c_j \neq \gamma_t(h_t) = \gamma(h_t)$, and thus is not monochromatic under γ .

Therefore S(k+1) is true.

3. MAIN CONSTRUCTIONS

This section provides two general constructions of (k+1)-critical graphs. The first construction, Construction 6, is built from a (k+1)-critical hypergraph while the second one, Construction 11, is built from a (k+1)-critical graph. Both constructions force any induced P_4 subgraph to either contain some part of the hypergraph/graph they are built from or to be contained in a k-critical subgraph (i.e. see Lemmas 8 and 12).

Construction 6. With $k \geq 2$ and $n = |V(PJ_k)|$, let \mathcal{F} be an nuniform (k+1)-critical hypergraph. For each edge $F \in \mathcal{F}$, let H_F^1 , H_F^2 and H_F^3 be three disjoint k-critical graphs with $H_F^1 \cong PJ_k$ and let $H_F = P(H_F^1, H_F^2, H_F^3)$. The graphs H_F , $F \in \mathcal{F}$, are required to be pairwise disjoint and to not share any vertex in common with \mathcal{F} . For each $F \in \mathcal{F}$, let M_F be a matching between vertices of F and H_F^1 . With $H = \bigoplus_{F \in \mathcal{F}} H_F$ and $SU = \bigcup_{F \in \mathcal{F}} M_F$, define $G = H \cup SU$.

Note that each vertex v of degree d in \mathcal{F} is the center of a star $K_{1,d}$ in SU. Thus SU is a union of stars. Moreover, note G contains no edges between vertices of \mathcal{F} . See Figure 3.

FIGURE 3. The subgraphs M_F and H_F of the graph G from Construction 6 obtained from a hyperedge $F \in \mathcal{F}$.

Example 7.

Let $k \geq 2$, $n = |V(PJ_k)| = \frac{1}{2}(3^k - 1)$ and $m = |E(PJ_k)| = 3^{k-1}(3^k - 2k - 1)/4$ edges. Let H be a set of $h = (n-1)k + 1 = \frac{3}{2}k(3^{k-1} - 1) + 1$ vertices, and \mathcal{F} be the set all subsets of size n from H. Then \mathcal{F} is an n-uniform (k+1)-critical hypergraph.³ For each $F \in \mathcal{F}$ and $i \in [3]$, let $H_F^i \cong PJ_k$. Then graph G from Construction 6 has $h + \binom{h}{n}(3n)$ vertices and $\binom{h}{n}(3m+n+2n^2)$ edges. For k=2, this G has 427 vertices and 1575 edges.

The next two lemmas will be used to show that the graphs from 6 are (k+1)-ecritical.

Lemma 8. If G is a graph constructed using Construction 6, and P is an induced P_4 contained in G, then either

- (1) P contains an edge of SU, or
- (2) P is contained in H_F^i for some $F \in \mathcal{F}$ and for some $i \in [3]$.

Proof. Let P be an induced P_4 of the given graph G. Suppose P does not contain an edge of SU. Since every edge of G incident with a vertex of \mathcal{F} is an edge of SU, all of the vertices of P are contained in H. Moreover, H is the disjoint union of the H_F subgraphs it contains and thus P is contained in H_F for some $F \in \mathcal{F}$. By definition $H_F = PJ(H_F^1, H_F^2, H_F^3)$ and so by Lemma 2, P is contained in H_F^i for some $i \in [3]$.

We use the following definition to identify the vertices of the edges of the matching M_F . For each $F \in \mathcal{F}$, let $\mu_F : V(H_F^1) \to F$ be defined for $u \in V(H_F^1)$ by $\mu_F(u) = v$ where $uv \in M_F$. This function is well-defined since M_F is a matching between vertices of F and H_F^1 . The next lemma provides an important connection between the structure of the hypergraph and the graphs that replace its edges.

Lemma 9. Let $F \in \mathcal{F}$ and let $\phi : F \to C_{k+1}$. Then there exists a k-ecoloring $\gamma_F : H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$ if and only if for all $c_j \in C_k$, $\phi(F) \neq \{c_j\}$.

Proof. Let F and ϕ be given.

Suppose there exists a k-ecoloring $\gamma_F: H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Now H_F^1 is k-echromatic and $\gamma_F|_{H_F^1}$ is k-ecoloring of H_F^1 . Thus for every $c_j \in C_k$, there exists some $u_{c_j} \in V(H_F^1)$ such that $\gamma_F(u_{c_j}) = \gamma_F|_{H_F^1}(u_{c_j}) = c_j$. Let $v = \mu_F(u_{c_j})$, the vertex of F matched to u_{c_j} under M_F . Thus $c_j = \gamma_F(u_{c_j}) \neq \phi(v)$ and since $\phi(v) \in \phi(F), \phi(F) \neq \{c_j\}$.

³Note that *n*-uniform (k+1)-critical hypergraphs with *t* vertices exist if and only if $t \ge (n-1)k + 1$ (see Toft [9]), and thus for a fixed k and n, there are an infinite number of them.

Suppose, conversely, for all $c_j \in C_k$, $\phi(F) \neq \{c_j\}$.

If $\phi(F) = \{c_{k+1}\}$, then for $i \in [3]$, let $\gamma_i : V(H_F^i) \to C_k$ be any k-ecoloring, and let γ be the functional extension of γ_1 , γ_2 and γ_3 . Thus for all $u \in V(H_F^1)$, $\gamma(u) \neq c_{k+1} = \phi(\mu_F(u))$.

If $\phi(F) \neq \{c_{k+1}\}$, then let $c_j \in \phi(F) \cap C_k$ and since $k \geq 2$, let $c_\ell \in C_k$ such that $c_\ell \neq c_j$. Define $m: V(H_F^1) \to C_k$ such that for all $u \in V(H_F^1)$,

$$m(u) = \begin{cases} c_{\ell} & \text{if } \phi(\mu_F(u)) = c_{k+1} \\ \phi(\mu_F(u)) & \text{otherwise.} \end{cases}$$

Then m is not constant on $V(H_F^1)$ since $\{c_j, c_\ell\} \subseteq m(V(H_F^1))$. By Lemma 5, there is a k-ecoloring $\gamma_1 : H_F^1 \to C_k$ such that $\gamma_1(u) \neq m(u)$ for all $u \in V(H_F^1)$. Thus, for all $u \in V(H_F^1)$, $\gamma_1(u) \neq \phi(\mu_F(u))$. Let γ_2 and γ_3 be any k-ecolorings of H_F^2 and H_F^3 respectively using colors from C_k . Finally, let γ be the functional extension of γ_1, γ_2 and γ_3 . By Lemma 2, if P is an induced P_4 of H_F , P is contained in $V(H_F^i)$ for some $i \in [3]$ and hence is not monochromatic under γ_i . Thus γ is a k-ecoloring of H_F with $\gamma_1(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$.

Theorem 10. A graph G constructed using Construction 6 is (k+1)-ecritical.

Proof. Let G be a graph constructed using Construction 6.

We first show that G is (k+1)-ecolorable. Let $\phi: V(\mathcal{F}) \to C_{k+1}$ be a proper (k+1)-coloring of the hypergraph \mathcal{F} . For each edge $F \in \mathcal{F}$, $\phi|_F(F) = \phi(F)$ is not monochromatic. By Lemma 9, there exist a k-ecoloring $\gamma_F: H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Putting these colorings together, let $\gamma: G \to C_{k+1}$ be the functional extensions of ϕ and γ_F for all $F \in \mathcal{F}$. If P is an induced P_4 of P_6 , then by Lemma 8, either P contains an edge $u\mu_F(u) \in M_F$ with $\gamma(u) = \gamma_F(u) \neq \phi(\mu_F(u)) = \gamma(\mu_F(u))$, or P is contained in P_6 for some $P_6 \in \mathcal{F}$. In either case, P is not monochromatic under γ . Thus γ is a (k+1)-ecoloring of P_6 .

We now show that G is not k-ecolorable. Suppose, to the contrary, that there is a k-ecoloring $\sigma: V(G) \to C_k$. Then $\sigma|_{V(\mathcal{F})}$ is a k-coloring of \mathcal{F} . Since \mathcal{F} is not k-colorable, there exists an edge $F \in \mathcal{F}$ that is monochromatic under σ . Hence, $\sigma(F) = \{c_j\}$ for some $c_j \in C_k$. We also have that $\sigma|_{H_F}$ is a k-ecoloring of H_F . Thus by Lemma 9, there exists $u \in V(H_F^1)$ such that $\sigma(u) = \sigma(\mu_F(u)) = c_j$. Since $\sigma|_{H_F^i}$ is a k-ecoloring of H_F^i for $i \in \{2,3\}$ there exists $u_i \in H_F^i$ such that $\sigma(u_i) = c_j$. Thus $u_3u_2u\mu_F(u)$ is an induced P_4 in G that is monochromatic under σ , a contradiction. Thus no such σ exits.

Finally, we show that G is k-critical. Let v be a vertex of G.

Case 1: $v \in V(\mathcal{F})$.

If $v \in V(\mathcal{F})$, then since \mathcal{F} is (k+1)-critical, there is a proper (k+1)-coloring $\phi: V(\mathcal{F}) \to C_{k+1}$ so that v is the only vertex of \mathcal{F} colored c_{k+1} . Since no edge F of \mathcal{F} is monochromatic, by Lemma 9, there exist a k-coloring $\gamma_F: V(H_F) \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$. Let $\gamma: G \to C_{k+1}$ be the functional extensions of ϕ and γ_F for all $F \in \mathcal{F}$. As above, γ is a (k+1)-coloring of G. Note, however, that v is the only vertex colored c_{k+1} . Thus $\gamma|_{V(G-v)}$ is a k-coloring of $G \to v$.

Case 2: $v \in V(H_{F'})$ for some $F' \in \mathcal{F}$.

Since \mathcal{F} is (k+1)-critical, there is a k-coloring $\phi:V(\mathcal{F})\to C_k$ so that F' is the only monochromatic edge of \mathcal{F} under ϕ . By rearranging the colors, we may assume, without loss of generality, that $\phi(F')=\{c_k\}$. For $i\in[3]$, let $u_i\in V(H^i_{F'})$ such that $u_j=v$ for some $j\in[3]$. Since each $H^i_{F'}$ is k-critical, $i\in[3]$, there exists a k-coloring $\gamma^i_{F'}:H^i_{F'}\to C_k$ such that the only vertex colored c_k in $H^i_{F'}$ is u_i . Define $\gamma_{F'}$ to be the functional extension of $\gamma^1_{F'},\gamma^2_{F'}$, and $\gamma^3_{F'}$.

For $F \in \mathcal{F}$, $F \neq F'$, $\phi|_F$ is a function $\phi|_F : F \to C_k$ such that $\phi|_F(F)$ is not monochromatic. Thus by Lemma 9, there exists a k-ecoloring $\gamma_F : H_F \to C_k$ such that $\gamma_F(u) \neq \phi(\mu_F(u))$ for all $u \in V(H_F^1)$.

Now define $\gamma:V(G)\to C_k$ to be the functional extension of ϕ and γ_F for all $F \in \mathcal{F}$. Although γ is not a k-ecoloring of G, the induced P_4 s that are monochromatic under γ have an intentionally restricted form. Let P be an induced P_4 of G that is monochromatic under γ . If P is contained in H_F^i for some $F \in \mathcal{F}$ and for some $i \in [3]$, then P is not monochromatic under γ_F^i and hence γ . Thus this cannot be the case and so, by Lemma 8, P contains some edge e of SU. The only edge in SU that is monochromatic under γ is $u_1\mu_{F'}(u_1)$, since for $F \in \mathcal{F}$, if $F \neq F'$, then $\gamma(u) = \gamma_F(u) \neq 0$ $\phi(\mu_F(u)) = \gamma(\mu_F(u))$, and if F = F', then $\gamma(F) = \{c_k\}$ and the only vertex colored c_k in H_F^1 under γ is u_1 . Since P is connected, P is thus contained in $H_{F'} \cup M_{F'}$ with only the edge $u_1 \mu_{F'}(u_1)$ from $M_{F'}$. The only other two vertices in $H_{F'}$ colored c_k under γ are u_2 and u_3 . Thus $P = u_3 u_2 u_1 \mu_{F'}(u_1)$ is the only induced P_4 in G that is monochromatic under γ . Therefore, $G - v = G - u_j$ has k-ecoloring $\gamma|_{G-v}$.

We now turn to a completely different construction inspired by the 3-ccritical outerplanar graph of Figure 2 in [6].

Construction 11. For $k \geq 1$, let F be a (k+1)-critical graph with n vertices, v_1, \ldots, v_n , and let H_1, \ldots, H_n be disjoint k-e-critical graphs with vertices disjoint from F. Define

$$G = F \cup \left(\bigcup_{i=1}^{n} \{v_i\} \oplus H_i\right).$$

Note that for k = 1, the graph G of Construction 11 is just P_4 . An example of Construction 11 is drawn in Figure 4.

FIGURE 4. Example of 3-ccritical graph using Construction 11 where F is the 5-cycle and $H_i \cong P_4$, $i \in [5]$.

Lemma 12. If G is a graph constructed using Construction 11, and P is an induced P_4 contained in G, then either

- (1) P contains an edge of F, or
- (2) P is a subgraph of H_j for some $j \in [n]$.

Proof. Let P be an induced P_4 of a graph G. Suppose P does not contain an edge of F. Then P is a subgraph of $\{v_j\} \oplus H_j$ for some $j \in [n]$. By Lemma 2, P is a subgraph of H_j .

Theorem 13. A graph G constructed using Construction 11 is (k+1)-c critical.

Proof. Let G be a graph constructed using Construction 11.

We first prove that G is not k-colorable. Suppose, to the contrary, G has a k-coloring γ using colors from C_k . The restriction of γ to V(F) is not a proper k-coloring of F since F is (k+1)-chromatic. Thus there exists an edge $f_i f_j$ of F such that $\gamma(f_i) = \gamma(f_j) = c_l$ for some $c_l \in C_k$. Since H_i and H_j are not (k-1)-colorable, the restriction of γ to either graph is

not a (k-1)-ecoloring, and hence H_i has a vertex h_i with $\gamma(h_i) = c_l$ and H_j has a vertex h_j with $\gamma(h_j) = c_l$. The induced path $h_i f_i f_j h_j$ is a P_4 in G whose vertices are all colored c_l by γ , a contradiction. Thus no such γ exists.

We now prove that G is (k+1)-colorable. The graph F has a proper (k+1)-coloring ϕ using colors from $C_{k+1} = C_k \cup \{c_{k+1}\}$. For each H_i , $i \in [n]$, let η_i be a k-coloring of H_i using colors from C_k . We define $\gamma^{(1)}: V(G) \to C_{k+1}$ to be the functional extension of the n+1 colorings ϕ , η_1, \ldots, η_n .

Let P be an induced P_4 of G. If P contains an edge $f_i f_j$ of F, then $\gamma^{(1)}(f_i) = \phi(f_i) \neq \phi(f_j) = \gamma^{(1)}(f_j)$ and thus V(P) is not monochromatic under $\gamma^{(1)}$. Otherwise, by Lemma 12(2), P is a subgraph of H_j for some $j \in [n]$ and hence V(P) is not monochromatic under $\eta_j = \gamma^{(1)}|_{V(H_j)}$. Thus $\gamma^{(1)}$ is a (k+1)-ecoloring of G.

We now show that G is (k+1)-ecritical.

Consider $G - v_i$ for some $i \in [n]$. There exists a proper k-coloring ϕ_i of $F - v_i$ using colors from C_k . We define $\gamma^{(2)} : V(G) \to C_k$ to be the functional extension of the n+1 colorings ϕ_i , η_1, \ldots, η_n . The location of any given P_4 in G is such that it either contains an edge of F or is a subgraph of H_j for some $j \in [n]$. In either case, the set of its vertices is not monochromatic by $\gamma^{(2)}$. Thus $G - v_i$ is k-colorable.

Finally, consider G - v where $v \in V(H_t)$ for some $t \in [n]$.

Since F is (k+1)-critical, F has an edge incident with v_t . Thus, let $e = v_s v_t$ for some $s \in [n]$, $s \neq t$. There exists a proper k-coloring ϵ of F - e using colors from C_k since F is (k+1)-critical. Every such coloring colors v_s and v_t the same color. We may suppose therefore that $\epsilon(v_s) = c_l = \epsilon(v_t)$ for some $l \in [k]$. Let η'_t be a (k-1)-coloring of $H_t - v$ using colors from $C_k \setminus \{c_l\}$. For $i \in [n]$, $i \neq t$, let $\eta'_i = \eta_i$, as defined above. Define $\gamma^{(3)}: V(G) \to C_k$ to be the functional extension of the n+1 colorings ϵ , η'_1, \ldots, η'_n .

Suppose P is an induced P_4 of G-v. If P is contained in H_j for some $j \in [n]$, then V(P) is not monochromatic under $\gamma^{(3)}$ since $\gamma^{(3)}(V(P)) = \eta'_j(V(P))$. Otherwise, by Lemma 12(1), P contains an edge of F. Since V(F) = V(F-e), the k-coloring ϵ of F-e is a k-coloring of F. Moreover, since ϵ is a proper k-coloring of F-e, e is the only edge of F whose vertices are colored the same by ϵ . If P contains an edge of F different from v_sv_t , then V(P) must not be monochromatic under ϵ and hence under $\gamma^{(3)}$ since $\gamma^{(3)}(V(P)) = \epsilon(V(P))$. We may assume, therefore, that P contains only one edge from F and that this edge is v_sv_t . Since P does not contain a 3-cycle, P can contain at most one vertex of any H_i , for $i \in \{s,t\}$. Thus P must contain a vertex of $H_t - v$. This vertex is not colored c_l by $\gamma^{(3)}$ since $\gamma^{(3)}(V(H_t - v)) = \eta'_t(V(H_t - v)) \subseteq C_k \setminus \{c_l\}$. Now $v_t \in V(P)$ and

 $\gamma^{(3)}(v_t) = \epsilon(v_t) = c_l$ and so V(P) is not monochromatic under $\gamma^{(3)}$. Hence $\gamma^{(3)}$ is a k-ecoloring of G - v.

Therefore G is (k+1)-ecritical.

Since the 3-critical graphs are simply odd cycles and the only 2-ecritical graph is P_4 , every 3-ecritical graph G from Construction 11 has 15+10s vertices for some $s\geq 0$ and is not only planar but also outerplanar. Thus, every 4-ecritical graph from Construction 11 is planar when 3-ecritical graphs H_i are produced from Construction 11 as well, and the 4-critical graph F is chosen to be planar (e.g. $F\cong K_4$, amongst many others). Using Construction 11 with F as an odd-wheel on 2(a+1) vertices (a 4-critical planar graph) produces 4-ecritical planar graphs with 32(a+1)+10b vertices, $a\geq 1$, $b\geq 0$. Starting with F as a 4-critical planar graph on 7 vertices, Construction 11 produces 4-ecritical planar graphs on 112+10b vertices, $b\geq 0$. Thus there are 4-ecritical planar graphs on 2t vertices for all $t\geq 76$.

The 3-ccritical planar graphs produced using Construction 11 have many triangles. There do exist, however, 3-ccritical planar graphs that have no triangles (i.e. see the construction for 3-cchromatic triangle-free planar graphs of [5]).

ACKNOWLEDGEMENTS

The second author's M.Sc. thesis [10] contains many of the results found here.

REFERENCES

- [1] J. I. Brown and D. G. Corneil. On generalized graph colourings. J. of Graph Theory, 11:87-99, 1987.
- [2] G. Chartrand, D. P. Geller, and S. Hedetniemi. A generalization of the chromatic number. *Math. Proc. Cambridge Philos. Soc.*, 64(02):265, 1968.
- [3] E. J. Cockayne. Colour classes for r-graphs. Canad. Math. Bull., 15(3):349-354, 1972.
- [4] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. Discret. Appl. Math., 3:163-174, 1981.
- [5] P. Dorbec, M. Montassier, and P. Ochem. Vertex partitions of graphs into cographs and stars. J. Graph Theory, 75(1):75-90, 2014.
- [6] J. Gimbel and J. Nešetřil. Partitions of graphs into cographs. Discrete Math., 310(24):3437-3445, 2010.
- [7] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, 2004.
- [8] C. M. Mynhardt and I. Broere. Generalized colorings of graphs. In Graph Theory with Applications to Algorithms and Computer Science, pages 583-594. John Wiley & Sons, Inc., New York, NY, USA, 1985.

- [9] B. Toft. On Colour-critical hypergraphs. In A. Hajnal, R. Rado, and V. Sôs, editors,
 Infin. Finite Sets, volume 10, pages 1445-1457. North-Holland Publ. Co., 1975.
- [10] P. Zhang. A study on generalized solution concepts in constraint satisfaction and graph colouring. Master's thesis, University of British Columbia, 2014.