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Abstract

A mazimal independent set is an independent set that is not a
proper subset of any other independent set. A twinkle graph W is a
connected unicyclic graph with cycle C such that W — z is discon-
nected for any « € V(C). In this paper, we determine the largest
number of maximal independent sets and characterize those extremal
graphs achieving these values among all twinkle graphs. Using the
results on twinkle graphs, we give an alternative proof to determine
the largest number of maximal independent sets among all connected
graphs with at most one cycle.

1 Introduction

Let G = (V,E) be a simple undirected graph. An independent set is a
subset S of V such that no two vertices in S are adjacent. A mazimal
independent set is an independent set that is not a proper subset of any
other independent set. The cardinality of the set of all maximal independent
sets of a graph G is denoted by mi(G). Around 1960, Erdés and Moser
proposed the problem of determining the maximuin number of mi(G) in
the family of graphs of order n and characterizing those extremnal graphs
achieving the maximum value. Shortly after, Moon and Moser [9] solved
the problem. The same problem was investigated for certain families of
graphs, including trees [4, 10, 11], forests [4], (connected) graphs with at
most one cycle [4], (connected) triangle-free graphs [1, 2].

A twinkle graph W is a connected unicyclic graph with cycle C such that
W — z is disconnected for any z € V(C). Additionally, a connected graph
G with vertex set V(QG) is called a quasi-tree graph, if there exists a vertex
z € V(G) such that G — z is a tree. The concept of quasi-tree graphs was
mentioned by H. Liu and M. Luin [8]. Lin (6, 7] determined the largest and
the second largest numbers of mi(G) among all quasi-tree graphs and quasi-
forest graphs of order n. M. J. Jou and G. J. Chang [4] found the maximum
number of maximal independent sets in connected graphs which contain at
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most one cycle. Trivially, the set of all connected graphs with at most one
cycle is the union of the set of trees, twinkle graphs and quasi-tree graphs
with exactly one cycle. In this paper, we determine the largest number of
maximal independent sets and characterize those extremal graphs achieving
these values among all twinkle graphs. Using the results on twinkle graphs,
we give an alternative proof to determine the largest number of maximal
independent sets among all connected graphs with at most one cycle.

2 Preliminary

In this section, we present some notations and prelininary results, which
will be helpful to the proof of our main results in the next section. For
a graph G = (V, E), the cardinality of V(G) is called the order, and it is
denoted by |G|. The neighborhood Ng(v) of a vertex v € V(G) is the set of
vertices adjacent to v in G and the closed neighborhood Ng[v] is {v}UNg(v).
The degree of z is the cardinality of Ng(z), denoted by degg(z). A vertex
z is a leaf if degg(z) = 1. A vertex is called a support verterif it is adjacent
to a leaf. For a set A C V(G), the deletion of A from G is the graph G — A
obtained from G by removing all vertices in A and their incident edges. If
A = {v} is a singleton, we write G — v rather than G — {v}. Two graphs G;
and G, are disjoint if V(G1)NV(G3) = 0. The union of two disjoint graphs
G, and G, is the graph G,UG; with vertex set V(G1UG2) = V(G1)UV (G,)
and edge set E(G; UG,) = E(G1) U E(Gz). nG is the short notation for
the union of n copies of disjoint graphs isomorphic to G. Denote by K, a
complete graph with n vertices and P, a path with n vertices. Throughout
this paper, for simplicity, let 7 = V2.

Lemma 2.1. ([2, 3]) If u is a leaf adjacent to v in a graph G, mi(G) =
mi(G — Nglu]) + mi(G — Ng[v]).

Lemma 2.2. ([3]) If G is the union of two disjoint graphs G, and G4, then
mi(G) = mi(Gy) - mi(Gy).

The results on the largest numbers of maximal independent sets for
trees and forests are presented in Theorems 2.3 and 2.4, respectively.

Theorem 2.3. ([4]) If T is a tree of order n > 1, then mi(G) < ty(n),
where

i(Al= { Pt if n is odd,

=241, ifn is even.
Furthermore, mi(T) = t1(n) if and only if T € Ty(n), where

_ [ B(1,25%), if n s odd,
Ti(n) = { B(2, 22:2) or B(4,254), ifn is even,



where B(i,j) is the set of batons, which are the graphs obtained from a
basic path P of i > 1 vertices by attaching j > 0 paths of length two to the
endpoints of P in all possible ways (see Figure 1).

Figure 1: The baton B(i,j) with j = j; + j2

Theorem 2.4. ([4]) If F is a forest of order n > 1, then mi(G) < fi(n),
where

P13 15 -6dd,

hin) = { rh if n is even.

)

Furthermore, mi(F) = fi(n) if and only if F' € Fy(n), where

5 (1, n=1=25)UshP,, ifn is odd,
A1(R)'= { 555, if n is even,

se

-

where 0 < s < o

The results on the second largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.5 and 2.6, respec-
tively.

Theorem 2.5. ([5]) If T is a tree of order n > 4 with T ¢ Ty(n), then
mi(T) < tao(n), where

P2 if n > 4 is even,
ta(n) = ¢ 3, ifn =5,
3r"=5 41, ifn>7isodd.

Furthermore, mi(T) = ty(n) if and only if T € {T5(8),T4(8), Pio,T2(n)},
where Ta(n) and T5(8), T4 (8) are shown in Figures 2.

Theorem 2.6. ([5]) If F is a forest of order n > 4 with F ¢ Fy(n), then
mi(F) < fa(n), where

3rn=4, ifn >4 is even,
fa(n) =¢ 3, ifn=>5,
=T ifn > 7 is odd.



g

Te(n), n > 4 is even T5(5) Tze(n), n > 7 is odd
T5(8) T5(8)

Figure 2: The trees T(n), T5(8) and T3'(8)

Furthermore, mi(F) = fa(n) if and only if F € F5(n), where

Py U "T“4P2, if n > 4 is even,
Fy(n) T5(5) or PLU Py, ifn=35,
P7 U nT_—ng, zfn > 7 is odd.

The result on the largest and the second largest numbers of maximal in-

dependent sets among all quasi-trees are described in Theorems 2.7 and 2.8,
respectively.

Theorem 2.7. ([6]) If Q is a quasi-tree graph of order n > 5, then
mi(Q) < qi(n), where

() 34, if n is even,
D\ =19 -1y 1, ifn is odd.

Furthermore, mi(Q) = q1(n) if and only if Q € {Q1(n),Cs}, where Q,(n)
is shown in Figure 3.

Dh

Qlo

n is even n is odd
Figure 3: The graph Q;(n)
Theorem 2.8. ([7]) If Q is a quasi-tree graph of order n > 7 with Q &
{@:1(n), Cs}, then mi(Q) < g2(n), where

(i) = 576 4+1, ifn> 8 is even,
2\ = ph=t ifn>7 s odd.



Furthermore, mi(Q) = g2(n) if and only if Q € Q2(n), where

_ | Qae(n) or Q3.(n), if n > 8 is even,
Qa(n) = { Q4(7), Q5(7), @4(7), Q4(7) or B(L,25L), ifn > 7 is odd,

where Q2¢(n), Q3.(n), Q1(7),Q5(7), Q3(7) and Q4(7) are shown in Figure

4.
QQe Q2e
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Figure 4: The graphs Q2.(n), Q5.(n), Q1(7), Q5(7), Q4(7) and Q4(7)

3 Main results

In this section, we determine the largest number of maximal independent
sets among all twinkle graphs. We also characterize those extremal graphs
achieving this maximum value. As a consequence, the results for connected
graphs with at most one cycle is given.

Define the graph Wj(n) of order n > 6 as follows.

W1(6), if 7:=6;
) W), n=9
Wi(n) = Wio(n), ifn=17,n>111is odd,

Wi, (n) or Wie(n), ifn > 8is even,

where Wy (6), W1(9), Wio(n), Wi.(n) and Wy.(n) are shown in Figure 5.



er(n) Wle(n)

Figure 5: The graphs W;(6), W1(9), Wio(n), Wi (n) and Wie(n)

Let wy(n) = mi(W), where W € Wy(n). For a simple calculation, we
have that

4, itR="6
i) = 13, ifn=9,
. 3rn—5 ifn="7n>111is odd,

bl

=241, ifn>8iseven.
In this paper, we will prove the following result.

Theorem 3.1. If W is a twinkle graph of order n > 6, then mi(W) <
wy(n). Furthermore, the equality holds if and only if W € Wi (n).

Besides, it is straightforward to check that W;(6), W;(7) and W;(8)
and W;(9) have the largest numbers of independent sets among all twinkle
graphs of order 6, 7, 8 and 9, respectively. Hence we consider the case for
n > 10 in the sequel.

In the following, let u be a leaf lying on a longest path P joining « and
the unique cycle C of a twinkle graph W, say P = w,v,w, ..., and £(u, C)
the length from u to C.

We prove Theorem 3.1 by establishing the following three lemmas.

Lemma 3.2. If W is a twinkle graph of order n > 10 with Yu,0) =
then mz(W) < wy(n).

Proof. Since £(u,C) =1 and u is a leaf, W — Ny[u] is the union of ¢ > 0
isolated vertices and a tree T with n — 2 — ; vertices. Thus mi(T) <

tl(n 2—1i) < t)(n—2). On the other hand, W — N~[v] is the union
of i/ > 2 isolated vertices and a tree T/ with n —4 — i — i/ ver tices. Thus



mi(T') < ti(n—4—1i—14') <t;(n—6). Hence, by Lemma 2.1, we have that

mi(W) = mi(W — Nylu]) + mi(W — Ngz[v])
=mi(iK,) - mi(T) + mi(i'K;) - mi(T")

r(n=2)-2 1 1 4 7(n-6)-2 41 if nis even,
=1 #n=2)=1 4 pin=6)=1 if n is odd,

< wy(n).

This completes the proof. O

Lemma 3.3. Suppose that W is a twinkle graph of order n > 10 with
l(u,C) = 2. Ifz € V(C) is not a support vertez with deggy;(z) = 3, then

mi(W) < w;(n).

Proof. Since £(u,C) = 2, we assume that the longest path P : uvw joining
the leave u and the unique cycle C. Note that w € V(C) is not a support
vertex, by assumption, we have that degy;(w) = 3. It follows that W —
Ny [u] is the union of j > 0 isolated vertices and a quasi-tree Q of order
n — 2 — j with exactly one cycle. Note that B(1, 1_2&1), Qi(n -2 —3),
Q3(n — 2 — j) are not unicyclic and |{z € V(C) : degg(z) = 2}| = 1
implies that @ # Q1(n —2-7), Q2e(n—2—j), Q3. (n—2~j), Q1(7), Q2(7),
Q4(7). In addition, if Q@ = Q5(7), then W =W®. See Figure 6. By simple
calculation, we have that mi(W®)) = 13 < w;(n) for n > 10. Thus, by
Theoremn 2.8, we have that

mi(Q) < g2(n—2-37)-1<q(n—-2)-1. (1)

On the other hand, W — Ny [v] is a tree T” with n — 3 — j vertices.
Suppose that T" = Ti(n — 3 — j). Since £(u,C) = 2 and degg(w) = 3,
it follows that there are three possibilities for graph W. See Figure 6. By
simple calculation, we have mi(W()) = 6, mi(W®?) = 9 and mi(W®) =
13. It follows that mi(W®) < w,(n) for n > 10 and i = 1,2, 3. In addition,
{(u,C) = 2 implies that T” # To(n — 3 — j).

W W@ W

Figure 6: The three possibilities for graph W



Now consider that 7" # Ti(n — 3 - j),To(n — 3 — j). By Theoremn 2.5,
we have that

mi(T") < ta(n—3— )~ 1< to(n—3) - 1. (2)
By Lemma 2.1, 2.2 and (1),(2), it follows that

mi(W) = mi(W - Nig[u]) + mi(W - Ngy[u])
i(5K,) - mi(Q) + mi(T")

m
(5rA=2)264. 1 _ 1)+ (3r(-3-5+1-1), ifn iseven,
@zl 1) (=32 - 1), if n is odd,
w

rn=8 4 gpn=8, if n is even,
3 1451, ifnisodd,

This completes the proof. .

Lemma 3.4. If W is a twinkle graph of order n > 10 that W does not
satisfy the conditions of either Lemma 3.2 or Lemma 3.3, then mi(W) <
wy(n). Furthermore, mi(W) = wy(n) if and only if W € Wy(n).

Proof. We shall prove this case by induction on n. It is true for n =
10,11. Assume that it is true for all n’ < n. Suppose that W is a twinkle
graph of order n > 10 such that W does not satisfy the conditions of
either Lemma 3.2 or Lemma 3.3. Then there exists a leaf u such that
W — Ny [u] is the union of 7 > 0 isolated vertices and a twinkle graph W'
with n — 2 — 7 vertices. Thus, by the induction hypothesis and Lemma 2.2,
mi(W — Nwlu]) < mi (rKy) -mi(W') <wy(n-2-71) <wy(n—2). Also,
mi(W — Nw [u]) = w1(n~2) implies that 7 = 0 and W — Ny [u] = W1 (n—2)
hy the induction hypothesis. On the other hand, there are three possibilities
for W — Ny [v], which are

o A forest F with at most n — 3 vertices. Suppose that F = Fi(n — 3),
then W = @, when n is odd. This is a contradiction to W being a twinkle
graph. So, by Theorem 2.4 and 2.6, we have that

p(n=3)-1

) if n is even,
mi(W = Nwe]) < { (n=3)-4 " ifnis odf; (3)

o The union of a forest and a quasi-tree graph Q with s > 5 vertices.
Since Q7(s) and Q3,(s) are not unicyclic and |{z € V(C) : degg(z) =
2}| = 1, it follows that Q # Que(s), Q10(8), Q2¢(s). So, by Theoremn 2.7

10



and 2.8, we have that

(5r*=6 +1 —1)r(n=3)=s=1 " if 5 is even, n is even,
ri—1p(n=3)-s if s is odd, n is even,
(5r°=6 +1—1)r(n=3)=s if 5 is even, n is odd,
pi—lpin—g)—s—1 if 5 is odd, n is odd.

(4)

e The union of a forest and a twinkle graph W with t > 6 vertices. So,
by the induction hypothesis, we have that

mi(W — Nw [v]) <

(rt=2 4+ 1)r(n=3)=t=1 " if ¢ is even, n is even,

3rt—5p(n—3)—t if t is odd, n is even

. - < ) ) )
mi(W —Nwv]) < (rt=2 4 1)r(n=3)=t if t is even, n is odd, (5)

gpt=bpin=8)=t—1_ if t is odd, n is odd.

Thus, by (3), (4) and (5), we have that

max{r”“‘, 5,,.11.—10, ,,.n—4’ 7.11—6 4 7‘"—4—t, 37.71—8},
if n is even,
mi(W — Nw[v]) <

maX{8r s L B S T Rkt 3 0,

if n is odd,
” =4 if n is even,
=1 377, ifnis odd.
Also, if the equalities hold, then
_f Fi(n—=3)or Q3(7)U2ZRP,  if n is even,
W - Npg) = { Fy(n —3), if n is odd.

Hence, by Lemma 2.1, we obtain that

mz(W) = mz(W — Nw[u]) + mz(W — NW[’U])

2 wi(n—2)+r""4  if nis even,
= | wi(n—2)+3r"-7 ifnisodd,

= (r"=t 4+ 1)+ "4, if nis even,
IPR=T 4 BpA=T. if n is odd,

= wl(n).

)

Furtherinore, the equality holding imply that W — Nw [u] = Wi (n —2) and
W — Nw|v] is as above. In conclusion, W € Wi(n). a

11



Theoremn 3.1 now follow from Lemmas 3.2, 3.3 and 3.4.

The set of all connected graphs with at most one cycle is the union of the
set of trees, twinkle graphs and quasi-tree graphs with exactly one cycle.
By Theorem 2.7, Cs, Q1,(n) and Q1¢(n) are quasi-tree graphs with only one
cycle. Combined with Theorems 2.3, 2.7, 3.1 and w;(n) < ti1(n) < q1(n),
we have

Theorem 3.5. ([4]) If G is a connected graph with at most one cycle of
order n > 5, then mi(G) < g(n), where

(n) = B, if n-is even,
=1 pn- +1, ifnis odd.

Furthermore, mi(G) = g(n) if and only if F € G(n), where

_ | @ie(n), if n is even,
s { Q10(n) or Cs, ifn is odd.

References

[1] G. J. Chang and M. J. Jou, The number of mazimal independent sets
in connected triangle-free graphs, Discrete Math. 197/198 (1999) 169—
178.

[2] M. Hujter and Z. Tuza, The number of mazimal independent sets in
triangle-free graphs, SIAM J. Discrete Math. 6 (1993) 284-288.

[3] M. J. Jou, The number of mazimal independent sets in graphs, Mas-
ter Thesis, Department of Mathematics, National Central University,
Taiwan, (1991).

[4] M. J. Jou and G. J. Chang, Mazimal independent sets in graphs with
at most one cycle, Dicrete Appl. Math. 79 (1997) 67-73.

[5] M. J. Jou and J. J. Lin, Trees with the second largest number of maa-
imal independent sets, Discrete Math. 309 (2009) 4469-4474.

[6] J. J. Lin, Quasi-tree graphs with the largest number of mazimal inde-
pendent sets, Ars Combin. 97 (2010) 27-32.

[7] J.J. Lin, Quasi-tree graphs with the second largest number of mazimal
independent sets, Ars Combin, 108 (2013) 257-267.

(8] H. Liu and M. Lu, On the spectral radius of quasi-tree graphs, Linear
Algebra Appl. 428 (2008) 2708-2714.

12



[9] J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3
(1965) 23-28.

[10] B. E. Sagan, A note on independent sets in trees, SIAM J. Discrete
Math. 1 (1988) 105-108.

(11] H. S. Wilf, The nunmber of mazimal independent sets in a tree, SIAM
J. Algebraic Discrete Methods 7 (1986) 125-130.

13



