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Abstract Low-Density Parity-Check (LDPC) codes have low linear decod-
ing complexity, which is a kind of good codes with excellent performance.
Therefore, LDPC codes have great research value. This article is based on
vector space over finite field as a theoretical tool by the inclusive relation of
vector subspaces to construct protograph, and then constructs the LDPC
codes with larger girth based on protograph by the modified progressive
edge growth(M-PEG) algorithm, and utilize the related knowledge, such as
Anzahl theorem in vector space, determines the code length, code rate and
code word number of the LDPC codes. Moreover, the LDPC codes con-
structed are compared with the existing codes, and the constructed codes
are better than some existing ones.
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1. Introduction

The error correction coding theory is an important part of digital com-
munication system and computer system, and LDPC codes channel coding
technology is one of the important achievements in the coding field. As
early as 1962, Gallager!! proposed the LDPC codes, but has not received
the attention of the coding community. Tanner!?l studied the codes from
the perspective of graph theory until 1981, then, Mackay, Spielman and
Wiberg “rediscovered” the LDPC codes almost at the same time. In re-
cent years, how to construct a code with excellent performance and simple
encoding and decoding has always been a hot topic.

The methods for constructing codes are divided into two kinds: ran-
dom structure and algebraic structure. Different construction methods are
designed to achieve the following goals: enlarging the ring in the graph,
optimizing the node distribution of non-regular code, and reducing the
coding complexity. In this paper, the LDPC codes are constructed by
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the modified progressive edge growth. In 2005, Xiao-Yu Hul® proposed
the PEG algorithm in the article “Regular and Irregular Progressive Edge
Growth Tanner Graphs”; In 2008, Nicholas Bonello, Sheng Chen and La-
jos Hanzoll constructed a kind of regular Quasi-Cyclic protograph LDPC
codes based on the vandermonde matrix; In 2009, Tingting Fu, Zhanji Wy
and Bowen Wang® gave a coding construction method based on the LDPC
codes of PEG algorithm structure; In 2011, Yi Fang and Lin Wangl®l et
al. proposed a joint optimization algorithm based on the protograph LD-
PC codes; In 2013, Lu Wang and Shuo Deng!”(8] used algebraic methods
to construct LDPC codes based on symplectic space, unitary space and
orthogonal space; In 2015, Jun Zhang, Guojun Han and Yi Fang!® con-
structed the LDPC codes based on the general protograph. In the same
year, Shu Chen and Xingi Yuan(!®proposed an improved method of con-
structing QC-LDPC codes based on PEG algorithm.

This article utilize inclusion relation of vector subspaces to structure
protograph, and then constructs the LDPC codes with larger girth based
on protograph by the modified progressive edge growth(M-PEG) algorith-
m, which provides a new method for constructing LDPC codes, and gets a,
new series of LDPC codes with good performance with important theoret-
ical significance and practical application value.

2. Preliminaries

In this section, we shall introduce the contents of LDPC codes and vec-
tor sapce over finite fields.

Firstly, the definition of LDPC codes is introduced.

LDPC codes are a class of linear block codes, defined by their parity-
check matrices. The parity-check matrix H is a matrix of size M x N, then
the code length is N, the length of information bits is K, the length of
checkaits M = N — K, the code word number D = ¢*, and the code rate
R=g.

Definition 2.1.1'Y] The parity-check matrix H of binary LDPC code sat-
isfies the following four condition:

(1) Each row cosists of p “ones”;

(2) Each column cosists of y “ones”;

(3) The number of “one” in common between any two rows (or two
columns) is no greater than 1;

(4) Both p and « are small compared to the length of the code and the
number of rows in H. That is, H has a small density of “ones” and hence
is a spare matrix.

For this reason, the code specified by H is called.an LDPC code. The
LDPC code defined above is known as a regular LDPC code. If not all
the columns or all the rows of the parity-check matrix H have the same



number of “ones”, an LDPC code is said to be irregular.

Lemma 2.2."1Let C be a linear code with check matrix H. Let d be the
largest integer such that any d of the columns of H are linearly indepen-
dent. Then C has minimum distance d+ 1. (Conversely, if C has minimum
distance d + 1 then any d columns of H are linearly independent.)

The Tanner graph is a graph that shows the constraint relationship be-
tween codeword bit and parity bits, each coded bit (corresponding to a
column in the check matrix) corresponds to a vertex, called variable node,
and each check bit (corresponding to a row in the check matrix) also corre-
sponds to a vertex, called check node. If a coded bit participates in a check
bit, the corresponding position in the check matrix is not zero. Whereupon
match the corresponding variable node and the check node by drawing a
line. After connecting all the graphs, the obtained graph is the Tanner
graph corresponding to the check matrix. The check matrix of each LDPC
code can be represented by the Tanner graph.

Definition 2.3.[ISeveral definitions of the Tanner graph:

(1)Degree refers to the number of edges that are connected to a vertex,
that is, the degree of the variable node is equal to the weight of the column
of the parity check matrix that correspond to the node, the degree of the
check node is equal to the weight of the row of the parity check matrix
corresponding to the node;

(2)Ring refers to a closed loop consisting of variable node, check node
and side;

(3)Girth refers to the length of the shortest ring in the Tanner graph.
Lemma 2.4.2 Any rings of LDPC code that length is L, satisfying L > 4,
and is a multiple of 2.

Next, we shall introduce the relative contents of vector space over finite

field.

Let IF, be the finite field with ¢ elements, where g is a power of a prime
and n be a positive integer. We use Fy to denote the n-dimensional row
vector space over the finite field F,,.

The set of n X n nonsingular matrices over F, forms a group under ma-
trix multiplication, called the general linear group of degree n over F, and
denoted by GL.(F,). In fact, GL,(F,) is transitive on the set of all sub-
spaces of the same dimension in F}.

Let s1, so be two integers. Then the Gaussian coefficient
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In particular, [ "‘1)2 ] = 1 for all integer 87, and [ sf L = 0 whenever
q

851 <0or sy < s1. : .
Lemma 2.5.12ILet 0 < m < n and N(m, n) be the number of m-dimensional

vector subspaces of Fy. Then

n
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Lemma 2.6.12Let 0 < ¢t < m < n and N(t,m,n) be the number of ¢-
dimensional vector subspaces contained in a given m-dimensional vector
subspace of . Then
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N(t,m,n) = N(t,m) = [ T’ L =

Lemma 2.7.12%Let 0 < t < m < n. Then the number N’(t,m,n) of
m-dimensional vector subspaces containing a given ¢-dimensional vector
subspace of [y is equal to

n—t
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N'(t,m,n) = N'(m—t,n—t) =

3. Protograph and LDPC codes based on protograph
3.1.Protograph

A protograph G = (V,C,¢) is a Tanner graph, which consists of V,C
being the set of variable and check nodes, respectively, and ¢ being the
set of undirected edges. The Tanner graph and its matrix are one-to-one
correspondence, thus, the protograph can be represented by matrices.

Note: The number of nodes included in the protograph are relatively
small, and parallel edges are allowed in the graph.
Definition 3.1.1. Given integers 1 < m; <m < n. Let G be the binary
matrix, whose rows are indexed by the m;-dimensional vector subspaces of
F7, and whose columns are indexed by the m-dimensional vector subspaces
of F7. G(4,5) = 1 if and only if the i-th m;-dimensional vector subspace is
contained in the j-th m-dimensional vector subspace, otherwise, G(3, j) =
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0.
By Lemmas 2.5,2.6 and 2.7, G is an M x N matrix, whose conatant

column weight is 7, constant row weight is p, where

ae[ 2] o[,
m |, m |,

[ m [ n=my

= my q,p~ m—m;y q'

From this, a protograph can be constructed.
Definition 3.1.2. Given integers 2 < m’ < n'. Let V; is a (m' — m})-
dimensional vector subspaces of Iy , where base

100 0 v+ 00 0
0 ¥ O oo O +:s

Gl 0.0 1 w0 0 vii D :
0 0 0 +¢v 1107 P

(m’=mi)xN

V, = {all m}-dimensional vector subspaces of ]F(’]"}, V is a m’-dimensional
vector subspaces of ng', and satisfies V = V; @ V,. Let G’ be the binary
matrix, whose rows are indexed by the m’-dimensional vector subspaces V
of ]FI]", and whose columns are indexed by the m]-dimensional vector sub-
spaces V, of IF;". G'(¢,4) = 1 if and only if the i-th m’-dimensional vector
subspace contains in the j-th m}-dimensional vector subspace, otherwise,
G'(i,5) = 0.
By Lemmas 2.5,2.6 and 2.7, G’ is an M’ x N’ matrix, where

m/ — (m' —mj) m
From this, a protograph can be constructed.

3.2.LDPC codes based on protograph

After expansion operation on a given protograph, an expanded proto-
graph, namely derived graph, is obtained, which corresponds to the proto-
graph LDPC code. Among them, the expansion operation is implemented
by the PEG algorithm.

The PEG algorithm is a simple and effective method for constructing
Tanner graphs, which aim to keep the large girth as much as possible, and
increase the edges of variable nodes and check nodes one by one. The ex-
isting PEG algorithm first gives the number of variable nodes, the number
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of check nodes and the distribution sequence of variable nodes, and then
select the program starts and place new edges. After the new edges are
placed, continue searching for the next edge until the end. In this paper,
the modified PEG(M-PEG) algorithm aims to increase the girth, remove
the small ring, and construct LDPC code with better performance.

Algorithm:

Initial value: The protograph G is a matrix of M x N, define a m x n
order all-one matrix, where m < M,n < N. Let i,j = 8,---,3,2, where
s <m.

(1)If i = s,j = s, find all s-order all-one matrices in the protograph G
in turn, that is,

[ 1 dlonid 1 1)
111 .1 11
(B2 B | 1. 1
B T | 1 O
i Bd T i T 1

WAL T PR TR S

keep 1 of its @11, Gn1, @12, G22, 023, G33, 034, G4d, ***» G(n—1)n) Gnn POSition,
replace at the remaining position with 0, that is,

(1111 11\
R e | 144
1ol ¥ kil il

1 sl ol |

s e R | o |
Vol T IS s
(1100 00\
0 1%1 0 0 0
0.0 .1 -1 00
peg 1000 7 1 00 :
000 O 14
\1.0.0 0 les

the transformed matrix is denoted as Gy;
(2)If i = s—1,j = s— 1, repeat the above step for all s — 1 order all-one

matrices in Gy;
(3)Continue in order until 7 = 3,5 = 3, at this time, find all 3 order
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all-one matrices in the transformed matrix, repeat step (1), that is
1 11 151 U
111 |—1011];
=1 1 1 01

the transformed matrix is denoted as Go;

WIf i = 2,5 =3, find all 2 x 3 order all-one matrices in G;, that is
( v ) Replace 1 at the a21, azz positions with 0, that is

¥ 1 1
i1 i 111\,
(1 1 1>—’(0 1 o>’
the transformed matrix is denoted as Gg3;
(5)If i = 3,7 = 2, find all 3 x 2 order all-one matrices in G3, that is

|
1 1 |. Replace 1 at the aj3, a3; positions with 0, that is

1 1

O = O
—

1 31
111 —
1 1

the transformed matrix is denoted as Gy;
(6)If i = 2,7 = 2, find all 2 order all-one matrices in G4, that is

( 1 1 ) Replace 1 at the a;2 positions with 0, that is

|
bWl g 3R
1| 1 F (B
the transformed matrix is denoted as Gs;

(7)At this time, redefine a null matrix G,, compare Gs with G, hold
position of 1 which transformed in G and add it to G,. The transformed
G, is Gg/, then combine G5 and G,/ into a new one matrix;

(8)Repeat (1) — (7) steps until no (1) — (6) steps appear;

(9)Check the resulting matrix and remove the duplicate column in the
matrix.

In summary, the final matrix is the check matrix of the LDPC code
constructed based on protograph.

1 11 110

Note: In (7),letG=| 1 1 1 ) ,Gs=1 0 1 1 |, compare Gg
1" 1 1 01

with G, the position of the change is az1, a3z, a13. Hold position of 1 which
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transformed in G and add it to G,. the transformed G, is Gq’, at this
0 01
time, G = 1 0 0 |, and then combine G5 with G,/ to obtain
0 1 0
11 0 0 0 1
01 1100 L
1 01 01 O
3.3.Example

Example 3.3.1.Suppose G be the protograph, which is constructed by
Definition 3.1.1. Let n = 4,q = 2,m; = 1,m = 3. Rows of the matrix G

are indexed by the 1-dimensional vector subspaces, (0001), (0010), (0011),
(0100), (0101), (0110), (0111), (1000), (1001), (1010), (1011), (1100), (1101),
(1110), (1111). Columns of the matrix G are indexed by the 3-dimensional

vector subspaces,

0 00 1 1000 000 1
0010)},{lo010]},{l0010],
0100 000 1 1100
1 000 00 01 1 00 0
-1 0. 0: ), 051 00 0 T2 0],
0001 1010 000 1
000 1 1 000 0010
o112 0].l01 0001300},
1°0.1:0 0010 1 00 1
1000 17001 1 000
01 0 1], o1 @20 T s
0010 0010 001 1
1 0.0 1 1 000 1 00 1
0 1.:0..0.);F.0 a:0;%. ) ulsl 12 Oiid
0011 0.0 7.1 0011

G(3,7) = 1 if and only if the i-th 1-dimensional vector subspace is contained
in the j-th 3-dimensional vector subspace. Thus, a 15 x 15 matrix G can
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be obtained as the protograph.

1 1111110000000 0)
111000011 110000
1110000000071 111
1001100110011°00
10,01 20000110011
10 0060 31 01 0 0. 000 B 1
bio( ol #0 0 1000 06 41 4 10 0
G¢=/| 0 deiil Voo Qoo - ds Dic 20 120
0 Bx0°1 01001010101
DILIgRONItOigiicg 10001 ¢ 1
e R N o g 0 R I B B o
ik 0 G B R S 1 R S R R
o011 00101100110
0 ol ST g 100 101 1D
(1000 4 o070 1 101 0° 6T

Extended the protograph G by the M-PEG algorithm, a LDPC code based
on protograph with a girth of 6 and a parameter of [39,24, 3] can be ob-
tained, and the extended protograph LDPC code is recorded as C, where
the code rate is =, the number of codewords is 2%,

We compare it with the existed LDPC code and the constructed LDPC
code based on vector space;

The parameters of the known LDPC code is [15, 7, 5](*1, denoted by C;,
code rate is 115, girth is 6, and codeword number is 27. The parameters of
constructed LDPC code based on vector sapce is [35, 24, 4], denoted by C,,
code rate is 22, girth is 6, and codeword number is 224, Thus we can get
that the length of code C is larger than code C; and C; when the girth is
the same. Moreover, the codewords and code rate of C are larger than that

of the known code C;.

N|K|JL|JR]D
C (3924652
C.l15]7][6]]2
Co|35(24]6] % |2°

Example 3.3.2.Suppose G’ be the protograph, which is constructed by

Definition 3.1.2. letn’=4,q=2,m’1=1,m'=3’V1={((1) (1) g 8>}’

V = { all 1-dimensional vector subspaces of F3}, V' is a 3-dimensional vec-
tor subspaces of F4, and satisfies V = Vi @ Va. Rows of the matrix G’ are

s N



indexed by the 3-dimensional vector subspaces v,

1 000 1 000 1 0
01 00 ;{01001 o0 0 1;
0010 0 00 1 0 1

Columns of the matrix G’ are indexed by the 1-dimensional vector sub-
spaces Vo. Where G’(%,7) = 1 if and only if the i-th 3-dimensional vector
subspace contains in the j-th 1-dimensional vector subspace. Thus, a 3 x 15
matrix G’ can be obtained as the protograph. That is

Extended the protograph G’ by the M-PEG algorithm, a LDPC code based
on protograph with a girth of 6 and a parameter of [6, 3, 3] can be obtained,
and the extended protograph LDPC code is recorded as C’, where the code

i
ratelsi.
C = ( )

We compare it with the existed LDPC code;

The parameters of the known LDPC code is [15, 7, 5|11, we denote this
code as C1, which has code rate ;= and girth 6. Thus we can get that the
rate of code €’ is larger than that of code C; when the girth is the same.

Qi
= O

oo~
o = O
= =)
—
oo+
=S
- o O
—
O O ==
o= O
- O O

o O -
o = O
- O O
=
o
- O

N[K|[L[R
cle|3]6] 3
C. 15|76 l—i_
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