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Abstract

Let G be a graph and aj,...,as; be positive integers. The
expression G = (a1,...,as) means that for every coloring of the
vertices of G in s colors there exists 7 € {1, ..., s} such that there is
a monochromatic a;-clique of color i. The vertex Folkman numbers
F,(a1,...,as;q) are defined by the equality:

Fy(a1,...,as;q) = min{|V(G)| : G 5 (a1, ...,a;s) and K, Z G}.

S
Let m = 5 (ai — 1) + 1. It is easy to see that F,(a1,...,as;q) =m
i=1
if g > m+ 1. In [11] it is proved that F,(ai,...,as;m) = m +
max{ai,...,as}. We know all the numbers F,(a1,...,as;m — 1)
when max{ai,...,as} < 5 and none of these numbers is known
if max{ai,...,as} > 6. In this paper we present computer
algorithms, with the help of which we compute all Folkman numbers
F,(ai,...,as;m — 1) when max{ai,..,a;} = 6. We also prove
that Fy(2,2,7;8) = 20 and obtain new bounds on the numbers

F,(a1,...,as;m — 1) when max{a1,...,as} = 7.
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1 Introduction

Only finite, non-oriented graphs without loops and multiple edges are
considered in this paper. G; 4+ G, denotes the graph G for which
V(G) = V(G1) U V(G;y) and E(G) = E(G;) UE(G2) U E', where E' =
{[z,y] : z € V(G1),y € V(G2)}, i.e. G is obtained by connecting every
vertex of G; to every vertex of G3. All undefined terms can be found
in [32).

Let aj,...,as be positive integers. The expression G 2) (a1,...,a,)
means that for any coloring of V(G) in s colors (s-coloring) there exists
i € {1,...,s} such that there is a monochromatic a;-clique of color i. In
particular, G 5 (a;) means that w(G) > a;. Further, for convenience,

v,

instead of G 5 (2,..,2) we write G = (2,) and instead of G 3
N i’

T

(2,...,2,a1, ..., a5) we write G 2 (2, a1, ...,as).

lr)eﬁne:

H(a1,519) = {G: G 5 (a1,.,a,) and w(G) < g

H(a1, . a;g;n) = {G : G € H(a1,.., a4 ) and | V(G)| = n}

The vertex Folkman number F,(ay, ..., as;q) is defined by the equality:

Fy(ay,...,as;q) = min {| V(G)| : G € H(a1,---,as;q)} -

The graph G is called an extremal graph in H(a1,...,a,;q) if
G € H(ai,..,as;9) and |V(G)| = Fy(ay,.,as;q). We denote by
Heztr(ai, ..., as;q) the set of all extremal graphs in H(ay, ..., as; q).

- We say that G is a maximal graph in H(ai,..as;q) if G €
H(a1,.-,as;9) but G + e ¢ H(ai,...,as;9),Ye € EG), ie. w(G + e) =
g,Ve € E(G). G is a minimal graph in H(ay, ..., as;q) if G € H(ay, ..., a4;q)
but G —e & H(a1, ..., as; q), Ve € E(G), i.e. G—e A (a1,...,as),Ve € E(Q).

For convenience, we also define the following term:

Definition 1.1. The graph G is called a (+K¢)-graph if G + e contains a

new t-clique for all e € E(G).

Obviously, G € H(az,...,as;q) is a maximal graph in H(ay,...,as;q) if
and only if G is a (+K,)-graph. We shall denote by Hk,(a1,...,as;q)
the set of all (+Kt)'graphs in H(ala---)as;Q)a and by Hmam(ala---,as;Q)
all maximal K-free graphs in this set. The sets H g, (a1, .-, as;q; n) and
Hmaz (a1, ..., as;q;n) are defined in the same way as H (a1, ..., as;q; n).

Remark 1.2. In the special case s =1 we have
H(a1;4;n) = {G : a1 Sw(G) < q and | V(G)| = n}.

214



Ifay<n<q-1then K, € Hmaz(a1;q;n), and if n > q—1 > ay, then
Hmaz(a1; g 1) = Hmaz(q — 1;¢;n).

Folkman proves in (8] that:
(1.1) F,(a,...,as;q) exists < ¢ > max {aj,...,a,}.

Other proofs of (1.1) are given in (7] and (14]. In the special case s = 2,
a very simple proof of this result is given in [22] with the help of corona

product of graphs.
Obviously Fy (a1, ..., as; q) is a symmetric function of ay, ..., as, and if a; = 1,

then
Fv(ah "'aas;q) = Fv(aly vy @i—1yAj41y .0y Qg Q)

Therefore, it is enough to consider only such Folkman numbers
F,(a1,...,as;q) for which

(1.2) 2<81 L. L0,

We call the numbers F,(ay, ..., as;q) for which the inequalities (1.2) hold
canonical vertex Folkman numbers.
In [15] for arbitrary positive integers ai,...,as the following terms are

defined

(1.3) m(ai,...,as) =m = Z(ai —1)+1 and p=max{a,..,as}.
i=1

It is easy to see that K, — (a1, ..., a,) and Km_1 5 (ay, ..., as). Therefore
Fy,(a1,....,as;9) =m, q>m+1
The following theorem for the numbers F, (a1, ..., as;m) is true:

Theorem 1.3. Let ay, ..., a5 be positive integers and let m and p be defined
by the equalities (1.3). If m > p+ 1, then:

(a) Fy(ai,...,as;m)=m+p, [15],[14].

(b) Km+p = 02p+1 = Km—p—l 3 _52P+1
is the only extremal graph in H(a1,...,as;m), [14].

The condition m > p + 1 is necessary according to (1.1). Other proofs
of Theorem 1.3 are given in [24] and [25].
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Very little is known about the numbers F,(ay,...,as; m —1). According
to (1.1) we have

(1.4) Fy(ay,...,as;m — 1) exists & m > p+ 2.
The following bounds are known:
(1.5) m+p+2 < Fy(ay,....,a5;m —1) < m+ 3p,

where the lower bound is true if p > 2 and the upper bound is true if p > 3.
The lower bound is obtained in [24] and the upper bound is obtained in [12].
In the border case m = p + 2 the upper bounds in (1.5) are significantly
improved in [31].

When p = max {ay,...,as} < 5 we have

m+4, ifp=2andm >6, [20]
m+6, ifp=3andm >6, [26]
m+7, ifp=4andm >6, [26]
m+9, ifp=5andm>7, [1].

(1.6) PB4, T = 1) =

In the cases p = 2 and p = 3 we also know the numbers: F,(2,2,2;3) = 11,
(18] and [4], Fy(2,2,2,2;4) = 11, [21] (see also [23]), F\(2,2,3;4) = 14,
[24] and [5], F\u(3,3;4) = 14, [19] and [27]. These numbers and the
numbers (1.6) are all the numbers in the form Fy(ay,...,as;m — 1) when
max {ai,...,as} < 5. We do not know any of these numbers when
max {a1,...,as} > 6. In [1] we prove that

(1.7) m+9 < Fy(ay,...,as;m —1) <m+ 10,

when max{ay,...,as} = 6.

In this paper we present two computer algorithms (Algorithm 3.4 and
Algorithm 3.7) for finding all maximal graphs in.#H(as,...,as;¢;n). With
the help of these algorithms we obtain the following results:

Theorem 1.4. Let ay,--.,as be positive integers, such that

2<a; <. <as =6,

and m = i(ai—1)+128. Then

i=1
(a) Fy(a1,...,as;m—=1)=m+9, ifa; =... =a;—1 =2.

(b) Fy(a1,...,as;m —1) =m+10, if as—1 > 3.
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We obtain the following bounds on numbers of the form Fy(a,,...,a,;7)
where max {ay,...,a,} = 6:
Theorem 1.5. Let ay,..,a, be positive integers such that

max {ay,..,as} =6 andm = 3" (a; —1)+129. Then
i=1

Fy(a1,..,as;7) > Fy(2m-6,6;7) > 3m — 5.

In particular, F,(6,6;7) > 28.

Theorem 1.6. Let ay,..,a;, be positive integers such that
8
max {a1, @} =6 andm =73 (a;—1)+1. Then:
i=1

(a) 22 < Fy(a1,...,as;7) < Fy(4,6;7) <35 if m = 9.

(b) 28 < {61y 85 7) < Fy,(6,6;7) £ 70 of m = M.

We also obtain the following results related to the numbers
F,(ai,...,as;m — 1) where max {a1,...,as} = 7.

Theorem 1.7. F,(2,2,7;8) = 20.

Theorem 1.8. Let aj,..,as be positive integers, such that

max {a1,..,as} =7 andm = ) (a;=1)+1>9. Then
1=1

m+10 < Fy(ai,...,as;m — 1) <m + 12.

Remark 1.9. According to (1.4) the condition m > 8 from Theorem 1.4
and the condition m > 9 from Theorem 1.8 are necessary.

This paper is organized in sections. In the first section the necessary
definitions are given, an overview of the known results is provided and
at the end we formulate the obtained new results. In the second section
we formulate some auxiliary propositions. In the third section we present
computer algorithms for finding the maximal graphs in H(ai, ..., as; g;n).
In the fourth section we find all extremal graphs in #(2, 2, 6; 7) and compute
the numbers F,(2,2,6;7) = 17 and F,(3,6;7) = 18. In the fifth section
we prove Theorem 1.4 (a), and in the sixth section we prove Theorem 1.4
(b). In the seventh section we find all graphs in #(2,2,6;7;18) and we
prove Theorem 1.5 and Theorem 1.6. In the eight section we show that
F,(2,2,7:8) = 20 (Theorem 1.7) and we find some extremal graphs in
H(2,2,7;8). In the last ninth section we prove Theorem 1.8.
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This paper has a previous version (arXiv:1512.02051). In the current
version we use new faster algorithms with the help of which we reproduce
the results from the previous version and we also prove new theorems
(Theorem 1.5, Theorem 1.6, Theorem 1.7 and Theorem 1.8).

2 Some auxiliary results

Let ay,...,as be positive integers and m = i(ai — 1) + 1. Obviously, if
a; >t > 2, then =

(2.1) G 3(a1,.85) = G D (a1, 8i1, 1,85 =t + 1, 8441, -1 Cs).

By repeatedly applying (2.1) we obtain

2.2) - G 3 (a1, 05) = G (2n-1).

Since G > (2m-1) € X(G) > m, from (2.2) it follows

(2.3) G5 (a1, a) = X(G) > m.[25]

This fact will be necessary in the proof of Theorem 6.1. Very simple
examples of graphs for which equality is reached in (2.3) are obtained in

[22].
Conjecture 2.1. If G € Hezir(ay,...,as;m — 1), then x(G) < m+ 1.

For all known examples of extremal graphs, including the extremal
~ graphs obtained in this paper, this inequality holds.

Let the numbers a1, ..., as satisfy the inequalities
P<S ay S°5.%05 = D
As before, by repeatedly applying (2.1) we obtain that if a;_; > 3
(2.4) G 3 (a1:-+18s) = G 2 (2m=p-2,3,D),
and therefore it is true that
(2.5) Fy(2m-p-2,3,p;m — 1) < Fy(a1,...,a5;m — 1).

Further, we will use the following obvious
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Proposition 2.2. Let G be a graph, G 5 (ay,...,a,) and A C V(G) be an
independent set. Then if a; > 2

v
G-A- (alv vy Qi—1y Q4§ — laai+la ...,(l_,).

Let G € H(ay,...,as;m — 1;n) and A be an independent set of vertices
of G such that |A| = a(G). According to Proposition 2.2, G — A € H(a; -
1,..,a5;m — 1;n — |A]) and by Theorem 1.3, n — |A| > m — 1 + p. Thus,
we proved

(2.6) G e H(ar,..,as;m—1Lin) = a(G) <n-m-p+1.
We will also need the following improvement of the lower bound in (1.5)

Theorem 2.3. [26] Let a1, ..., a, be positive integers, let m and p be defined
by the equalities (1.3), p >3 and m > p+ 2. If F,(2,2,p;p+1) > 2p+5,

then
Fy(a1,..,as;m—1)>m+p+3.

3 Algorithms

In this section we present algorithms for finding all graphs in
Hmaz(ay,...,as;g;n) with the help of a computer. The remaining graphs
in H(a1,...,as;q;n) can be obtained by removing edges from the maximal
graphs. The algorithms are modifications of the algorithm from (3].
However, we will present them in detail since they are essential to this
paper. The idea for these algorithms comes from [27] (see Algorithm Al).
Similar algorithms are used in [5], [33], [13], [29], [1] and [2]. Also with the
help of a computer, results for Folkman numbers are obtained in [9], [31],
[30] and [6]. Let us also note the important role of the nauty programs [17]
in this work. We use them for fast generation of non-isomorphic graphs
and graph isomorph rejection.

Let 2 <a; < ... < a, = p be positive integers, m = i(ai —1)+1, and

i=1

let G € H(ay,...,as;m — 1;n),n > m — 1. It is clear that o(G) > 2, and
according to (2.6), a(G) < n—m—p+1. As we will see further in the proofs
of the results of this paper, it is computationally most difficult to obtain
the graphs G for which a(G) = 2. Therefore, first we present in detail the
Algorithm 3.4 for finding all graphs G € Hmaz(a1,...,as;m — 1;n) with
a(G) = 2, even though it is a special case of the more general Algorithm
3.7. Algorithm 3.4 is based on the following propositions, which are easy

to prove:
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Proposition 3.1. Let G € Hmaz(a1,...,as;q;n), A be an independent se;
of vertices of G and H = G—A. Then H € Hyk, ,(a1—1,...,as;q;n—|A]),

Proof. According to Proposition 2.2, G — A € H(a; — 1,...,as;q;n — |A|).
From the maximality of G it follows that G — A is a (+K,-1)-graph. Q

Proposition 3.2. Let G be a mazimal K,-free graph and vi,vy be
non-adjacent vertices of G. Then
Kq_2 ([ NG(’Ul) N NG('UQ).

Proposition 3.3. Let G be a graph, vi,vs be non-adjacent vertices of G
and H = G — {v1,v2}. Then a(G) = 2 if and only if the following three
conditions are satisfied:

(a) a(H) < 2.

(b) a(H — Ng(vj)) < 1, j = 1,2, i.e. either Ng(v;) = V(H) or
H — Ng(vj) is a clique.

(¢c) Ng(v1) U Ng(v2) = V(H).

Further, we will prove the more general Proposition 3.6.
Now, we formulate the first of the two important algorithms in this
paper which finds all graphs G € Hnaz(0a1, ..., 855 ¢; n) With a(G) = 2.

Algorithm 3.4. The input of the algorithm is the set A of all graphs
in Hmaz(ar — 1,...,a5;q;n — 2) with independence number not greater
than 2. The output of the algorithm is the set B of all graphs G €
Hmaz(a1,...,as;q;n) with o(G) = 2.

1. By removing edges from the graphs in A obtain the set

A'={H e NHyk, (a1 —1,..,a5;q;n - 2) : o(H) < 2}.

2. For each graph H € A’':

2.1. Find the family M(H) = {M,,..., M:} of all mazimal K,_;-free
subsets of V(H).

2.2. Find all pairs N = {Mil, M;,} of elements of M(H) (it is possible
that M;, = M, ), which fulfill the conditions:

(a) Kq._2 € Mi1 N Miz-

(b) a(H_Mij) <1 j5=12

(¢c) M;, UM;, =V(H).

2.3. For each pair N = { ir» M, } of elements of M(H) found in step
2.2 construct the graph G = G(N) by adding new non-adjacent vertices
v1,v2 to V(H) such that Ng(v;) = Mi;,j = 1,2. If w(G +e) = q,Ve €

E(G), then add G to B.
3. Remove the isomorph copies of graphs from B.
4. Remove from the obtained in step 3 set B all graphs G for which

G 72') (a'la veey as)
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Theorem 3.5. [/ After the execution of Algorithm 3.4, the obtained set B
coincides with the set of all graphs G € Hpaz(ay, ..., a4;q; n) with a(G) = 2.

Proof. Suppose that after the execution of Algorithm 3.4 the graph G € B.
Then, G = G(N) where N and the following notations are the same as in
step 2.3. Since H = G—{v1,v3} € A’, we have w(H) < q. Since Ng(v;) and
Ng(vy) are K,_;-free sets, it follows that w(G) < q. The check at the end
of step 2.3 guarantees that G is a maximal K,-free graph and the check in
step 4 guarantees that G =) (ayy...,as), therefore G € Hmaz(ay, ..., as; q;n).
Again, by H € A’, we have a(H) < 2 and from the conditions (b) and (c)
in step 2.2 and Proposition 3.3 it follows that a(G) = 2.

Let G € Hmaz(a1,...,a5;¢;n) and a(G) = 2. We will prove that, after
the execution of Algorithm 3.4, G € B. Let vy, vy be non-adjacent vertices
in G and H = G — {v1,v2}. Then a(H) < 2 and according to Proposition
3.1, H € A'. Since G is a maximal K,-free graph, Ng(v1) and Ng(vz) are
maximal K,_,-free subsets of V(H), and therefore Ng(v;) € M(H),i =
1,2 (see step 2.1). Let N = {Ng(v1), Ne(v2)}. By Proposition 3.2, N
fulfills the condition (a), and by Proposition 3.3, N also fulfills (b) and
(c). Thus, we showed that N fulfills all conditions in step 2.2, and since
G = G(N) is a maximal K -free graph, in step 2.3 G is added to B. Clearly,
after step 4 the graph G remains in B. O

We shall now generalize Algorithm 3.4 to find all graphs G ¢
Hmaz(@1,--yas;m — 1;n) for which 7 < a(G) < t. We will need the
following proposition, which is a generalization of Proposition 3.3 (in the
special case t = 2, when G is not a complete graph Proposition 3.6 coincides

with Proposition 3.3).

Proposition 3.6. Let A be an independent set of vertices of G and H =
G= A Then, :

o(G) <t e a(H —U,ea No(v)) <t —|A'|, VA' C A.
Proof. Let a(G) < t. Suppose that for some A’ C A we have a(H —
L 2a Ng(v)) > t — |A/|. Consequently, there exists an independent set

A" of vertices of H — J,¢ 4 Ne(v) such that |A”| > t — |A’|. We obtained
that the independent set A’ U A” has more than ¢ vertices, which is a

contradiction. i
Now, let a(H = U, No(v)) <t —|A'|, VA" C A. Let A be an

independent set of vertices of G and |A| = a(G). Then, A = AjUA; where
A; C A and A; is an independent set in H — Uue A Ng(v). Since |Az| £

a(H~U,ea, No(v)) < t—|Ai], we obtain a(G) = |A| = |Ay|+|4g| <t. O

Now we move on to the formulation of the second important Algorithm
3.7, which is a generalization of Algorithm 3.4 and finds all graphs G €
Hmaz(a1, - as;¢;n) with r < a(G) < t.
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Algorithm 3.7. The input of the algorithm is the set A of all graphg
in Hmaz(a1 — 1,...,as;¢;n — r) with independence number not greater
than t. The output of the algorithm is a set B of all graphs G e
Hma:r(ala vy Qs G, n) with r < a(G) St

1. By removing edges from the graphs in A obtain the set

A ={HeHyk,_ (a1 —1,...,a5;¢;n—7) : a(H) < t}.

2. For each graph H € A':

2.1. Find the family M(H) = {My,..., Mi} of all mazimal K,_,-free
subsets of V(H).

2.2. Find all r-element multisets N = {M;,,M;,,..., M, } of elements
of M(H), which fulfill the conditions:

(a) Kq—o € M;; N M;, for every M;,, M;, € N.

(b) a(H — Uy, ene Mi;) <t —|N'| for subtuple N* of N.

2.3. For each r-element multiset N = {M;,, M;,,....,M; } of elements
of M(H) found in step 2.2 construct the graph G = G(N) by adding new
independent vertices v1,Va,...,v, to V(H) such that Ng(v;) = M;;,j =
1,..,r. Ifw(G+e)=gq,Vee€ E(G), then add G to B.

3. Remove the isomorph copies of graphs from B.

4. Remove from the obtained in step 3 set B all graphs G for which

G 7’2') (al, nicy as).

Theorem 3.8. [3] After the exzecution of Algorithm 3.4, the obtained set
B coincides with the set of all graphs G € Hmaz(01,..,8s;q;n) with r <
a(G) <t.

Proof. Suppose that after the execution of Algorithm 3.7, G € B. In
the same way as in the proof of Theorem 3.5, we prove that G €
Hmaz(ai,...,as;q). From Proposition 3.6 and the condition (b) in step
2.2 it follows that a(G) < t, and step 2.3 guaranties that a(G) > r.

Now let G € Hmaz(ai,..,as;q;n), ¥ < a(G) < t, let A be an
independent set of r vertices of G and H = G — A. Then obviously,
a(H) < t and according to Proposition 3.1, H € A’ (see step 1). By
repeating the reasoning of the second part of the proof of Theorem 3.5, we
prove that after the execution of Algorithm 3.7, G € B. O

At the end of this section, we will propose a method to improve
Algorithm 3.4 and Algorithm 3.7 which is based on the following

proposition which is easy to prove:

Proposition 3.9. Let G € H(2,2,p;p+ 1) and v € V(G). Then, all
non-neighbors of v induce a graph with chromatic number greater than 2.
In particular, from G € H(2,2,p;p+1) it follows that A(G) < | V(G)| — 4.

As we will see further (see Table 1 and Table 2), the inequality
A(G) < | V(G)| —4 is exact. In some special cases, for example the proofs
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of Theorem 4.3, Theorem 7.1 and Theorem 1.7, we can use the inequality
A(G) < | V(G)| - 4 to speed up computations in some parts of the proofs.
We used this inequality only to make sure that the obtained results are

correct.

All computations were done on a personal computer. The proofs of
Theorem 7.1 and Theorem 1.7 were the most time consuming, each taking

about a month to complete.

4 Finding all graphs in H(2,2,6;7;17) and
computation of the numbers Fy(2,2,6;7)
and Fy(3,6;7)

Let ay,...,as be positive integers and let m and p be defined by (1.3).

According to (1.4), Fy(a1, ...,as;m—1) exists if and only if m > p42. In the

border case m =p+2, p > 3, there are only two canonical numbers in the

form Fy(aj,...,as;m — 1), namely F,(2,2,p;p+1) and F,(3,p;p+1). The

computation of the numbers F,(ay, ..., a;;m—1) when max {ay, ...,as} = 6,

i.e. the proof of Theorem 1.4, will be done with the help of the numbers
F,(2,2,6;7) and F,(3,6;7). Because of this, we will first compute these

two numbers by proving
Theorem 4.1. Fy(2,2,6;7) =17 and F,(3,6;7) = 18.

From (2.1) it is easy to see that
G = (3,p) = G = (2,2,p)

and therefore F),(2,2, p; p+1) < Fy(3,p;p+1). In [11] the following problem
is formulated:

Problem 4.2. [11] Does there exist a positive integer p for which
Fy(2,2,pp+1) # F,3,pp+1)?

Theorem 4.1 gives a positive answer to Problem 4.2. Since
Fy(2,2,pp+1) = F,(3,p;p+1), p<5

(see [1]), it becomes clear that p = 6 is the smallest positive integer for
which
Fy(2,2,p;p+1) # Fy(3,pp+ 1)

For the proof Theorem 4.1 we will need the following
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Theorem 4.3. |H(2,2,6;7;17)] = 3 and W, (2,2,6:7)
H(2,2,6;7;17) = {G1,Gy,Gs) (see Figure 1).

Proof. We will find all graphs in #(2,2,6;7;17) with the help of a
computer. Let G € H(2,2,6;7;17). Clearly a(G) > 2, and according
to (2.6), a(G) < 4.

First, we prove that there are no graphs in Hpm,,(2,2,6;7;17) with
independence number 4. According to Theorem 1.3, C 3 is the only graph
in H(2,6;7;13). Starting from Hm..(2,6;7;13) = {513}, by applying
Algorithm 3.7 (r = 4;t = 4) we do not obtain any graphs, and from
Theorem 3.8 it follows that there are no graphs in Hmax(2,2,6;7; 17) with
independence number 4.

Now, we shall prove that there are no graphs in Hma.(2,2,6;7;17)
with independence number 3. It is clear that Kg is the only graph in
Humaz(3;7;6). Starting from Hmaz(3;7;6) = {Ke} by applying Algorithm
37 (r =2t = 3) we obtain all graphs with independence number not
greater than 3 in Hraz(4;7;8). In the same way, we successively obtain all
graphs with independence number not greater than 3 in Hmaz(5;7; 10),
Humaz(6;7;12), Hmaz(2,6;7;14). In the end, no graphs are produced
by applying Algorithm 3.7 (r = 3;t = 3) to the obtained graphs in
Homaz(2,6;7;14) with independence number not greater than 3, and from
Theorem 3.8 we conclude that there are no graphs in Hmaz(2,2,6;7;17)
with independence number 3.

The last part of the proof is to find all graphs in Hmaz(2,2,6;7;17)
with independence number 2. It is clear that K7 — e is the only graph
in Mmaz(3;7;7). By applying Algorithm 3.4 we successively obtain
all graphs with independence number 2 in Hpmaz(4;7;9), Hmaz(5;7;11),
Hmaz(G; ¢ 13)a Hmaz(2a6; 1§ 15) and Hmam(2a2)6; 7 17)- As a result,
we obtain the graph Gi € Hpmez(2,2,6;7;17), which is shown on
Figure 1.  According to Theorem 3.5, G; is the only graph in
Homaz (2,2, 6;7;17) with independence number 2. Since there are no graphs
in Hmaz(2,2,6;7;17) with independence number greater than 2, we proved
that Himaz(2,2,6;7;17) = {G;}

The number of maximal K7-free graphs and (+Kg)-graphs obtained in
each step of the proof is shown in Table 3. By removing edges from G,
we find that there are only two other graphs in H(2,2,6;7;17), which we
will denote by G, and G3 (see Figure 1). Let us also note, that G, D
G, D G3 and for the graphs G;, G, and G3 the inequality (2.3) is strict
(see Conjecture 2.1). It is clear that G3 is the only minimal graph in
H(2,2,6;7;17). Some properties of the graphs G1, G2 and Gj are given in
Table 1. From (1.7) (m = 8,p = 6) we obtain

(4.1) 17 < Fy(2,2,6,7) < Fy(3,6;7) < 18,
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The inequality Fy,(2,2,6;7) > 17 also follows from the fact, that the graphs
Gy, G2 and G3 have no isolated vertices. The inequality Fy(3,6;7) < 18

was first proved in [31].
From (4.1) it follows Hezer(2,2,6;7) = H(2,2,6;7;17) = {G1,G2,Gs}.

Thus, we finish the proof of Theorem 4.3. O
Graph | [E(C)] [ 3(G) [ A(C) [ &(C) [ x(C) | [A+(O)
Gy 108 12 13 2 9 2
G, 107 11 13 2 9 4
G; 106 11 13 2 9 40

Table 1: The graphs in #(2,2,6;7;17) and some of their properties

Proof of Theorem 4.1

The equality Fy(2,2,6;7) = 17 follows from Theorem 4.3. According to
(4.1), it remains to be proved that F,(3,6;7) # 17. Since H(3,6;7) C
H(2,2,6;7) (see (2.1)), but G; & H(3,6;7), we come to the conclusion that
H,(3,6;7;17) = 0 and F,(3,6;7) = 18. O

5 Proof of Theorem 1.4 (a)

We will do the proof with the help of the following
Theorem 5.1. [1] Let ro(p) = 14 be the smallest positive integer for which

min {Fy(2,p;7 +p—1) =1} = F, (20,575 +p — 1) — 7.

Then:

(a) Fy(2r,p;7+p—1)=FQ2u,p;r0+p—1)+1—10, 72>

(b) if ry =2, then
Fy(2r,psr+p—1)=F,(2,2,p;p+1) +7r—-2, 1722

(c) if rg > 2 and G is an extremal graph in H(2-;,p;ro +p — 1),
then G 5 (2,75 +p —2).

(d) 7o < Fy(2,2,p;p+ 1) — 2p.
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Theorem 5.1 is proved in [1] as Theorem 5.2. We will note that the
proof of Theorem 5.1 is analogous to that of Theorem 6.1 from this paper,
In relation to Theorem 5.1(b) in (1] we formulate

Conjecture 5.2. Ifp > 4, then

l;n>1121 {F"(Qr’p; r4p=1)- 7'} =Fy(2,2,p;p + 1) -3

and therefore
F,2.pir+p-1)=F,2,2,p;p+1)+r-2, r>2

It is not difficult to see that Conjecture 5.2 is true if and only if the
sequence {Fy(2r,p;7 + p — 1)} for fixed p is strictly increasing with respect
to r > 2. Since Fy,(2,2,3;4) = 14 (24 and [5], and F,(ay,...,a5;m — 1) =
m + 6, if p = 3 and m > 6 [26], we have ry(3) = 3. Since F,(2,2,4;5) = 13
[26], from Theorem 5.4 it follows that r5(4) = 2. The equality r4(5) = 2 is
also true, but it does not follow from Theorem 5.4. It is proved with the
help of a computer in [1] as Theorem 6.1. Therefore, Conjecture 5.2 is true
when p =4 and p = 5. We will prove that when p = 6 Conjecture 5.2 is
also true. More specifically, we will prove

Theorem 5.3. 74(6) = 2 and therefore Fy(2,,6;7 +5) =7 +15, > 2.
Before proving Theorem 5.3 we will prove

Theorem 5.4. Let F,(2,2,p;p+ 1) < 2p+5. Then ry(p) = 2 and
Forpr+p-1)=F(2,2,pp+1)+7 -2, 7 2 2.

Proof. From Theorem 5.1(b) it follows that it is enough to prove the
equality 75(p) = 2. According to (1.5), Fy(2,2,p;p + 1) > 2p + 4.
Therefore, only the following two cases are possible:

Case 1. F,(2,2,p;p+1) = 2p + 4. According to (1.5)
Fy,2n,pr+p—1)2>2m+p+2=r+2p+2.
Therefore,
Fv(zrap;r‘*‘P—l) -7 2 2P+2 =Fv(2’2ap;p+1) —27 T > 2a
and we have r(p) = 2.
Case 2. F,(2,2,p;p+1) = 2p + 5. From Theorem 2.3 we have
F,(2;,p;r+p—1)27+2p+3, r > 2. From this inequality we obtain
Fo2r,p;r+p—1)—r2>2p+3=F,(2,2,p;p+1) -2, r > 2.
Therefore, in this case we also have 7j(p) = 2. a

Remark 5.5. It is unknown whether the first case is possible, i.e. if
F,(2,2,p;p+1) =2p+4 for some p. If p < 7 this equality is not true.
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Proof of Theorem 5.3

According to Theorem 4.1, F,(2,2,6;7) = 17. From this fact and Theorem
5.4 we obtain r}y(6) = 2 and the equality Fy,(2r,6;7+5) =7r+15, r>2. O

Proof of Theorem 1.4 (a)

Since a; = ... = a,—1 = 2 and a, = 6 we have m = s + 5 and therefore
Fy(ay,...,as;m —1) = F,(2,-1,6;m — 1) = Fy(2/m—-6,6;m — 1).
From Theorem 5.3 it now follows that Fy(aj,...,as;m—1) =m + 9. 0

6 Proof of Theorem 1.4 (b)

We will need the following

Theorem 6.1. Let r{(p) = r§ be the smallest positive integer for which
min {F,(2,,3,p;7 +p+1) —r} = Fuy(2,7,3,p;70 +p+1) —7g
Then

(a) Fo(2r,3,p57 +p+1) = F(2,3,p;m0 +p+1)+r—15, 7>17.

(b) if rg =0, then
Fv(2r,3,P,T+p+1)=Fv(3,p;p+1)+7‘, 7'20

(c) ifrg > 0 and G is an extremal graph in H(2.y,3,p;70 +p+ 1),

then G 3 (2,74 +p).
(d) 7o < Fy(3,pp+1) —2p—2.

Proof. (a) According to the definition of r§ = r{(p) we have

Fy(2:,3,p;7 +p+1) > Fy(2,0,3, 0570 +p+1) +7—15, 7 2 0.
Now we will prove that if r > 7§ the opposite inequality is also true. Let
us note that if G 3 (ay, ...,as), then K1 + G 3 (2,a1,...,a5). It follows

(61) G 1) (Cbl, ...,a_g) = Kt +G —v> (2t,a1, ...,as).

Let G € Hextr(2ry,3,p;70 +p+1). Then from (6.1) it follows that Kr_ry +

G e H(23,p;7+p+1), 7 >75. Therefore
Fy(2r,3,p;m+p+1) < | V(Krry +G)| = Fu(2ry, 3, o +p+ 1) +7 —

1) /"
To, T >Tg-
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Thus, (a) is proved.
(b) If r§(p) = 0, then obviously the equality (b) follows from (a).

(c) Assume the opposite is true and let G be an extremal graph in
H (20,3, p;rg +p+1), such that V(G) = ViUV, where V) is an independent
set and Va does not contain (rf + p)-clique. We can assume that V; # 0.
Let Gy = G[Vo) = G = Vi. Then w(Gy) < rg + p and since rg > I,
from Proposition 9.2 it follows that Gy — (207-1,3,p). Therefore G, €
H(2r”-—la3 PiTo +p) and

V(@) - 12 |VG1) 2 Byl 3 +1)
Since | V(G)| = (2r~,3 p;r4 + p+ 1) we obtain

Fu(2r“—-la3p) +p) ( —1)<F( r"13p1 +P+1)—7'6"
which contradicts the deﬁmtlon of rg

(d) According to (1.5) Fy,(3,p; p+ 1) > 2p + 4 and therefore in the case
rg = 0 the mequahty holds. Let r§ > 0 and G be an extremal graph in
H (2,3, P75 +p+1). According to (2.3)

(6.2) X(G) > 78 +p+2.

According to (c) and Theorem 1.3
| V(G)| 2 2rg +2p+1
Since X(Cgr"+2p+1) =714 +p+1, from (6.2) it follows G # Cg,n+2p+1 By
Theorem 1. 3(b)
IV(G)I— (21,3, pirh +p+1)>2rf +2p+2.
Since 7§ > 0, we have
F, (2,::,3 prg +p+1) -5 < Fy(3,p;p+1).
From these inequalities we can easily see that
e < Fy(3,pp+1)—2p-2. O

Since F,(3,3;4) = 14, from (1.6) we obtain r{(3) = 1. Also from (1.6)
we see that 75(4) = 0 and 75 (5) = 0. We suppose the following conjecture
is true

Conjecture 6.2. Ifp > 4, then
min {F,(2,,3,p;r +p—1) -1} = F,(3,p;p + 1),
and therefore
F(2,3,pr+p+1) = B3, pp+1) +1.

It is not difficult to see that Conjecture 6.2 is true if and only if
the sequence {F,(2,,3,p;7 + p+ 1)} for fixed p is strictly increasing with
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respect to . We will prove that when p = 6 Conjecture 6.2 is also true.
The Theorem 1.4 (b) follows easily from this fact.

Theorem 6.3. rj(6) =0.

Proof. From Theorem 6.1 (d) we obtain rj(6) < 4. Therefore we have to
prove rj(6) # 1, r§(6) # 2 and r/(6) # 3. Since F,(3,6;7) = 18, we
have to prove the inequalities F,(2,3,6;8) > 18, F,(2,2,3,6;9) > 19 and
Fy(2,2,2,3,6;10) > 20. We will prove these inequalities with the help of
a computer. From (6.1) (t = 1) it is easy to see that Fyy(2,-1,3;p) + 1 >
Fy(2,,3;p+ 1) and therefore it is enough to prove F,(2,2,2,3,6;10) > 20.
We shall present the proof of this inequality only, but we also checked the
other two inequalities in the same way with a computer in order to obtain
more information, which is presented in Appendix A.

Similarly to the proof of Theorem 4.3, we shall use Algorithm 3.4 and
Algorithm 3.7 to prove that #(2,2,2,3,6;10;20) = §. According to (2.6),
there are no graphs in #(2,2,2,3,6;10;20) with independence number
greater than 4.

By Theorem 1.3, K3 + C13 is the only graph in #(2,2,3,6;10; 16).
Starting from Hmaz(2,2,3,6;10;16) = {K3 +513}, by applying
Algorithm 3.7 (r = 4;t = 4) we show that there are no graphs in
Hmaz(2,2,2,3,6;10;20) with independence number 4.

The next step is to prove that there are no graphs in
Hmaz(2,2,2,3,6;10;20) with independence number 3. The only graph
in Hmaz(6;10;9) is Kg. Starting from Hm.z(6;10;9) = {Ko} by
applying Algorithm 3.7 (r = 2;t = 3) we successively obtain all
graphs with independence number not greater than 3 in H,,..(2,6;10;11),
Hmaz(3,6;10;13), Hmaz(2,3,6;10;15), Hpmaz(2,2,3,6;10;17). In the
end, we apply Algorithm 3.7 (r = 3;¢ = 3) to the obtained graphs
in Hmaz(2,2,3,6;10;17) with independence number not greater than
3 to show that there are no graphs in Hmez(2,2,2,3,6;10;20) with
independence number 3.

Finally, we prove that there are no graphs in H,,.:(2,2,2, 3, 6;10; 20)
with independence number 2. The only graph in Hpme.(6;10;10) is
Kio — e. Starting from Hpaz(6;10;10) = {K;0—e} by applying
Algorithm 3.4 we successively obtain all graphs with independence
number 2 in Hmax(z, 6; 10: 12)a Hmal‘('gaﬁ; 101 14)a ,Hmaz(Qv 31 6; 10; 16)7
Hmaz(2,2,3,6;10;18) and Hmaz(2,2,2,3,6;10;20). As a result, no graphs
in Hmaz(2,2,2,3,6;10;20) with independence number 2 were obtained.

Thus, we proved Hmar(2,2,2,3,6;10;200 = @ and therefore
Fy(2,2,2,3,6;10) > 20 and r(6) = 0.

The numbers of graphs obtained in each step are shown in Table 7 (see
also Table 5 and Table 6). O
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Proof of Theorem 1.4 (b)

According to Theorem 6.3 and Theorem 6.1 (b) we have F (2, 4, 3,6, m
1) = m+ 10. From (2.5) it now follows Fy(ay,....,a,m 1) > m + 10 The
opposite inequality is true according to (1.7) (see also the Main Theorem

from [2]). C

7 Finding all graphs in H(2,2,6,7;18) and
proofs of Theorem 1.5 and Theorem 1.6

Theorem 7.1. |H(2,2,6;7;18)| = 76515.

Proof. Similarly to the proof of Theorem 4.3, we will find all graphs in
H(2,2,6;7;18) with the help of a computer. Some of the graphs that we
obtain in the steps of this proof were already obtained in the proof of
Theorem 4.3 (compare Table 3 to Table 4).

Let G € H(2,2,6;7;18). Clearly a(G) > 2, and according to (2.6),
a(G) <5.

First, we prove that there are no graphs in Hmas(2,2,6;7;18) with
independence number 5. According to Theorem 1.3, C3 is the only graph
in H(2,6;7;13). Starting from Hmqz(2,6;7;13) = {513}, by applying
Algorithm 3.7 (r = 5;t = 5) we show that there are no graphs in
H(2,2,6; 7;18) with independence number 5.

Now, we shall prove that there are no graphs in Hmaz(2,2,6;7;17)
with independence number 4. Starting from Hmaz(3;7;6) = {Ks}, by
applying Algorithm 3.7 (7 = 2;¢ = 4) we successively obtain all graphs with
independence number not greater than 4 in Hmaz(4;7;8), Hmaz(5;7;10),
Homaz(6;7;12), Hmaz(2,6;7;14). By applying Algorithm 3.7 (r = 4;t = 4)
to the obtained graphs in H,,..(2,6;7;14) with independence number not
greater than 4 we conclude that there are no graphs in Hmaz(2,2, 6;7;18)
with independence number 4.

Next, we find all graphs in Hmqz(2,2,6;7;18) with independence
number 3. Starting from Hma.(3;7;7) = {K7 — e}, by applying Algorithm
3.7 (r = 2;t = 3) we successively obtain all graphs with independence
number not greater than 3 in Hmqz(4;7;9), Hmaz(5; 7;11), Hmaz(6;7;13),
Homaz(2,6;7;15). By applying Algorithm 3.7 (r = 3;t = 3) to the obtained
graphs in H,,,2(2,6;7;15) with independence number not greater than 3
we obtain all 308 graphs in Hmaez (2,2, 6;7;18) with independence number
3.

The last, and computationally most difficult step, is to find all graphs
in Hmaz(2,2,6;7;18) with independence number 2. It is easy to see
that Hma:(3;7;8) = {Ks+ Ks5,Cq+ Kas} and therefore Cq + Ky is
the only graph in Hmaz(3;7;8) with independence number 2. Starting
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from {C4+ K4}, by applying Algorithm 3.4 we successively obtain all
graphs with independence number 2 in Hmaz(4;7;10), Humaz (55 7;12),
Hmax(6;7; 14)a Hmaa:(zaﬁ; 7, 16) and 'Hma:c(2a2a6; 7; 18)- As a reSUIt, we
find all 84 graphs in Hma:(2,2,6;7;18) with independence number 2.
Thus, we obtained all 392 graphs in Hmaz(2,2,6;7;18). By removing
edges from these graphs we find all 76 515 graphs in #(2,2,6;7;18). Some
properties of these graphs are listed in Table 2. The number of maximal
K-free graphs and (4Kg)-graphs obtained in each step of the proof is

shown in Table 4. O
|E(G)|  # [ 4(G) # | A(G) # | a(G) # | x(G) # | |[Aut(G)| #
106 1[0 3113 5 [ 2 200 | 8 84| 1 72335
107 4|1 20|14 764503 76225 (90 764312 3 699
108 192 124 4 430
109 88 |3 571 8 33
110 360 | 4 1943 10 2
111 12405 4 986 16 2
112 33036 9 826 20 6
113 6999 |7 14896 2 1
114 11780 |8 17057 36 1
115 15603 |9 14288 40 6
116 15956 | 10 8397
117 12266 |11 3504
118 6575 | 12 876
19 2044 |13 24
120 261
121 7

Table 2: Some properties of the graphs in (2,2, 6;7;18)

We check with a computer that among the 76 515 graphs in
H(2,2,6;7;18), only the graph G4 (see Figure 2) belongs to #(3, 6;7; 18).
This is the graph that gives the upper bound F,(3,6;7) < 18 in [31]. Thus,
we proved the following

Theorem 7.2. |#(3,6;7;18)] = 1 and Herer(3,6;7) = H(3,6;7;18) =
{G4}.

Let us note, that x(G4) = 9 and for this graph the inequality (2.3)
is strict. However, from Theorem 7.2 it follows that in this special case
Conjecture 2.1 is true.

There are two 13-regular graphs in H(2,2,6;7;18), one of them being
G4. The graph Gy is the only vertex transitive graph in H(2,2,6;7;18)
and it has 36 automorphisms. The other 13-regular graph has 24
automorphisms.

Let us also note that there are 2 467 vertex critical graphs in
H(2,2,6;7;18). We obtained all 74048 non-critical graphs in another way
by adding one vertex to the graphs in H(2,2,6;7;17). This also testifies to
the correctness of our implementation. '

232



110000
111001
1101109
0110109
110101
110113
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Figure 2: The only graph G4 € H(3,6;7;18) from [31]

Proof of Theorem 1.5

According to Theorem 9.2 from this paper, Fy(ay,...,a,;7) >
Fy(2m-6,6;7). We shall prove by induction that Fy(2n-¢,6;7) > 3m -
5.2 9

The base case is m = 9, i.e. we have to prove that Fy,(2,2,2,6;7) > 22.
We will show that #(2,2,2,6;7;21) = 0 From F,(2,2,6;7) = 17 and
Proposition 2.2 it follows that there are no graphs in (2, 2,2, 6;7;21) with
independence number greater than 4. All graphs in #(2,2,6;7;17) have
independence number 2 (see Table 1) and all graphs in #(2,2,6;7;18)
have independence number 2 or 3 (see Table 2). No graphs are
obtained by applying Algorithm 3.7 (r = 4,t = 4) to the graphs in
Hinaz(2,2,6;7;17), or by applying Algorithm 3.7 (r = 3,¢ = 3) to the
graphs in Hmaz(2,2,6;7;18). From Theorem 3.8 it follows that there
are no graphs in #(2,2,2,6;7;21) with independence number 3 or 4. It
remains to be proved that there are no graphs in #(2,2,2,6;7;21) with
independence number 2. All 21-vertex graphs G for which a(G) < 3 and
w(G) < 7 are known and are available on [16]. There are 1 118 436 such
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graphs G, and with the help of the computer we check that none of these
graphs belong to (2, 2, 2,6; 7). Thus, we proved #(2,2,2,6;7;21) = @ and
F(2,2,2,6;7) > 22,

Now suppose that for all m' such that 9 < m’ < m we have
Fo(2m-6,6;7) > 3m' — 5. Let G € H(2m-6,6;7) and [V(G)| =
Fy(2m-6,6;7). From the base case it follows that F,(2m-6,6;7) > 22,
and since the Ramsey number R(3,7) = 23 we have a(G) 2 3. Let A be
an independent set of vertices of G and |A| = 3. According to Proposition
2.2, G- A € H(2m-7,6;7) and therefore

Fv(2m—6’6§ 7) — IV(G)| 2 Fu(2m—7y6; 7)+|A| 2 3(m_1)_5+3 = 3m-—5,
a

Proof of Theorem 1.6

We will prove only (b), since (a) can be proved in the same way. The
lower bound is true according to Theorem 1.5. Clearly, we can assume that
as = max{ay,...,as} = 6. Therefore, from (2.1) we obtain the inclusion
H(6,6;7) C H(a1,...,as; 7) and it follows that Fy(ay, ..., as;7) < Fy(6,6;7).
Kolev proves in [10] that

F‘u(ala 0 as5q F 1)-F‘u(b1’ "°1bs;t p 1) Z Fv(al-bla "'aaS'bs; qt * l)v

where ¢ = max{ay,...,a,} and t = max{by,...,bs}. Since Fy(2,2;3) =
5 and Fy(3,3;4) = 14, [19] and [27], it follows that F,(6,6;7) <
F,(2,2;3).F,(3,3;4) = 70. In (a) instead of F,(3,3;4) = 14 we use
F,(2,3;4) =7 (see Theorem 1.3). O

8 Proof of Theorem 1.7

Proof of the lower bound F,(2,2,7;8) > 20

We can prove that H(2,2,7;8;19) = 0 using the method from the proof
of Theorem 4.3. Suppose that G € H(2,2,7;8;19). Clearly o(G) > 2,
and according to (2.6), o(G) < 4. Accordmg to Theorem 1.3, Ci5 is
the only graph in H(2,7;8;15). By applying Algorithm 3.7(r = 4;t =
4) to Hmaz(2,7;8;15) = {515} we prove that there are no graphs in
Hmaez(2,2,7;8;19) with independence number 4.

With the help of Algorithm 3.7(r = 2;t = 3) we successively obtain
all graphs with independence number not greater than 3 in H,,,2(4; 8;8),
Hmaz(5;8;10), Hmas(6;8;12), Hmaz(7;8;14), Hmaz(2,7;8;16). Then,
we apply Algorithm 3.7(r = 3;t = 3) to the obtained graphs in
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Hmaz(2,7;8;16) with independence number not greater than 3 to show
that there are no graphs in Hmaz(2,2,7;8;19) with independence number

3.
In the last and computationally most difficult part of the proof,

with the help of Algorithm 3.4 we successively obtain all graphs with
independence number 2 in Hmaz(4;8;9), Hmaz(5;8;11), Hmax(6;8;13),
Honaz(7;8;15), Hmaz(2,7;8;17) and H;02(2,2,7;8;19). As a result, no
graphs in Hmaz(2,2,7;8;19) with independence number 2 are obtained.
Thus, we proved Hmaz(2,2,7;8;19) = 0. The number of graphs
obtained in each step are shown in Table 8. O

Proof of the upper bound F,(2,2,7;8) < 20

We need to construct a 20-vertex graph in %(2,2,7,8;20). All vertex
transitive graphs with up to 31 vertices are known and can be found in
[28]. With the help of a computer we check which of these graphs belong
to H(2,2,7;8). In this way, we find one 24-vertex graph, one 28-vertex
graph and 6 30-vertex graphs in (2,2, 7;8).

By removing one vertex from the 24-vertex transitive graph in
H(2,2,7;8) we obtain 3 23-vertex graphs in #(2,2,7;8), and by removing
two vertices we obtain 8 22-vertex graphs in (2,2, 7;8). We add two edges
to one of the 8 22-vertex graphs (the only one with 180 edges) we find one
graph in Hmaez(2,2,7;8;22). Using the following Procedure 8.1 we find
1696 more graphs in Hmaez(2,2,7;8;22).

By removing one vertex to the obtained graphs in Hmaz(2,2,7;8;22)
we find 22 21-vertex graphs in #(2,2,7;8). We add edges to these graphs
to obtain 22 graphs in Hmaz(2,2,7;8;21). Then, we apply Procedure 8.1
twice to obtain 15259 more graphs in Hmaez(2,2,7;8;21).

By removing one vertex to the obtained graphs in Hmqz(2,2,7;8;21)
we find 9 20-vertex graphs in #(2,2,7;8). Again, by successively applying
Procedure 8.1 we obtain 39 graphs in Hmaz(2,2,7;8;20). One of these
graphs is the graph Gs shown on Figure 3. Later, we shall use the graph
G5 in the proof of Theorem 1.8. O

Procedure 8.1. [1] FExtending a set of mazimal graphs in
H(a1, - as; ;). |

1. Let A be a set of mazimal graphs in H(ay, ...,as; q; n).

2. By removing edges from the graphs in A, find all their subgraphs
which are in H(ay,...,as;q;n). This way a set of non-mazimal graphs in
H(ay,...,as;q;n) is obtained.

3. Add edges to the non-mazimal graphs to find all their supergraphs
which are mazimal in H(ai,...,as;q;n). Extend the set A by adding the

new mazimal graphs.
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see also [2]):

(

as} < p, we have

)

)

P
In [1] we also define the following notations

means that for every choice of positive integers aj, ...,as (s is not fized),
" Qs

Gs

GS5m

G _v) (al, ..
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Figure 3: 20-vertex graph Gs € H(2,2,7;8)

s
1

Y (a;i —=1) +1 and max {ay, ...

i

In [1], we define a modification of the vertex Folkman numbers

9 Proof of Theorem 1.8
F,(a1, ..., as; q) with the help of which we obtain the upper bound in (1.7).

Definition 9.1. [1/ Let G be a graph and let m and p be positive integers.
The expression

such that m



ﬂ(mlp;q) = {G G m|p and w(@) < q}.

Fy(ml;q) = min {| V(G)| : G € i(m] ;) }.

To prove the upper bound in Theorem 1.8 we shall use the following
results from (1].

Theorem 9.2. [1] Let ay,...,a, be positive integers and let m and p he
defined by (1.3), ¢ > p. Then

Fv(zm—mp; Q) S Fv(al’ '--aaa;q) S ﬁv(’nlp;(l)-

Theorem 9.3. [1] Let m, mo, p and q be positive integers, m > mq and
g > min {mo, p}. Then

~

Fv(m|p$m -mo+q) < Fu(molp;Q) +m — my.

Proof of Theorem 1.8

The lower bound in Theorem 1.8 follows from Theorem 1.7 and Theorem
9.3 To prove the upper bound, we shall use the graph Gg € H(3,7;8) N
H(4,6;8) NH(5,5; 8) (see Figure 4) obtained by adding one vertex to the
graph Gs € H(2,2,7;8;20) (see Figure 3). Using (2.1), it is easy to prove
that from Gg = (3,7), Gs > (4,6) and Gg > (5,5) it follows Gg = 9|,.
Therefore Gg € ﬁ(gl.,; 8) and 17',,(9|7; 8) < 21. Now from Theorem 9.2 and
Theorem 9.3 we derive

Fy(a1,-a5m—1) < F(m|;m—1) < F,9],;8)+m—-9<m+12

O
Regarding the number F,(3,7;8), the following bounds were known:

18 < F,(3,7;8) < 22.

The lower bound is true according to (1.5) and the upper bound was
proved in [31]. Using the results in this paper, we improve these bounds
by proving the following

Theorem 9.4. 20 < F,,(3,7;8) < 21.

Proof. The upper bound is true according to Theorem 1.8 and the lower
bound follows from F,(3,7;8) > F,(2,2,7; 8) = 20. a
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Figure 4: 21-vertex graph Ge € ﬁ(9|7; 8)
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Appendix A Results of computations

set independence | maximal (+K¢)- |
number graphs graphs

H(2,6;7;13) <4 1 1 e

M(2,2,6;7;17) =4 0

M(3;7,6) <3 1 2

H(4;7;8) <3 2 12

H(5;7;10) <3 6 274

H(6;7;12) <3 37 78 926

H(2,6;7; 14) <3 20 5 291

H(2,2,6;7;17) =3 0

H(3;7;7) <2 1 3

H(4;7,9) <2 2 22

H(5;7;11) <2 5 468

H(6;7;13) <2 24 97 028

H(2,6;7;15) <2 473 10 018 539

H(2,2,6;7,17) =2 1

H(2,2,6;7; 17) 1

Table 3: Steps in finding all maximal graphs in (2,2, 6;7;17)

set independence [ maximal (+Ks)-
number graphs graphs
H(2,6,7;13) <5 1 1
H(3,6;7;18) =5 0
H(3;7;6) <4 1 2
H(4;7;8) <4 2 13
H(5;7;10) <4 7 317
H(6;7;12) <4 50 102 387
H(2,6;7;14) <4 20 5 293
H(2,2,6;7;18) =4 0
H(3;7;7) <3 1 4
H(4;7,9) <3 3 45
H(5;7;11) 43 12 3071
H(6;7;13) <3 168 4 691 237
H(2,6;7;15) <3 1627 70 274 176
H(2,2,6;7;18) =3 308
H(3;7;8) <2 1 8
H(4;7;10) <2 3 82
H(5;7;12) <2 10 5 057
H(6;7;14) <2 96 2 799 416
H(2,6;7;16) <2 7509 920 112 878
H(2,2,6;7;18) =2 84
H(2,2,6;7;18) 392

Table 4: Steps in finding all maximal graphs in H(2,2,6;7;18)
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set independence | maximal (+K7)-
number graphs graphs
H(3,6;8; 14) <4 1 1
H(2,3,6;8;18) =4 0
H(4;8;7) <3 1 2
H(5;8,9) <3 2 12
H(6;8;11) <3 6 276
H(2,6;8;13) <3 37 79 749
H(3,6;8;15) <3 21 3 458
H(2,3,6;8;18) =3 0
H(4;8;8) <2 1 3
H(5;8;10) <2 2 2
H(6;8;12) <2 5 489
H(2,6;8;14) <2 25 119 126
H(3,6;8;16) <2 509 3 582 157
H(2,3,6;8; 18) =2 0
H(2, 3,68, 18) 0 =3

Table 5: Steps in finding all maximal graphs in H(2, 3, 6; 8; 18)

set independence | maximal (+Ks)-
number graphs graphs
H(2,3,6;9;15) <4 1 1
H(2,2,3,6;9;19) =4 0
H(5;9;8) <3 1 2
#(6;9; 10) <3 2 12
H(2,6:9;12) <3 6 277
H(3,6;9;14) 23 37 79 901
H(2,3,6;9;16) <3 21 3 459
H(2,2,3,6;9;19) =3 0
H(5;9;9) <2 1 3
(6;9;11) <2 9 22
H(2,6;9;13) <2 5 496
#(3,6;9; 15) <92 % 121 499
#(2,3,6;9;17) <2 512 3585 530
H(2,2,3,6;9;19) =2 0
H(2,2,3,6;9;19) 0

Table 6: Steps in finding all maximal graphs in (2,2, 3, 6; 9; 19)
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e

set independence | maximal (+Kq)-
number graphs graphs
H(2,2,3,6;10,16) [ <4 1 1
H(2,2,2,3,6;10;20)| =4 0
H(6;10;9) <3 1 2
H(2,6;10;11) <3 2 12
M(3,6;10;13) <3 6 277
H(2,3,6;10;15) <3 37 79 934
H(2,2,3,6,10;17) <3 21 3 459
H(2,2,2,3,6,10;20)| =3 0
H(6;10;10) <2 1 3
H(2,6;10;12) <2 2 22
H(3,6;10;14) <2 5 498
H(2,3,6;10;16) <2 25 121 864
H(2,2,3,6,10;18) | <2 512 3 585 546
H(2,2,2,3,6,10;20)| =2 0
H(2,2,2,3,6;10; 20) 0

Table 7: Steps in finding all maximal graphs in (2,2, 2, 3, 6; 10; 20)

set independence | maximal (+K7)-
number graphs graphs

H(2, 7,8, 15) <1 1 1

H(?, 2,7;8; 19) =4 0

H(4;8;8) <3 1 4

H(5;8;10) <3 3 45

#(6;8;12) <3 12 3104

H(7;8;14) <3 169 4 776 518

H(2,7;8;16) <3 34 22 896

H(2,2,7;8;19) =8 0

H(4;8;9) <2 1 8

H(5;8;11) <9 3 84

H(6;8;13) <2 10 5 304

H(7,8;15) <2 102 4 984 994

H(2,7;8;17) <2 2760 380 361 736

H(2,2,7:8;19) =2 0

H(2,2,7;8,19) 0

Table 8: Steps in finding all maximal graphs in #(2,2,7;8;19)
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