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Abstract

Let G be an edge-colored connected graph. For vertices u and v
of G, a shortest u —v path P in G is a u — v geodesic and P is a
proper u — v geodesic if no two adjacent edges in P are colored
the same. An edge coloring of a connected graph G is called
a proper k-geodesic coloring of G for some positive integer k
if for every two nonadjacent vertices u and v of G, there exist
at least k internally disjoint proper u — v geodesics in G. The
minimum number of the colors required in a proper k-geodesic
coloring of G is the strong proper k-connectivity spc,(G) of G.
Sharp lower bounds are established for the strong proper k-
connectivity of complete bipartite graphs K s for all integers
k,r,s with 2 < k <r < s and it is shown that the strong proper
2-connectivity of K, s is spcy(Krs) =["W/s ] for 2 <r <s.

Key Words: edge colorings, strong-path colorings, strong connectivity,
complete bipartite graphs.
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1 Introduction

Let G be an edge-colored connected graph, where adjacent edges may be
colored the same. A path P in G is properly colored or, more simply, P is
a proper path in G if no two adjacent edges of P are colored the same. An
edge coloring c is a proper-path coloring of G if every pair u,v of distinct
vertices of G are connected by a proper © — v path in G. The minimum
number of colors required for a proper-path coloring of G is called the proper
connection number pc(G) of G (see [2]). The distance d(u,v) between two
vertices u and v in a connected graph G is the minimum of the lengths of the
u—v pathsin G. A u—wv path of length d(u, v) is called a u—v geodesic. Let
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¢ be an edge coloring of a nontrivial connected graph G. For two vertices
u and v of G, a proper u — v geodesic in G is a proper u — v path of length
d(u,v). If there is a proper u—v geodesic for every two vertices u and v of G,
then c is called a strong proper-path coloring of G. The minimum number
of colors required to produce a strong proper-path coloring of G is called
the strong proper connection number spc(G) of G (see [1]). In a proper edge
coloring of a nonempty graph G, no two adjacent edges are colored the same.
The minimum number of colors required for a proper edge coloring of G is
called the chromatic indez of G and is denoted by x'(G). In general, if G
is a nontrivial connected graph, then 1 < pc(G) < spe(G) < x'(G). These
concepts were inspired by rainbow colorings introduced in [3]. Recently,
much research has been done on these concepts (see [1, 2, 10] for example).
In fact, there is a book [9] on rainbow colorings and a dynamic survey (8]
on proper-path colorings in graphs.

The connectivity k(G) of a graph G is the smallest number of vertices
whose removal from G results in either a disconnected graph or a trivial
graph. The connectivity is a common measure of connectedness for a graph.
A graph G is {-connected for some positive integer £ if k(G) > £. That is,
G is {-connected if the removal of fewer than £ vertices from G results in
neither a disconnected nor a trivial graph. Suppose that G is an f-connected
graph for some positive integer £. It then follows from a well-known theorem
of Whitney [11] that for every integer k with 1 < k < ¢ and every two
distinct vertices v and v of G, the graph G contains k internally disjoint
u — v paths.

Let G be a graph with connectivity k > 1. The chromatic connectivity
kx(G) of G is the minimum number of colors needed in an edge coloring
of G such that every two distinct vertices u and v of G are connected by k
internally disjoint proper u—wv paths. For a graph G with Kx(G) > 3, there
are intermediate concepts between the proper connection number pc(G)
and the chromatic connectivity «,(G) of the graph G. This also leads to
the following more general concept. An edge coloring of a connected graph
G is called a proper k-path coloring of G for some positive integer k if for
every two distinct vertices u and v of G, there exist at least k internally
disjoint proper u — v paths. The minimum number of colors required for a
proper k-path coloring of G is the proper k-connectivity pc, (G) of G. Thus,
pc;(G) = pe(G) is the proper connection number of G. If kK(G) = &, then
pc,(G) = Ky (G) is the chromatic connectivity of G. The concept of pc,. (G)
has been studied in [2, 10] and the related concept on rainbow colorings
has been studied by many (see [4, 9], for example).

The proper connectivity of complete bipartite graphs K s for2 < r < s
has been studied in (2, 10] where the exact value of the proper 2-connectivity
pco (K s) has been determined. In [2], Borozan, Fujita, Gerek, Magnant,
Manoussakis, Montero and Tuza showed for complete bipartite graphs K.
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where 2 < 7 < s that pey(K,,) = 2 when k > 2 and 2k < r < 5 and
pey(Krs) > 2 when r =2k — 1 and s > 2", Sharp lower bounds have been
established for pey(Ky,s) when » < s and 2 < k < r < 2k and the exact
values for peg(Ky,s) have been determined when 2 < r € {2k — 1,2k — 2}
and s is sufficiently large (see [10]).

In this work, we introduce the concept of strong proper connectivity
resulting from strong proper-path colorings and investigate this concept
for complete bipartite graphs. We refer to the book (5] for graph theory
notation and terminology not described in this paper.

2 Proper k-Geodesic Colorings

For every nontrivial connected graph G and every two distinct vertices u
and v of G, there is at least one u — v path of length d(u,v), namely a u — v
geodesic. If u and v are adjacent vertices in G, then (u,v) is the unique u—v
geodesic in G; while if u and v are not adjacent, then there may be more
than one u — v geodesic in G. For example, if G = K, , with partite sets
{u,v} and {w;,ws,...,w,} where s > 2, then there are s internally disjoint
u — v geodesics in G, namely (u,w;,v) for 1 <i<sandforl1<i<j<s,
there are two internally disjoint w; — w; geodesics in G, namely (w;, u, w;)
and (w;,v,w;). Hence, there are at least two internally disjoint geodesics
connecting every two nonadjacent vertices in G. However, it is also possible
that there is a unique u — v geodesic connecting two nonadjacent vertices
u and v in a nontrivial connected graph. For example, if P is the Petersen
graph, then d(u,v) = 2 for every two nonadjacent vertices u and v of P.
Since the girth of P is 5, there is a unique u — v geodesic connecting every
two nonadjacent vertices « and v in P.

A connected graph G of diameter at least 2 is £-geodesic connected for
some positive integer £ if for every two nonadjacent vertices u and v of G,
there exist at least ¢ internally disjoint u — v geodesics in G. For example,
the Petersen graph is 1-geodesic connected and not ¢-geodesic connected
for any £ > 2. For positive integers » and s with r < s, the complete
bipartite K, is r-geodesic connected. In general, if G = K, n,,...n,,
where 1 < n; < ny < -+ < np, is a complete p-partite graph for some
integer p > 2 and £ =n; +ny+---+n,_1, then G is l-geodesic connected.

If G is an ¢-geodesic connected graph for some positive integer £ and k
is a positive integer with k < ¢, then an edge coloring of a connected graph
G is called a proper k-geodesic coloring (or a strong proper k-path coloring)
of G if for every two nonadjacent vertices u and v of G, there exist at least
k internally disjoint proper u — v geodesics in G. The minimum number
of the colors required for a proper k-geodesic coloring of G is the strong
proper k-connectivity spc,(G) of G. In particular, spc;(G) = spc(G) is
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the strong proper connection number of G. If G is an {-geodesic connected
graph and the edges of G are properly colored, then every two nonadjacent
vertices of GG are connected by at least ¢ internally disjoint proper geodesics.
Therefore, we have the following observation.

Observation 2.1 If G is an {-geodesic connected graph for some positive
integer { and k is a positive integer with k < £, then spc,(G) ezists and

speg(G) < X/(G). (1)
Furthermore, if k and k' are positive integers with k < k' < ¢, then
spci(G) < spey(G).

We investigate the following problem. For integers k, r and s with
2 <k <r <s, what is spci. (Kr,s)? Since diam(K,,) = 2, for each pair u, v
of vertices of K,. 5, each u — v geodesic P is a u — v path of length 1 or 2.
Therefore, every proper geodesic is also a rainbow geodesic. The question
here is to determine the minimum number of the colors required for a
proper k-geodesic coloring of K s such that every two nonadjacent vertices
of K, s are connected by at least k internally disjoint rainbow geodesics
in K,s. In order to do this, we first present some related concepts and
useful preliminary information on proper k-geodesic colorings of K s for
2<r<s.

For integers r and n, where 7,n > 2, let F(r,n) denote the set of all
functions f : [r] = [n]. For a positive integer k¥ with k < r, a subset
S C F(r,n) is called a k-distinct subset if for each pair f, g of functions in
S, there are at least k distinct elements p € [r] such that f(p) # g(p). For
positive integers k, r and n with k < r, let M(r,n, k) denote the maximum
size of a k-distinct subset of F(r,n); that is,

M(r,n, k) = max{|S|: S is a k-distinct subset of F(r,n)}.

It should be mentioned that the concepts of k-distinct subsets of the set
F(r,n) of all functions f : [r] > [n] and the maximum size M(r,n, k)
of a k-distinct subset of F(r,n) can be expressed under the context of
error-correcting codes in coding theory (see [6, pp.477, 683]). In terms of
error-correcting codes, the set F(r,n) is the set of all r-tuples where each
coordinate is an element of [n]. A collection C of r-tuples is called a code
and each element in C is called a code word of length r. For two code words
z and y in a code C, the distance d(z,y) between z and y is the number
of coordinates at which = and y differ. This distance is referred to as the
Hamming distance between = and y. For a collection C of code words of
length r, the distance of C is defined as d(C) = min{d(z,y) : =,y € C}.
Thus, a k-distinct subset of the set F(r,n) is, in fact, a set C of code
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words of length r (each of whose coordinates is an element of [n]) such that
d(C) > k and M(r,n, k) is the maximum size of a code C of code words
of length r (each of whose coordinates is an element of [n]) distance is at
least k. The following known result will be very useful to us.

Lemma 2.2 (7] Ifr, k and n are integers with 2 < k < r and n > 2,

then
M(r,n, k) < n"=k+1,

In particular, if k = 2, then M(r,n,2) = n""1,

By Lemma 2.2 then, M(3,2,2) = 22 = 4 and M(3,3,2) = 3> = 9. For
example, the set
§ = {(112), (120), (211), (222)} 2)

is a 2-distinct subset of F(3,2) and the set
S = {(111),(222), (333), (123), (132), (213), (231),(312),(321)}  (3)

is a 2-distinct subset of F(3,3). The k-distinct subsets of F(r,n) play an
important role in constructing proper k-geodesic colorings of K, , using the
colors from the set [n]. For example, if S = {f1, f2,.-., fs} is a 2-distinct
subset of F(r,n), then we can use S to construct a proper 2-geodesic color-
ing of K s using colors in the set [n]. We now illustrate this by providing
a proper 2-geodesic coloring of K3 4 and K3 g.

We begin with the graph K3 4. Let U = {u;,u2,us} and V={vy, vy,
v3, v4} be the partite sets of K3 4. Let S = {(112), (121),(211),(222)} be
the 4-element 2-distinct subset of F(3,2) described in (2). For each integer
i with 1 <1 < 4, if f; = (a; b; ¢;), then define the colors of the three
edges incident with v; by ¢(u1v;) = a;, c(ugv;) = b; and c(u3zv;) = ¢;. This
coloring c is shown in Figure 1. Since c is a proper 2-geodesic coloring c of
K3 4 and spcy(K3,4) > 2, it follows that spcy(K34) = 2.

(5 ug u3

\ 1
\ s
\
\ 2
\ \ — — — —
~ \\i\
(121) (211) (222)
v v3 V4

Figure 1: A proper 2-geodesic coloring of K3 4 using colors 1 and 2
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For the graph Ksg, let U = {uj,uz,us} and V = {v1,v2,..., 19} be
the partite sets of K39. Consider the 9-element 2-distinct subset S =
{1, far- -, fo} of F(3,3) described in (3). We now construct an edge col-
oring ¢ : E(G) = [3] = {1,2,3} of G using the 9 functions in S. For each
integer i with 1 <i <9, if f; = (a; b; ¢;), then define the colors of the three
edges incident with v; by c(uyv;) = a;, c(uav;) = b; and c(uszv;) = ¢;. This
coloring is shown in Figure 2, where each fine edge is colored 1, each dashed
edge is colored 2 and each bold edge is colored 3. Since ¢ : E(K3,9) — [3]
is a proper 2-geodesic coloring of K3 g, it follows that spcy(K39) < 3. In
fact, spcy(K3,9) = 3 as we will see in Section 4.

(111) (123) (132)  (222) (213) (231) (333) (312) (321)
U1 U4 U5 VU2 Vg vy v3 vg vg

Figure 2: A proper 2-geodesic coloring of K39 using colors 1, 2, 3

3 Lower Bounds for spcy (K s)

In this section, we establish lower bounds for spcy(Krs). Let G = K,
with partite sets U = {uy,us,...,u,} and V = {v1,v2,...,v5} where 2 <
r < s. For each integer i with 1 < i < s, let G; = G[U,v;] = K; , be
the subgraph induced by the set [U,v;] of all edges incident with v; in G.
For an edge coloring ¢ : E(G) = [n] = {1,2,...,n} of G and each integer
i with 1 < i < s, there is an edge coloring ¢; : E(G;) — [n] obtained by
restricting the coloring ¢ to G;. Each edge coloring ¢; (1 < i < s) can also
be considered as an integer-valued function ¢; : [r] = [n] of G; defined by

ci(p) = c(upv;) for each p € [r]. (4)
We are now prepared to present two lower bounds for spe, (K s).

Theorem 3.1 Letr, s, k,n be integers suchthat2 <k <r <sandn > 2.

Ifk>r+1-log,(s), then spcy (K s) > n.
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Proof. First, we verify the following statement:
If spey (Kr,s) = n, then k <7 + 1 — log,,(s). (5)

Let G = K., and let ¢ : E(G) — [n] be a strong proper k-path coloring of
G. Then § = {c1,¢2,...,¢s} is a k-distinct subset of F(r, n), where each ¢
(1 < i < s) is the integer-valued function ¢; : [r] = [n] of the subgraph G;
as described in (4). Hence, s = |S| < M(r,n,k) < n"~**! by Lemma 2.2
and so s < n"~*+1, Thus,

k<r+1-log,(s)

Restating the implication in (5) in its contrapositive form, we obtain the
following statement:

Ifk>r+1-1log,(s), then spcy (K ,) # n. (6)

Since the statement in (6) holds for all integers m with 2 < m < n, it
follows that if k > 7 + 1 — log,,(s), then spc,(Kys) > n, as desired. o

The following is a consequence of Observation 2.1 and Theorem 3.1.
Corollary 3.2 Ifr and s are integers with 2 <1 < s and s > 3, then
sch(Kr:s) =S.

Proof. Since log, ,(s) > 1 for each integer s > 3, it follows that r >
r+1-log,_;(s). Thus, spc,.(Kr,s) > s—1orspe,. (K, ) > s by Theorem 3.1.
On the other hand, spc,.(Krs) < X'(Kr,s) = s by Observation 2.1 and so
spc,(Krs) = s. "

Next, we present a lower bound for spc, (K ) with a connection to the
maximum size of a k-distinct subset of the set F(r,n) of all functions from

[r] to [n].

Theorem 3.3 Let r,s,k be integers such that 2 < k <r <s. If N is the
smallest positive integer such that M(r, N, k) > s, then

spci(Krs) > N.

Proof. For integers r and s with 2 < r < s, let G = K, with partite
sets U = {uy,u,...,u,} and V = {v;,v,...,9s}. Since diam(G) = 2, if z
and y are nonadjacent vertices of G, then each = — y geodesic has length 2.
Suppose that spc,(G) = n and let ¢ : E(G) — [n] be a proper k-geodesic
coloring of G using n colors. For each integer ¢ with 1 <1 <'s, let ¢; be the
integer-valued function defined by (4). Now, let S = {c1,c,...,¢5}. We
claim that S is a k-distinct subset of F(r,n); that is, if i, ¢; € S where 1 #
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7, then there are at least k distinct elements p € [r] such that ¢;(p) # ¢i(p).
For v;,vj € V wherei # j, let @1,Q2,...,Qx be k internally disjoint proper
v; — v; geodesics in G. We may assume, without loss of generality, that
Qp = (vi,up,vj) for p=1,2,...,k. Since Q, is properly colored, it follows
that c(viup) # c(upv;) and so ci(p) # cj(p) for p = 1,2,...,k. Therefore,
as claimed, S is a k-distinct subset of F(r,n). If M(r,n,k) is the maximum
size of a k-distinct subset of F(r,n), then M(r,n,k) > |S| = s. Since N
is the smallest positive integer such that M(r, N,k) > s, it follows that ¢
must use at least V colors and so n > N. Therefore, spc,(G)=n>N. =

With the aid of Theorem 3.3 and Lemma 2.2, we are able to establish
an additional lower bound for spci (K s) in terms of k,7 and s.

Theorem 3.4 Ifr,s and k are integers with 2 < k <r < s, then
Ska(Kr,s) 2 [ P_H‘f/g ] (7)

Proof. Let N be the smallest positive integer such that M(r,N,k) > s.
It then follows by Theorem 3.3 that spcy(Krs) > N. Since M(r,N,k) <
Nr—k+1 by Lemma 2.2, it follows that s < M(r,N,k) < N™%+1 and so
N > [ *%/s |. Therefore, spcy(Kr,s) > N > [ "*%/s ], as desired. ]

If k =7 =s =2, then spcy(K22) = 2 and so (7) holds. If k = r and
s > 3, then equality in (7) holds by Corollary 3.2. In [3] it was shown that
src(Ky,s) = [/s ] for all integers 7 and s with 2 < 7 < s. Hence, equality
in (7) holds for £ = 1. Furthermore, equality in (7) also holds for k = 2, as
we will see in Section 4. The following is a consequence of Theorem 3.4.

Corollary 3.5 Ifr and k are integers with 2 < k <, then

Lim spey(Kr,s) = oo.

4 Strong Proper 2-Connectivity of K, ;

With the aid of Lemma 2.2 and Theorem 3.4, we are able to determine the
exact values of the strong proper 2-connectivity of K,, where 2 <r <s.
We consider two situations, namely (i) s > 27! and (ii) r < s < 277},
beginning with (i).

Theorem 4.1 Let T and s be integers with 2 <r <s. If s > 271 then

spey(Kns) = [ "5 1.
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Proof. By Theorem 3.4, Sch(Kr,s) > [ "¥/s ). Thus, it remains to show
that spey(Kre) < [" V5 ]. Let G = K,,. If r = 2, then [ (/3 | =
s = X'(G). Since spcy(G) < x'(G) by Observation 2.1, it follows that
spey(G) < [ Vs | and 50 spey(G) = [ *V/s | when r = 2. Thus, we may
assume that > 3 and s > 2"°1 > 4. Let U = {uy,ug,...,u,} and V =
{vy,v2,...,vs} be the partite sets of G. Furthermore, let N = [ "~{/s | > 2
and let A be a 2-distinct subset of maximum size in F(r, N). Since k = 2,
it follows by Lemma 2.2 that |A| = N~ > s. For each f € A, let f’ be
the restriction of f to [r — 1]; that is, f'(z) = f(z) for each z € [r — 1].
Now let A’ = {f' : f € A}. Since A is a 2-distinct subset of F(r,N),
it follows that if f # g € A, then there are two distinct elements p; and
py in [r] such that f(p1) # g(p1) and f(p2) # 9(p2). We may assume
that py # . Hence, f'(p1) # ¢'(p1) and so f' # ¢’ in T'. Therefore,
|A’| = |A| = N™=1. Since A’ C F(r—1,N) and |F(r—1,N)| = N"~! = |A/|,
it follows that A’ = F(r — 1, N). Let A’ = {c},cj,...,C}.-1} such that
the ranges of the first 2"~! elements ¢}, ¢}, ..., ¢, in A’ belong to [2].
Now, let A = {c1,¢2,...,cyr-1}, where then the restriction of ¢; to [r — 1]
iscie A for1 <i < N1,

We define an edge coloring ¢ : E(G) — [N] by using the first s integer-
valued functions ¢, ¢,...,cs € A as follows. For each integer ¢ with 1 <
i < s, let c(upvi) = ci(p) for each p € [r]. It remains to show that c is
a strong proper 2-path N-coloring of G. Let z and y be two nonadjacent
vertices of G. First, suppose that z = v; and y = v;, where 1 <i < j <s.
Since A is a 2-distinct subset of F(r, N), there are p,q € [r] such that
ci(p) # ¢j(p) and ci(q) # cj(g). Thus, (v, up,v;) and (v, uq,v;) are two
internally disjoint properly colored v; — v; geodesics in G. Next, suppose
that £ = u; and y = u;, where 1 < i < j <r. Since r > 3, it follows that
[r] = {i,5} # 9. Let = € [r] — {i,5}. For each i with 1 < <271 let ¢
be the restriction of ¢; to [r] — {z}. Now let B’ = {c},¢},...,c5.—1}. Since
A is a 2-distinct subset of F(r, N), it follows that |B’| = 2"~". Since the
range of each ¢; belongs to [2] for 1 < i < 2771, it follows that B’ C F(r,2).
Again, |F(r,2)| = 2"~ and so B’ = F(r,2). Let B = {c1,c3,...,Cor—1}
where the restriction of ¢; to [r] — {z} is ¢} for 1 <71 <2""!. Since Bisa
2-distinct subset of F(r, N), we saw that |B| = |B’| = 2"~1. There are at
least 272 > 2 elements f in B such that f(i) # f(j), say ¢1(¢) # c1(j) and
¢a(i) # ¢a(j). Then (ui,v1,u;) and (ug,v2,u;) are two internally disjoint
properly colored u; — u; geodesics in G. In each case, c is a strong proper
2-path N-coloring of G' and so spcy(G) < N. Therefore,

spCy(Krs) = N =[5 ]

when s > 271 > 9, o
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Next, we determine the strong proper 2-connectivity of K, , when 2 <
r < s < 2L If r and s are integers with 2 < 7 < 5 < 2771 then

1< "/s<2andso [ /s | =2 Therefore, we show that spc,(K, ,) = 2
in this case.

Theorem 4.2 Ifr and s are integers with 2 <r <5< 2" then
spcy(Kr,s) = 2.

Proof. Let G = K, ,. It suffices to show that G has a strong proper
2-path coloring using the colors 1 and 2. Let U = {uj,uz,...,u,} and V =
{v1,v2,...,vs} be the partite sets of G. We consider two cases, according
to whether r =sorr < s.

Case 1. r = 5. Define an edge coloring ¢ : E(G) — {1,2} by

1 ifi+3
c(“i”i)={ 9 ifi=j. (8)
We show that c is a strong proper 2-path coloring of G. Let z and y be
two nonadjacent vertices of G. First, assume that z = u; and y = u; where
1 <i<j<r. Then (u;,vi,u;) and (u;,v;,u;) are two internally disjoint
properly colored u; — u; geodesics in G. Next, assume that z = v; and
y = v; where 1 <i < j < s. By symmetry, there are two internally disjoint
properly colored v; — v; geodesics in G. However, we provide a different
argument which will be useful for the general case, namely Case 2.
For the edge coloring ¢ : E(G) — {1,2} defined in (8), consider the
induced color functions ¢; : [r] — [2] for each integer ¢ with 1 < i < r,
where c¢;(z) = ¢(viu;) for each z € [r]. Thus,

sl b diing, ©

Let A= {c;: 1 <i<r}. Weshow that A is a 2-distinct subset of F(r,2).
Let ¢i,cj € A, where 1 < i # j < r. Since ¢i(i) = 2 and ¢;(j) = 1 and
¢j(?) = 1 and ¢;(j) = 2, it follows that ¢;(i) # ¢;(i) and ci(3) # ¢;(5)-
Furthermore, ¢;(z) = ¢j(z) for each z € [r] — {1, j}. Hence, (vi,u;,v;) and
(vi, uj,v;) are two internally disjoint properly colored v; —v; geodesics in G.
Thus, c is a strong proper 2-path coloring of G and so spcy(G) = 2 in this
case.

Case 2. 1 < s < 271, First, we show that there exists 2-distinct subset
T of F(r,2) such that |T| = 2™~ and A C T. For each f € F(r,2), let

w(f) =z elr]: f(z) =2}
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(which is referred to as the Hamming weight of f in coding theory). Thus,
if f € A, then w(f) = 1. We claim that if f, g € F(r, 2) such that w(f) and
w(g) are of the same parity, then {f, g} is a 2-distinct subset of F(r,2). If
this were not the case, then we may assume, without loss of generality, that
f(1) # g(1) and f(z) = g(z) for all z € [r] — {1}. Since f(1),9(1) € [2]
and f(1) # g(1), we may assume that f(1) = 1 and g(1) = 2. Because
f(z) = g(z) for each = € [r] — {1}, it follows that w(g) = w(f) + 1 and so
w(f) and w(g) are of opposite parity, which is a contradiction. Now, let

T={feF(r2): wf)isodd}.

Since w(f) =1 for each f € A, we have A C T. By the argument above, T
is a 2-distinct subset of F(r,2). Furthermore,

T

1 2
T =2 )| = == =971,
IT] = 51F(r,2)| = 5 =2

Since s < 2"~1, we can choose a s-element subset B of T such that A C B.

Next, suppose that B = {ej,¢s,...,¢,} where ¢; is defined in (9) for
1 < i <r. We now define an edge coloring ¢ : E(G) — [2| by using the
s integer-valued functions ¢y, ¢y, ...,c; € B as follows. For each integer i
with 1 <1 < s, let c(upv;) = ci(p) for each p € [r]. It remains to show that
¢ is a strong proper 2-path 2-coloring of G. Let z and y be two nonadjacent
vertices of G. If z = u; and y = u;, where 1 < i < j < r, then the argument
in Case 1 shows that there are 2 internally disjoint properly colored u; —u;
geodesics in G. Next, suppose that = v; and y = v;, where 1 <i < j < s.
There are p,q € [r] where p # g such that ¢;(p) # c;(p) and ¢;(q) # c;(q).
Hence, (vi,up, ;) and (v, uq,v;) are 2 internally disjoint properly colored
v; — v; geodesics in G. Therefore, c is a strong proper 2-path 2-coloring of
G and so spcy(G) = 2. o

In summary, Theorems 4.1 and 4.2 give rise to a formula of spcy (K s)
for all integers r and s with 2 <r < s.

Theorem 4.3 Ifr and s are integers with 2 < r < s, then

spey(Krs) = [ "V/s |-
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