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ABSTRACT. A cograph is a simple graph that does not contain an
induced path on 4 vertices. A graph G is k -¢colorable if the ver-
tices of G can be colored in k colors such that, for each color, the
subgraph induced by the vertices assigned the color is a cograph. A
graph that is k-ecolorable and is not (k —1)-¢colorable, but becomes
(k—1) -ccolorable whenever a vertex is removed, is called k -¢ critical
graph. Two general constructions are provided that produce ecritical
graphs from color critical graphs and hypergraphs. A characteriza-
tion is also given for when a general composition of graphs (path-
joins) is ecritical. The characterization is used to provide an upper
bound for the fewest number of vertices of a k-ecritical graph.

1. INTRODUCTION

For notational simplicity, we define for a positive integer ¢, [t] = {1,...,t}.
In the definitions that follow, let £ be a positive integer. We reserve
Cr = {e1,...,ck} to be a finite set of size k whose elements ¢y, ...,ck

are called colors. Let G be a finite, undirected, simple graph with vertices
V(G) and edges E(G). A function v : V(G) — Cj is called a k-coloring of
G (or coloring if k is not specified). The function = is said to color G and
to use colors from Cj. If for some vertex v and color ¢;, ¥(v) = ¢;, then
v is said to be colored ¢; by v (or just colored ¢; if 4 is understood). A
set of vertices is monochromatic under -~y if v colors all the vertices of the
set the same color. The color classes of «y are the elements of the partition
{Vey, .-+ Ve } of preimages of members of Cy where V¢, = y~1({c;}) for
i € [k].
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Let B be a (not necessarily finite) set of finite, undirected, simple graphs,
A coloring v of G using colors from C) is a k-pcoloring if the induced
subgraph of each color class of v is a member of B (i.e. if G[V,,| € B
for all i € [k]). A graph G is k-pcolorable, if there exists a k-pcoloring
of G. The schromatic number of G, denoted xs(G), is the minimum
integer k for which G is k-gcolorable. If x5(G) = k, then graph G is said
to be k-pchromatic. We define a 1-g critical graph to be K, the single
vertex graph. For k > 2, a k-gchromatic graph G is k-pcritical if G — v ig
(k — 1)-gcolorable for all vertices v € V(G).

Let € be the set of finite empty graphs (no edges). Connecting the
classical study of the chromatic number of graphs to the definitions here, a
proper k-coloring of G is a k -¢coloring of G. Moreover, G is k-colorable (re-
spectively k-chromatic, k-vertex-critical) is equivalent to G is k -¢colorable
(respectively k-g¢chromatic, k-gcritical). These definitions extend to hy-
pergraphs (edges need not have size two). A hypergraph whose edges all
have the same size is called a uniform hypergraph. A proper k-coloring
of G is a k-gcoloring of G (i.e. no edge is monochromatic). A graph or
hypergraph G is k-critical, however, if G is k-chromatic and G —e is (k —1)-
colorable for each edge e of G. Graphs and uniform hypergraphs that are
k-critical have been extensively studied and exist for all k£ and edge sizes
(see Toft [9]).

Two graphs are disjoint if they have no vertex in common. If H; and
H) are two disjoint graphs, then their disjoint union, Hy U Hs, is the graph
with vertex set V(H;) U V(H;) and edge set E(H;) U E(H2). Moroever,
their join, H; & H,, is the graph obtained from their disjoint union by
adding every edge that has one of its vertices in V(H;) and the other in
V(H;). The complement of a graph G, denoted G, is the graph with vertices.
V(G) = V(G) and edges E(G) = {wv : u,v € V(G),uw ¢ E(G)}.

Let P, be a path on £ vertices. A cograph (complement reducible graph,
see [4]) is a graph that contains no induced P4 subgraph. Let C be the set
of all cographs. This paper sets its focus on constructions of graphs that
are k-ecritical.

In 1968, Chartrand, Geller and Hedetniemi [2] introduced the ¢-chromatic
number of a graph, denoted X,, which is equivalent to the gchromatic num-
ber when B is the set of graphs that do not contain a Pp4; (regardless of
whether the path is induced or not). Cockayne [3] defined the P-chromatic
number where P is a property that defines the elements of B. The number
was denoted by xp and was defined in the more general context of uniform
hypergraphs.

Mynhardt and Broere [8] were the first to show that for each k, there
exists a graph G with xe(G) > k. Moreover, Brown and Corneil [1] first
defined k -ecritical graphs and gave a construction that showed they exist
for all k. In both of these papers, the results were in terms of the more
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general k-gcolorings. A k-ecoloring is called a Py-coloring in (8] and a — P4
k-coloring in [1].

In 2010, Gimbel and Ne3etfil [6] showed how ecolorings fit in an ax-
iomatization of well-studied coloring functions. They also provided bounds
and complexity results for the echromatic number which they called the
c-chromatic number, denoted ¢(G). Most recently, Dorbec, Montassier and
Ochem [5] constructed 3-echromatic triangle-free planar graphs as well as
proving some associated complexity results.

Trivally, every k-coloring of a graph G is also a k -ecoloring of G. More-
over, since the complement of a P; is also a P4 subgraph, a coloring is a
ccoloring of G if and only if it is ecoloring of the complement of G (as
observed in [6]).

The main results of this paper are Constructions 6 and 11, and to a
somewhat lesser degree, Lemmas 3 and 4. We now describe the significance
of the results.

Although every k-cchromatic graph contains a k -ecritical subgraph, un-
til now only one general construction was known to produce k-ecritical
graphs explicitly. This construction was provided by Brown and Corneil [1]
when they introduced the topic in the more general context of k-gcritical
graphs. The construction uses k-pcritical graphs as input to build (k +
1)-gcritical graphs. In this paper, Lemma 3 extends the construction
for ecolorings, by allowing s-ecritical graphs, s < k, to be used as in-
put. Lemma 3 gives a complete characterization of the inputs for which
the construction produces (k + 1)-ecritical graphs. Consequently, new
(k + 1) -ecritical graphs are described explicitly.

The natural quest to determine the fewest number of vertices in a
k-ecritical graph begins with a partial answer in Lemma 4. The con-
struction of Lemma 3 is used in Lemma 4 to find an upper bound to this
parameter that is polynomial in k.

Constructions 6 and 11 produce a ecritical graph from a color critical
hypergraph or graph. For k£ > 3, both constructions can be used to produce
an infinite set of k-ecritical graphs. In contrast, only two non-isomorphic
3-ecritical graphs are produced from Lemma 3 or the construction in [1]
(and only a finite number of k-ecritical graphs if each of the input graphs
are built from the construction as well). For k < 4, Construction 11 pro-
duces k-ccritical graphs that are outerplanar whereas all graphs produced
by Construction 6 are nonplanar. We conclude the paper with some obser-
vations regarding the 4-ccritical planar graphs produced by the construc-
tions.
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2. COLORING PATH-JOINS

We start this section with a definition of a graph that will be used
throughout the paper.

Definition 1. Fort > 2, let H,,...,H, be a sequence of disjoint graphs.
The t-path-join (or just path-join) of the sequence is defined to be

t—1
P(Hy,...,H) = | J(H: ® Hi1)-
i=1

Each of the H; is called an element of the path-join.

Path-join graphs have a structure that is sufficiently general but at the
same time controls where any induced P; subgraphs might be contained.
The next lemma makes this last statement precise. The lemma is not new
but is provided in this form for quick reference later.

Lemma 2. Lett € {2,3,4} and H,,..., H; be disjoint graphs. If P is an
induced Py of P(H,,...,H,), then either

(1) for some i € [t], P is a subgraph of H;, or

(2) t =4 and for all i € [4], P contains a vertez from H;.

Proof. Suppose (1) is not true. Using the language of Golumbic[7)!,
since the path P is an induced subgraph of the composition graph G =
P,(H,,...,H;) = P(H,,...,H;), E(P) is contained in an implication class
A of G and hence contained in its symmetric closure A. Thus by Theo-
rem 5.8 of [7], since (1) is not true, AN E(H;) = 0 for all i € [t]. Moreover,
since G = P,(Hy,...,H;) = P,(H1,...,H;) and P = Py, E(P) is contained
in the symmetric closure B of some implication class B of G implying
BN E(H;) =0 for all i € [t]. Thus, for i € [t], no pair of vertices of P are
contained in H; and (2) is true.

O

We now focus our attention on 4-path-join graphs and provide a complete
characterization of their ecoloring properties.

Lemma 3. Let Hi, Hy, H3 and Hy be disjoint graphs and let k; = xe(H;)
for i € [4] with mazimum k™ = max{ki, ks, k3, ks} and sum kX =k, +
ko + k3 + ky. Let G = P(Hy, Ho, H3, Hy). For every positive integer ¢,
(1) G is £-gcolorable if and only if £ > max{k™*, [k*/3]},
(2) G is £-cchromatic if and only if £ = max{k™**, [k¥/3]}, and
(3) G is -ccritical if and only if £ > k™** + 1, k¥ = 3({—1)+1, and
H; is k; -ecritical for all i € [4].

11n particular, the use of the terms composition graph and implication class in this proof.



Proof. In what follows, let £ be a some positive integer.
Suppose there exists an {-¢coloring, ¥ : V(G) = C¢, of G. For 1 € [4],
j €€, let

I(H;,¢) = {

We shall count the number of these subgraph/color pairs in two ways.

For j € [{], let I; = {i € [4] : some vertex v of H; has y(v) = ¢;}. Now,
if |I;| = 4 for some j € [{], then there is an induced Py of G all of whose
vertices are colored ¢; under y(v) formed by selecting a single vertex colored
¢; from each of H}, H,, H3, Hy guaranteed by the size of I;. This contradicts
that y is a £-ccoloring. Thus |I;| < 3 for all j € [¢] and hence

1 if y(v) = ¢; for some vertex v in H;
0 otherwise.

4

(4 £
D) I(Hic) =) |I;| <3¢
1=11i=1 ij=1

On the other hand, considering the induced ecolorings v; = YNvw for
i € [4], we have £ > k™2X and

4 ¢ 4 4
YO I(Hive) =) Inu(VH) 2D xe(H:) = k=
i=1 j=1 i=1 i=1
Thus we have k¥ < 3¢ and hence £ > max{k™, [k¥/3]}.

Suppose now that £ > max{k™**, [k¥/3]}. We shall construct an
{-ecoloring of G. For i € [4], let k} = € — ki. Then k] + kj + k3 + Kk =
40— k% > £. Hence we can find a covering B}, B}, B}, B of the set of colors
Cy such that C, = B{UB{UB5U Bj and |B;| = k; (note that some of these
sets may be empty). Now for each i € [4], xe(H;) = ki, and so there exists
a k;-ecoloring of H;, v; : V(H;) = C;¢ \ B]. Let v: V(G) — C¢ be the
functional extension of y1, ¥2, 73,74 We claim that v is a £-ecoloring of G.
By Lemma 2, an induced P4, P, of G is either contained in H; for some
i € [4], or P contains a vertex from each element of the path-join G. If P
is contained in an H;, then P is not monochromatic under 7; = ’y|v( Hy):
Suppose therefore that P contains a vertex from each element of the path-
join G. Consider an arbitrary color ¢; of Cy. By construction, ¢; € B/ for
some ¢ € [4] and hence 7; does not use c; to color the vertices of H;. Thus
the vertex of P in H; is not colored c; under 4. Since ¢; is arbitrary, P is
not monochromatic under . Hence G is £-eccolorable.

Therefore (1) is true.

Part (2) follows by applying (1) twice to G with the fact that two integers
satisfy {—1 < max{k™**, [k¥/3]} < ¢if and only if £ = max{k™®¥, [k%/3]}.

We use the following in the next two paragraphs. Consider a vertex h of
some Hy, t € [4]. If H, contains only vertex h, then k¥ < 3k™a~ + 1 since
each k; < k™2* and k; = 1. Moreover, we can k™®*-qcolor each of the other
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elements of the path-join G to get a k™2 _ccoloring of G — h (note that in
this case, H; is 1-ccritical). Otherwise, if H; has more than one vertex, let
H{ = H; — h and define z(h) = ky — xe(H; — h) € {0,1}. For i € [4], i # ¢,
let H] = H;. Then the path-join G} = P(H{, Hy, H}, H}) = G — h satisfies
xe(H1) + xe(H3) + xe(H3) + xe(H}) = k= — z(h).

Suppose now, that G is €-ccritical. By (2), £ = max{k™®*, [k¥/3]}. If
¢ = k™ then we have xe(H;) = k™2 for some ¢ € [4], and by choosing
h € V(H;) for some j € [4], j # i, we find that H; is a subgraph of
G — h with xe(G — h) > xe(H;) = k™* = {, a contradiction. Thus
€ > k™2 4 1. We therefore have £ = [k®/3] and hence k¥ > 3(¢— 1) + 1.
Now consider G — h for a vertex h of some Hy, t € [4]. If V(H;) = {h},
then, from the previous paragraph, H; is 1-ecritical, k¥ < 3kma* + 1 and
we can k™Ma*_ccolor G—h and so £—1 < k™®*, Thus /—1 = k™2% and hence
kT < 3(¢—1)+1. If V(H,;) # {h}, then, again from the previous paragraph,
G—his (£—1)-ecolorable implies by (1) that £—1 > [kz"sx(h)] > ’“23'1. But
¢ = [k®/3] and so z(h) = 1. Hence, Hy is k¢ -ccritical and k= < 3(£—1)+1.
In both cases, we have that k¥ = 3(¢ —1) + 1 and H, is k; -ecritical.

Conversely, suppose £ > k™max 4 1 k¥ = 3¢ - 1) + 1, and each H; is
ki-ccritical, i € [4]. Then [k%/3] = £ and so ¢ = max{k™, [k%/3]}.
Thus by (2), G is £-echromatic. Consider a vertex h of some Hi, t € [4].
If H; contains only vertex h, then from above, G — h is k™2* -ccolorable
and hence (£ — 1)-ccolorable since £ — 1 > k™%, QOtherwise, z(h) = 1
since Hy is k¢ -ccritical and G — h is a path-join G’ = (H{, H}, H}, H}) with
Xe(H1)+xe(Hz)+xe(H3)+xe(H)) = k¥~1, and [kZ~1/3] = £—1 > k™,
Thus by (1), G — h is (£ — 1)-ccolorable. Therefore, G is £-ecritical and
(3) is true. O

The path-join P(G1,G3,G3,G,) for disjoint copies of a graph G is de-
scribed as the composition graph P4[G] in Mynhardt and Broere [8].2 Ap-
plying Lemma 1 of [8], they showed that xe(P4[G]) > xe(G) for all graphs

G. Using Lemma 3, we have that xe(P4(G]) = [‘2%(92] as well as that

P4[G] is s-ccritical if and only if s = 2mod4 and G is (3(s — 2) +
1) -ecritical.

When P is chosen to be the cograph property, Theorem 2.8 of [1] is
implied by Lemma 3 using the case when H; = K and ky = k3 = k4. Note
that G in Theorem 2.8 is forced to be Py for the cograph property since the
only 2-ecritical graph is Pjy.

Since there is only one 1-ccritical graph, namely K, only one 2-¢critical
4-path-join graph can be constructed. We define PJ, = P(H;, Hy, H3, Hy)
where each element is isomorphic to K;. For k > 2, define PJyy; =

2Described as the composition graph P4[G, G, G, G] in [7].
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P(Hl,HQ,H3,H4) with disjoint elements where for i € (3], H; is a copy
of PJk, and Hy is a copy of K;. Using Lemma 3 inductively, we have
that PJk41 is (k 4+ 1)-ecritical. This was proven first in Theorem 2.8 of
Brown and Corneil [1] where the graph PJ; and its complement were first
described. Gimbel and Ne3etfil [6] also describe PJ3 but give it the notation
Py)'.

: It is natural to ask questions regarding the structure of those k-ecritical
graphs with the fewest number vertices. For k > 1, we define f(k) to be the
fewest number vertices of a k-ccritical graph and in what follows, let A
be a k-ecritical graph with f(k) vertices. From the previous paragraphs,
we have f(1) =1 and f(2) =4.

Question 1 in the Remarks of [1] may be rephrased, when restricted
to the property of cographs and using the terminology of this paper, to
ask whether the smallest (k + 1)-ccritical graph is a P(Ag, Ak, Ak, K1)
(or its complement). The authors answered Question 1 negatively at the
end of the paper by mentioning that the circulant graph of order 11 with
distances {1,4} is 3-ecritical, thus showing f(3) < 11. A 10 vertex 4-
regular 3-ecritical graph named J (and implicitly a 5-regular one forming
the complement of J) is given in [6]. A computational search reported
in [10] found no 3-ecritical graph on less than 10 vertices. Thus f(3) = 10.

A variety of ecritical graphs can be constructed from Lemma 3. For ex-
ample, for k = 4 (abusing the notation), both path-joins P(J, J, J, K1)
and P(J,J,PJ,, PJ;) are 4-ccritical graphs, the first with 31 vertices,
the second with 28 vertices. Although the answer to Question 1 was al-
ready resolved, P(J,J, PJa, PJy) illustrates that the answer is still neg-
ative when the question of whether the smallest 4-path-join k-ecritical
graph is a P(Ak—1,Ak-1,Ak-1,K;) (or its complement). Moreover,
P(Ak_1, Aix_1, Ak—1, K1) provides the upper bound f(k) < 3k-1 4 3k-2,
The following lemma improves this upper bound for f(k) and disproves
Conjecture 3.20 of [10] that f(k) = 2F 4 2k-1 4 1.

Lemma 4. For k > 4, the fewest number of vertices of a k -ecritical graph
satisfies

1
F(k) < (39) kPaGI-T < (19622,

Proof. For each positive integer k', k' < k, every k-ecritical graph contains
a k'-ccritical graph (see Theorem 2.3 of [1]). Hence f is monotonically
increasing.

Using (3) of Lemma 3, each row of Table 1 lists a k-gcritical graph, a
(loose but useful) recursive upper bound on the number of vertices of the
graph, and the statement that |2k| is an upper bound to the input of
f used for the recursive upper bound. The information in the table thus
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proves for k > 4 (i.e. ¢t > 1) that

(1) f(k) <4f ([3k]) -
TABLE 1. k-ecritical graphs with bounds on the number of vertices.
ek upper bound on the 4
8 k-ecritical graph number of vertices l8%] 2
4t P(Agzi_1, Asi—1, Aze, Aat) 4f(3t) 3t
4t + 1 P(Asz:, Asey Aag, Azeq) 4f(3t +1) 3t+1
4t + 2 [ P(Asey1, Aseqr, Ase1, Ases) 4f(3t+1) 3t+1
4t +3 | P(Ast41, Asey2; Asey2, Asey2) 4f(3t +2) 3t+2

Let k >4, r+1= [log(%)(k)], and note that r +1 > 7. Using the

monotonicity of f, the recursive inequality from (1), and the fact |z |y]] <
|zy| for all nonnegative reals z,y, each once per recursive step, we have

CEOMEEHOMNE(ON)
<er([[(8)])) = e (1))

IA

1
== 4r—5f(3) < (%)4105(5/4)(@ = (%g)k1084(5)-1 i
a

We finish this section by proving a strong coloring property of PJ,. that
will be used in Lemma 9 for one of the main constructions.

Lemma 5. Let k > 2. For every non-constant functionm : V(PJy) — Ck,
there is a k-gcoloring v : V(PJx) — Ci such that y(v) # m(v) for all
vertices v of PJy.

Proof. For k > 2, let S(k) be the statement of lemma for the given k. We
will prove S(k) is true by induction.

For a given non-constant function m : V(PJ2) — {c1,c2}, we define
such that vy(v) is the only color of C; \ {m(v)} for all v € V(PJ,). Since
m is non-constant, v is as well, and hence v is a 2-¢coloring of PJs, a P4,
with y(v) # m(v) for all vertices v of PJ,. Thus S(2) is true.

Suppose now that S(k) is true for some k > 2 and consider PJi4
with a non-constant function m : V(PJk41) = Ck41. Then PJryy =
P(H1, Ha, H3, Hy) with disjoint elements where for ¢ € (3], H; is a copy of
PJi, and Hy is a copy of K. For all i € (3], define m; = m|y,(y,, and let
w be the vertex of Hy.
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Case 1: For all i € [3], m; is constant on V(H;).

For all i € [3], let j; € [k + 1] be such that m;(u) = ¢, for all
u € V(H;). Since m is non-constant on V(PJy;), there exists
t € [3] such that ¢;, # m(w). Since each H; is k-ecolorable, let
v: be a kecoloring vi : V(Hi) = (Cik41 \ {cj.})- Then ~;(u) #
cj; = m;(u) for all u € V(H;). Letting v : V(PJks1) = Ciy) be
the functional extension of 71, 72, 73 with y(w) = ¢j, # m(w), we
have y(u) # m(u) for all u € V(PJk4,). Moreover any induced Py
not contained in an element of the path-join PJi 4, includes vertex
w and a vertex hy from H: with y(w) = ¢j, # v(h) = v(he),
and thus is not monochromatic under v. Therefore, 7 is a desired
(k + 1) -ecoloring and S(k + 1) is true.

Case 2: For some t € (3], m, is non-constant on V(H,).

Consider the set of colors R = m,(V(H;)). We are interested in
assigning an appropriate color to w by finding a color ¢; # m(w)
that is not in R, or can be removed from R, so that we can apply
the induction hypothesis S(k).

If there exists ¢; € Cikyy such that ¢; # m(w) and ¢; € R,
then since R C Ciy1 \ {¢;}, by S(k), there exists a k-ecoloring
vt : V(Hy) = Crk+1\{c;} such that v (u) # m,(u) for all u € V(Hy).

)

m 7l & m:% B

FIGURE 1. A reduction of an m to an m’ for PJ3 that is
a Case 2 example with £ = 2 and c; the color grey.

Otherwise, Cry1 \ {m(w)} C R and since k+1 > 3, |R\
{m(w)}| > 2 (see Figure 1). Thus, another non-constant func-
tion m; can be constructed from m, by choosing an arbitrary color
c; € R\ {m(w)} and replacing it with m(w). For all i € [3], define
m! : V(H;) = (Ck+1 \ {c;}) such that for all u € V(H;),

; m(w) if m;(u) =c¢;j
mi(u) = { m;(u) otherwise.

By S(k), there exists a k-ecoloring v; : V(H) = Ck41 \ {¢;} such
that ,(u) # m)(u) for all u € V(H;). For u € V(H), mi(u) =
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c; implies y¢(u) # ¢; = my(u), and my(u) # c; implies Ye(u) #
m4(u) = my(u). Thus v (u) # me(u) for all v € V(Hy).

In either of these two cases, we start the definition of v :
V(PJk+1) = Cry1 with y(w) = ¢j and vy g,y = 12-

Consider now Hp where £ € (3], £ # t. Define R, = me(V (Hy)).
If |Re| = 1, then let C' = Ci41 \ Re and let 7, : V(He) — C' be
a k-ccoloring of He. Implicitly, v(u) # me(u) for all u € V(H,).
If 2 < |Re| < k, then let C' C Cik41 such that |IC'| = k and
R C C'. By S(k), there exists a k-ccoloring vy, : V(Hy) = C’ with
~v(u) # me(u) for all u € V(Hy). Finally, if |Re| = k + 1, then since
k+1>3,my: V(Hy) = (Cks1\ {cj}) as defined above, is non-
constant, and so by S(k), there exists vy : V(He) = Cry1 \ {c;}
such that ve(u) # mj(u) for all u € V(H¢). An argument identical
to the one used for 7 can be used here to give v¢(u) # me(u) for
all u € V(H,). In each of these cases regarding the size of | R,
we find a k-ecoloring ¢ of H, using colors from Cj41 such that
ve(u) # me(u) for all u € V(H,). Finishing the definition of v, we

let Y|y (m,) = 7e (see Figure 2).

m 7l B y: eee

FIGURE 2. A 3-ecoloring v of PJ3 that is obtained from
Case 2 with t = 2 and c; the color grey.

Finally, v is a (k + 1) -ecoloring of V(PJk4+1) since each element
H;, i € [3], has k-ecoloring using k colors from Cik41, and any
induced P4 not contained in an element of the path-join PJy in-
cludes vertex w and a vertex h; from H; with y(w) = ¢ # v;(h:) =
v(ht), and thus is not monochromatic under .

Therefore S(k + 1) is true.
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3. MAIN CONSTRUCTIONS

This section provides two general constructions of (k1) -ecritical graphs.
The first construction, Construction 6, is built from a (k + 1)-critical hyper-
graph while the second one, Construction 11, is built from a (k 4 1)-critical
graph. Both constructions force any induced Py subgraph to either contain
some part of the hypergraph/graph they are built from or to be contained
in a k-ecritical subgraph (i.e. see Lemmas 8 and 12).

Construction 6. With k > 2 and n = |V(PJy)|, let T be an n-
uniform (k + 1)-critical hypergraph. For each edge F € F, let H}, H}
and H} be three disjoint k-ecritical graphs with Hp = PJi and let
Hp = P(Hp, H%,H3}). The graphs Hp, F € F, are required to be pairwise
disjoint and to not share any vertez in common with F. For each F € ¥,
let M be a matching between vertices of F and Hg. With H = @4 Hr
and SU = Upey MF, define G = HU SU.

Note that each vertex v of degree d in JF is the center of a star K 4
in SU. Thus SU is a union of stars. Moreover, note G contains no edges
between vertices of F. See Figure 3.

Hi = PJ,
/e
Il t ‘\ i
hyperedge | o [54
Fe—
of F | — @
] o—
] (=
\ [ == T
\\ o
VG )
\ @ 2 i

FIGURE 3. The subgraphs Mg and Hp of the graph G
from Construction 6 obtained from a hyperedge F' € J.
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Example 7.

Let k > 2, n = [V(PJy)| = (3¢ — 1) and m = |E(PJ)| = 3*~1(3k -
2k — 1)/4 edges. Let H be aset of h = (n—1)k+1=3k(3*1 1) +1
vertices, and F be the set all subsets of size n from H. Then ¥ is an
n-uniform (k 4 1)-critical hypergraph.® For each F' € F and i € (3], let
Hi = PJy. Then graph G from Construction 6 has h + (*)(3n) vertices
and (")(3m +n + 2n?) edges. For k = 2, this G has 427 vertices and 1575
edges. O

The next two lemmas will be used to show that the graphs from 6 are
(k + 1) -ecritical.

Lemma 8. If G is a graph constructed using Construction 6, and P is an
induced Py contained in G, then either

(1) P contains an edge of SU, or
(2) P is contained in H} for some F € F and for some i € [3].

Proof. Let P be an induced Pj of the given graph G. Suppose P does not
contain an edge of SU. Since every edge of G incident with a vertex of F is
an edge of SU, all of the vertices of P are contained in H. Moreover, H is
the disjoint union of the Hp subgraphs it contains and thus P is contained
in Hp for some F € F. By definition Hp = PJ(H}, H%, H}) and so by
Lemma 2, P is contained in H% for some 7 € [3]. O

We use the following definition to identify the vertices of the edges of
the matching Mp. For each F' € F, let up : V(H}) = F be defined for
u € V(H}) by pp(u) = v where uv € Mg . This function is well-defined
since Mr is a matching between vertices of F' and H};. The next lemma,
provides an important connection between the structure of the hypergraph
and the graphs that replace its edges.

Lemma 9. Let F € F and let ¢ : F — Ciy1. Then there exists a
k -ccoloring yr : Hp — Ci such that yr(u) # ¢(kr(v)) for all u € V(HE)
if and only if for all ¢; € Ck, ¢(F) # {c;}-

Proof. Let F and ¢ be given.

Suppose there exists a k-ccoloring vr : HF — Ci such that yp(u) #
¢(nr(u)) for all w € V(HL). Now Hp is k-echromatic and ’YFIH}, is
k-ecoloring of Hx. Thus for every c; € Ck, there exists some u.; € V(H})
such that yr(uc,) = ’YFIH;, (ue;) = ¢j- Let v = pp(uc;), the vertex of F
matched to uc, under Mp. Thus ¢; = Yr(uc;) # ¢(v) and since ¢(v) €
O(F), ¢(F) # {c;}-

3Note that n-uniform (k + 1)-critical hypergraphs with t vertices exist if and only if
t > (n — 1)k + 1(see Toft [9]), and thus for a fixed k and n, there are an infinite number

of them.
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Suppose, conversely, for all ¢; € Cy, ¢(F) # {c;}.

If ¢(F) = {ck41}, then for i € 3], let ¥ : V(HE) = Ck be any
k-ccoloring, and let y be the functional extension of 1, v, and v3. Thus
for all u € V(Hg), 7(u) # cks1 = d(ur(u)).

If (F) # {ck+1}, then let ¢; € ¢(F) N Cx and since k > 2, let ¢, € C
such that cg # ¢;. Define m : V(HE) — Ci such that for all u € V(H}),

_J e if ¢(ur(u)) = crs1
my) = { #(up(u)) otherwise.
Then m is not constant on V(H}) since {cj,c¢} € m(V(H})). By Lemma 5,
there is a k-ccoloring 71 : Hf — Cj such that v;(u) # m(u) for all
u € V(H}E). Thus, for all w € V(H}E), m(u) # ¢(up(u)). Let v, and
~3 be any k-ecolorings of H% and H} respectively using colors from Cj.
Finally, let -y be the functional extension of v;, v2 and v3. By Lemma 2, if
P is an induced P of Hp, P is contained in V(H}) for some i € [3] and
hence is not monochromatic under 7;. Thus v is a k-ecoloring of Hr with

m(w) # ¢(ur(v)) for all u € V(Hp). O

Theorem 10. A graph G constructed wusing Construction 6 is
(k + 1) -ccritical.

Proof. Let G be a graph constructed using Construction 6.

We first show that G is (k + 1)-ecolorable. Let ¢ : V(F) = Ciy
be a proper (k + 1)-coloring of the hypergraph F. For each edge F €
F, ¢|p (F) = ¢(F) is not monochromatic. By Lemma 9, there exist a
k-ecoloring yr : Hr — Cy such that vr(u) # ¢(pr(u)) for all u € V(HE).
Putting these colorings together, let v : G = Ci41 be the functional ex-
tensions of ¢ and v for all F € F. If P is an induced Py of G, then by
Lemma 8, either P contains an edge upr(u) € Mp with y(u) = yr(u) #
d(ur(u)) = ¥(ur(w)), or P is contained in Hp for some F' € F. In either
case, P is not monochromatic under «. Thus 7 is a (k + 1) -ecoloring of G.

We now show that G is not k-ecolorable. Suppose, to the contrary, that
there is a k-ecoloring o : V(G) — Ci. Then oy 4 is a k-coloring of J.
Since ¥ is not k-colorable, there exists an edge F' € F that is monochromatic
under o. Hence, o(F) = {c;} for some c; € Cx. We also have that o|y_ is
a k-ecoloring of Hr. Thus by Lemma 9, there exists u € V(H}) such that
o(u) = o(ur(u)) = ¢;. Since UIH;‘ is a k-gcoloring of H}. for i € {2,3}
there exists u; € H} such that o(u;) = ¢j. Thus ugupupr(u) is an induced
P, in G that is monochromatic under o, a contradiction. Thus no such ¢

exits.
Finally, we show that G is k-ecritical. Let v be a vertex of G.
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Case 1: v e V(F). .
If v € V(F), then since ¥ is (k + 1)-critical, there is a proper

(k + 1)-coloring ¢ : V(F) — Ck41 so that v is the only vertex
of F colored ck41. Since no edge F of F is monochromatic, by
Lemma 9, there exist a k-ecoloring v : V(Hp) — Ck such that
vr(u) # ¢(pr(u)) for all u € V(HE). Let v : G — Chk41 be the
functional extensions of ¢ and v for all F € F. As above, v is a
(k + 1)-ecoloring of G. Note, however, that v is the only vertex
colored ck41. Thus 7|V(G_v) is a k-ecoloring of G — v.
Case 2: v € V(Hp) for some F' € F .

Since ¥ is (k + 1)-critical, there is a k-coloring ¢ : V(¥F) —
Ci so that F’ is the only monochromatic edge of F under ¢. By
rearranging the colors, we may assume, without loss of generality,
that ¢(F’) = {ck}. For i € [3], let u; € V(Hf/) such that u; = v
for some j € [3]. Since each H}, is k-ccritical, ¢ € [3], there exists
a k-gcoloring vk : Hi — Ci such that the only vertex colored ¢y
in H, is u;. Define yr to be the functional extension of Y, 3,
and v}

For F € F, F # F', ¢|p is a function ¢|p : F' = Ci such that
¢| (F) is not monochromatic. Thus by Lemma 9, there exists a
k-ccoloring yr : Hp — Cj such that yr(u) # ¢(ur(u)) for all
u e V(HE).

Now define v : V(G) — Ck to be the functional extension of ¢
and yr for all F € F. Although v is not a k-ecoloring of G, the
induced P,s that are monochromatic under  have an intentionally
restricted form. Let P be an induced Py of G that is monochromatic
under v. If P is contained in H%: for some F € ¥ and for some
i € [3], then P is not monochromatic under 75 and hence «. Thus
this cannot be the case and so, by Lemma 8, P contains some edge
e of SU. The only edge in SU that is monochromatic under +y
is uypup(uy), since for F € F, if F # F', then y(u) = vyr(u) #
d(ur(w)) = y(pr(u)), and if F = F', then y(F) = {cx} and the
only vertex colored ¢ in H} under v is u;. Since P is connected,
P is thus contained in Hps U M/ with only the edge uiup/ (u;)
from Mp:. The only other two vertices in Hp/ colored cx under vy
are ug and us. Thus P = ugugujpups(ug) is the only induced Py in
G that is monochromatic under 7. Therefore, G — v = G — u; has
k -ccoloring v|5_,-

O

We now turn to a completely different construction inspired by the
3-ccritical outerplanar graph of Figure 2 in [6].

74



Construction 11. For k > 1, let F be a (k+1)-critical graph with n ver-
tices, vy, ..., Un, and let H, ..., H, be disjoint k -ecritical graphs with
vertices disjoint from F. Define

G=Fu (O{vi}@Hi> ;
i=1

Note that for £ = 1, the graph G of Construction 11 is just P;. An
example of Construction 11 is drawn in Figure 4.

FIGURE 4. Example of 3-ccritical graph using Construc-
tion 11 where F is the 5-cycle and H; 2 P, i € [5].

Lemma 12. If G is a graph constructed using Construction 11, and P is
an induced Py contained in G, then either

(1) P contains an edge of F, or
(2) P is a subgraph of H; for some j € [n].

Proof. Let P be an induced Pj of a graph G. Suppose P does not contain
an edge of F. Then P is a subgraph of {v;} & H; for some j € [n]. By
Lemma 2, P is a subgraph of H;. O

Theorem 13. A graph G constructed using Construction 11 s

(k + 1) -ecritical.

Proof. Let G be a graph constructed using Construction 11.

We first prove that G is not k-ecolorable. Suppose, to the contrary, G
has a k-ecoloring 7 using colors from Ck. The restriction of v to V' (F) is
not a proper k-coloring of F' since F' is (k+1)-chromatic. Thus there exists
an edge fif; of F such that vy(f;) = 7(f;) = ¢ for some ¢; € Ck. Since H;
and H; are not (k — 1)-ccolorable, the restriction of  to either graph is
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not a (k — 1)-ecoloring, and hence H; has a vertex h; with y(hi) = ¢; and
H; has a vertex h;j with y(h;) = c;. The induced path hififjh; is a Py in
G whose vertices are all colored ¢; by 7, a contradiction. Thus no such «
exists.

We now prove that G is (k + 1)-ccolorable. The graph F' has a proper
(k + 1)-coloring ¢ using colors from Ck41 = Ck U {ck4+1}. For each H;,
i € [n], let m; be a k-ecoloring of H; using colors from Cx. We define
~(1) : V(G) = Ck41 to be the functional extension of the n+ 1 colorings ¢,
T

Let P be an induced P; of G. If P contains an edge f;f; of F', then
YO(£) = ¢(f:) # é(f;) = ¥V(f;) and thus V(P) is not monochromatic
under y(1). Otherwise, by Lemma 12(2), P is a subgraph of H; for some
j € [n] and hence V(P) is not monochromatic under 7; = 'y(l)lv (H,)" Thus

v is a (k + 1) -ecoloring of G.

We now show that G is (k + 1) -ecritical.

Consider G — v; for some @ € [n]. There exists a proper k-coloring ¢;
of F — v; using colors from Cx. We define 3 : V(G) — Cy to be the
functional extension of the n + 1 colorings ¢;, m1,...,m,. The location
of any given P, in G is such that it either contains an edge of F' or is a
subgraph of H; for some j € [n]. In either case, the set of its vertices is not
monochromatic by y(®). Thus G — v; is k-ecolorable.

Finally, consider G — v where v € V(H,) for some t € [n].

Since F is (k + 1)-critical, F has an edge incident with v;. Thus, let
e = v;v; for some s € [n], s # t. There exists a proper k-coloring € of F'—e
using colors from Cy since F is (k + 1)-critical. Every such coloring colors
vs and v; the same color. We may suppose therefore that e(vs) = ¢; = €(vz)
for some | € [k]. Let n; be a (k — 1)-ecoloring of H; — v using colors
from Cy \ {¢;}. For i € [n], i # t, let 5 = n;, as defined above. Define
v®) : V(G) = Ck to be the functional extension of the n + 1 colorings €,
771, Bas vn;r

Suppose P is an induced Py of G —v. If P is contained in H; for some
j € [n], then V(P) is not monochromatic under v® since y®) (V' (P)) =
n;(V(P)). Otherwise, by Lemma 12(1), P contains an edge of F'. Since
V(F) = V(F —e), the k-coloring € of F — e is a k-coloring of F.. Moreover,
since € is a proper k-coloring of F —e, e is the only edge of F' whose vertices
are colored the same by €. If P contains an edge of F' different from v,vy,
then V' (P) must not be monochromatic under € and hence under (3 since
v®)(V(P)) = ¢(V(P)). We may assume, therefore, that P contains only
one edge from F' and that this edge is vsv;. Since P does not contain a
3-cycle, P can contain at most one vertex of any H;, for i € {s,t}. Thus
P must contain a vertex of Hy — v. This vertex is not colored ¢; by 7(3)
since Y& (V(H; — v)) = ni(V(Hy — v)) € Cx \ {at}. Now v; € V(P) and
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43 (vt) = €(ve) = ¢ and so V(P) is not monochromatic under v, Hence
~®) is a k-ecoloring of G — v.
Therefore G is (k + 1) -ecritical.

O

Since the 3-critical graphs are simply odd cycles and the only 2-¢critical
graph is Py, every 3-ccritical graph G from Construction 11 has 15 + 10s
vertices for some s > 0 and is not only planar but also outerplanar. Thus,
every 4-ecritical graph from Construction 11 is planar when 3-ecritical
graphs H; are produced from Construction 11 as well, and the 4-critical
graph F is chosen to be planar (e.g. F = Kj, amongst many others).
Using Construction 11 with F' as an odd-wheel on 2(a + 1) vertices (a 4-
critical planar graph) produces 4-ccritical planar graphs with 32(a+1)+10b
vertices, a > 1, b > 0. Starting with F' as a 4-critical planar graph on 7
vertices, Construction 11 produces 4 -ecritical planar graphs on 112 + 10b
vertices, b > 0. Thus there are 4-ccritical planar graphs on 2t vertices for
all t > 76.

The 3 -ccritical planar graphs produced using Construction 11 have many
triangles. There do exist, however, 3-ecritical planar graphs that have no
triangles (i.e. see the construction for 3-ecchromatic triangle-free planar
graphs of [5]).

ACKNOWLEDGEMENTS

The second author’s M.Sc. thesis [10] contains many of the results found
here.

REFERENCES

[1] J.I. Brown and D. G. Corneil. On generalized graph colourings. J. of Graph Theory,
11:87-99, 1987.

[2] G. Chartrand, D. P. Geller, and S. Hedetniemi. A generalization of the chromatic
number. Math. Proc. Cambridge Philos. Soc., 64(02):265, 1968.

[3] E. J. Cockayne. Colour classes for r-graphs. Canad. Math. Bull., 15(3):349-354,
1972.

[4] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs.
Discret. Appl. Math., 3:163-174, 1981.

[5] P. Dorbec, M. Montassier, and P. Ochem. Vertex partitions of graphs into cographs
and stars. J. Graph Theory, 75(1):75-90, 2014.

[6] J. Gimbel and J. Ne3etfil. Partitions of graphs into cographs. Discrete Math.,
310(24):3437-3445, 2010.

[7) M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete
Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Nether-
lands, 2004.

[8] C. M. Mynhardt and I. Broere. Generalized colorings of graphs. In Graph Theory
with Applications to Algorithms and Computer Science, pages 583-594. John Wiley
& Sons,Inc., New York, NY, USA, 1985.

77



[9] B. Toft. On Colour-critical hypergraphs. In A. Hajnal, R. Rado, and V. Sés, editors,
Infin. Finite Sets, volume 10, pages 1445-1457. North-Holland Publ. Co., 1975.
[10] P. Zhang. A study on generalized solution concepts in constraint satisfaction and
graph colouring. Master’s thesis, University of British Columbia, 2014.

78



