The Ring of Support-Classes of SLy(IF,)

Roland Bacher*

Abstract!: We introduce and study a subring SC of Z[SL3(F,)] obtained
by summing elements of SLy(FF,) according to their support. The ring SC
can be used for the construction of several association schemes.

1 Main results

Summing elements of the finite group SL2(F,) according to their support
(locations of non-zero matrix coefficients), we get seven elements (six when
working over Fs) in the integral group-ring Z[SLo(IF,)].

Integral linear combinations of these seven elements form a subring SC,
called the ring of support classes, of the integral group-ring Z[SLy(F,)).
Supposing ¢ > 2, we get thus a 7—dimensional algebra SCx = SC ®z K
over a field K when considering K—linear combinations.

This paper is devoted to the definition and the study of a few features
of SC.

More precisely, in Section 2 we prove that the ring of support-classes
SC is indeed a ring by computing its structure-constants.

Section 3 describes the structure of SCq = SC ®z Q as a semi-simple
algebra independent of ¢ for ¢ > 2.

In Section 4 we recall the definition of association schemes and use SC
for the construction of hopefully interesting examples.

Finally, we study a few representation-theoretic aspects in Section 5.
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2 The ring of support-classes

Given subsets A, B,C, D of a finite field F,, we denote by

CEIE > (44 )

(a,b,c,d)eAx BXCxD,ad—bc=1

the element of Z[SL2(FFy)] obtained by summing all matrices of SLz(F,)

with coefficients a € A,b € B,c€C and d € D.
Identifying 0 with the singleton subset {0} of F; and denoting by Fg =

IF, \ {0} the set of all units in g, we consider the seven elements
F* O _( 0 F; ¥} Fy )
a=(§ g )e-(m §)o-(& &)
F*: T F* O
D= ) D= B m )
% 0 [y By IS
F* [ 0 [
E, = ( 4 J ) ) E_ = ( * 4 ) #
X Fg 0 Fq Fq
corresponding to all possible supports of matrices in SLz[F,4]. The element
C is of course missing (and the remaining elements consist simply of all
six matrices in SL2(F2)) over [F5. For the sake of concision, we will always

assume that ¢ has more than 2 elements in the sequel (there is however
nothing wrong with finite fields of characteristic 2 having at least 4 ele-

ments).
We denote by

SC=ZA+ZB+72ZC+ZDy +2ZD_+ZFE, +ZE_

the free Z—module of rank seven spanned by these seven elements.
The set SC can also be described as the subset of all elements

Z Asupp(mM) [M]
MeSL (F,)

in Z[SLz(IF,)] with integral coefficients Asupp(nry depending only on the sup-
port of M.
We call SC the ring of support-classes of SLa(F,), a terminology moti-

vated by our main result:
Theorem 2.1 SC is a subring of the integral group-ring Z[SL2(IFg)].

The construction of SC can be carried over to the projective special
groups PSL,(F,) without difficulties by dividing all structure-constants by
2 if q is odd. The obvious modifications are left to the reader.
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Another obvious variation is to work with matrices in G La(F,). This
multiplies all structure-constants by (¢ - 1) (respectively by m if working
with the subgroup of matrices in GLy(IF,) having their determinants in a
fixed multiplicative subgroup M C IFy with m elements).

We hope to address a few other variations of our main construction in
a future paper.

Products among generators of SC are given hy

AX = XA=(q-1DXfor X e {AB,C, Dy Ey)},

B* = (¢-1)4
BC=CB = (¢-1)C,
BD,=D_B = (¢-1)E_,
BD_=DiB = (¢q-1)Ey,
BE,=E_B = (¢-1)D_,
BE_=EB = (¢-1)Dy,
C? = (¢-1)*g-2)(A+B)+(a-1)(g-3)g-4)C
+e-1)(¢-2)(g-3)(D+ + D-+ Ey + E-),
CDy=CE. = (¢-1)(g-3)C + (g~ 1)(g - 2)(D- +E4),
CD-=CEy = (¢-1)(g-3)C+(¢-1)(g-2)(D4 + E-),
DiC=EC = (q-1)(g-3)C+(g-1)g=2)(D- +E.)
D-C=E.C = (¢-1)(g-3)C+(q-1)(¢—2)(D+ + E4),
Di=E.E. = (q-1)*4+(q-1)(g-2)Ds,
DiD-=E} = (¢-1)(C+E-),
D_Dy =E? (¢-1)(C +E4),
DiE; =E,D_ (¢-1)*B+ (¢ —1)(g—2)E4,
E;Dy=DE. = (¢-1)(C+D.),
E_Dy=D_E_ = (q-1)*B+(g-1)¢-2)E-,
D2=E_E; = (¢-1)%A+(q-1)(¢-2)D-,
D_Ey=E_D_ = (q-1)(C+Dy).

Easy consistency checks of these formulae are given by the antiauto-
morphisms ¢ and 7 obtained respectively by matrix-inversion and matrix-
transposition. Their composition 0 o 7 = 7 o ¢ is of course an invo-
lutive automorphism of Z[SLy(F,)] which restricts to an automorphism
of SC. Tt coincides on SC with the action of the inner automorphism
X =2 ( _01 (1) )X( ? _01 > of Z[SLy(FF,)], fixes A, B, C and trans-
poses the elements of the two pairs {D4, D_} and {Ey, E_}.
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Remark 2.2 The construction of the ring SC described by Theorem 2.1
does not generalise to the matriz-algebra of all 2 x 2 matrices over Fy.
Indeed, ( g? v ) ( Fo B ) equals, up to a factor (q — 1), to the sum
00 0
of all (¢ — 1)3 possible rank 1 matrices with all four coefficients in F;.
Square rank one matrices of any size behave however rather welz The
set of all (2" — 1)? possible sums of rank 1 matrices of size n x n with
prescribed support s a Z-basis of a ring (defined by extending bilinearly the
matriz product) after identifying the zero matriz with 0.

2.1 Proof of Theorem 2.1

We show that the formulae for the products are correct. We are however not
going to prove all 72 = 49 possible identities but all omitted cases are similar
and can be derived by symmetry arguments, use of the antiautomorphisms
given by matrix-inversion and transposition, or (left/right)-multiplication

by B.
Products with A or B are easy and left to the reader.
We start with the easy product D3 (the products

DyE.,E.D_E_D,,D_E_ D®,E_E,

are similar and left to the reader). Since A + D, is the sum of elements
over the full group of all g(q — 1) unimodular upper-triangular matrices, we

have (A + D4)? = q(qg — 1)(A + D) showing that
D} = (A+D,)?-2AD, - A?
= glg=1A+ Dy)-2g=1)Dy-(¢=1)A
= (¢-1)°A+(¢-1)(g—2)Ds4.

For D, D_ we consider
a b; as 0 _ [ aa2 + b1by bl/ag )
0 1/a1 bo 1/a2 bz/al 1/(0’10'2) "
Every unimodular matrix ( ,C; ? with 3,7, in F; can be realised as a
summand in the product Dy D_ in exactly (g—1) different ways by choosing
a freely in F; and by setting
B T
= 0.15’
This shows Dy D_ = (¢ — 1)(C + E_). The products

B, DDy B By Dy DBy D -EuE D:

bg =ay”.
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are similar.
In order to compute D C, we consider (D4 + A)(C + D_ + Ey). Since

ai bl (1) 1)2

0 1/a c2 (14 bgez)/ay
ajag + bicz  apby + by(1 4 baez)/ay )

62/01 (1 - szg)/((llag)

every unimodular matrix ( : ? ) with v € F; can be realised in exactly

(g —1)? ways as a summand in (D4 + A)(C + D- + E}) by choosing a1, a;
freely in I3 and by setting

a—ajaz ajagd — 1
1b2 ==
a1y ary

This shows (Dy + A)(C+D_-+Ey) = (¢g-1)2(B+C+D_-+E4+E_).
We get thus

.G
= Dy +A)NC+D-+Ey)-A(C+ D=+ E;)~DyD= — Doy
= (q-1)*B+C+D_-+E;+E.)—(q—-1)(C+D-+E,)

—(g-1)(C+E_)—(¢-1)*B—-(g-1)(¢-2)E+
= (@-1(g-3)C+(q-1)(g-2)(D-+E.).

by = yCo = A17.

The products
¢D,,CE_,CD_,CE,,E.C,D_C,E_C

are similar.
Using all previous products, the formula for C? can now be recovered

from (A+ B4+ C+Dy+D_+E,+E_ ) =(¢®*-q)(A+B+C+ Dy +
D_ + E, + E_). We have indeed

C? = (A+B+C+D,+D_+E;+E > - > XY
(X,Y)#(C,C)

where the sum is over all elements of {4, B,C,D+,D_,E.,E_}?\ (C,C).
All products of the right-hand-side are known and determine thus C2.
Equivalently, structure-constants of C? have to be polynomials of degree
at most 3 in q. They can thus also be computed by interpolating the co-
efficients in 4 explicit examples. (Using divisibility by ¢ — 1, computing 3
examples is in fact enough.)

The existence of these formulae proves Theorem 2.1. O
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2.2 Matrices for left-multiplication by generators
Left-multiplications by generators with respect to the basis A, B,C, Dy, D_,

E4, E_ of SC are encoded by the matrices

)

0 000 1O00O0

0 001O0O0TO0

0 00 O0O0O0O?11

0 00O0O0OT1TPO
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is the matrix corresponding to the automorphism o o 7.
The map {A,B,C,D,,D_,E,,E_} 3 X — Mx extends of course to
an isomorphisme between SC and

ZM4 + ZMp + ZMc + ZMp, + ZMp_ + ZMEg, +ZMpg_

which is a ring. Computations are easier and faster in this matrix-ring than
in the subring SC of Z[SLy(IF,)).

3 Algebraic properties of SCq

3.1 SCq as a semisimple algebra

Theorem 3.1 The algebra SCq = SC ®z Q is a semi-simple algebra iso-
morphic to Q& Q & Q & M2(Q).

The structure of SCx = SC ®z K is of course easy to deduce for any
field of characteristic 0.

The algebra SCk is also semi-simple (and has the same structure) over
most finite fields.

Theorem 3.1 is an easy consequence of the following computations:

The center of SCq has rank 4. It is spanned by the 3 central minimal
idempotents

1
m o= 5 (A+B+C+Di+D_+E, +E.)
q—2
T A+ B
2 2(q2—q)( )
. Y oG IR (b owD 2B, 45
glg=1)2 7. y20(ge 12 T T T i e a
1 1
= A=R =D 2 De 4Bk B
3 2(q+1)( )+2(q2_1)( + + ++ )

and by the central idempotent

2(g-1)A-2C+(q-2)(D+ +D-) - (E4+ + E-)
(¢+1)(g—1)2

which is non-minimal among all idempotents. The three idempotents 7y, 7o

and 73 induce three different characters (homomorphisms from SCq into

Q). Identifying 1 € Q with 7; in each case, the three homomorphisms are

given by

Ty =

A B C Dy Ey
m g¢-1 g—1 (g-1)%(¢g-2) (¢—1)* (¢—1)°
e g=1.4=1 2(¢—-1) l=g_ 1=g¢
m3 q—1 1—gq 0 1—g¢ qg-—1
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The idempotent m, is of course simply the augmentation map counting the
number of matrices involved in each generator.

The idempotent 7y + w9 + 73 + 74 = q‘ A is the identity of SCq.

The idempotent 74 projects SCq homomm phically onto a matrix-algebra
of 2 X 2 matrices.

m4 can be written (not uniquely) as a sum of two minimal non-central
idempotents. We have for example w4 = M1 + My o where

My, = (A-B)+ Dy+D--Ey - E-),

(A+ B) - C+

ke (g+1)(g-1)?

Tag+1)(g-1)

1
My, = 2(q — 1)2 (D — D % By = B=);

1
My, = (DL = DL 4182,

’ 2(¢* - 1)
the elements M; ; behave like matrix-units and the map

( (cl Zv ) — aMy1 +bMy o+ cMa 1 +dMay (1)
defines thus an isomorphism from the ring of integral 2 x 2 matrices into
SCq = SC ®z Q. If F, has odd characteristic, the elements M; ; can be
realised in SCp, = SC ®z F,. In particular, Formula (1) gives an “exotic”,
non-unital embeddmg of SLz[qu] into the group-algebra Fy[SLy(Fq)] (m
fact, (1) gives an embedding of SLy(F,) into F,[SLa(Fy)] whenever the
prime power 7 is coprime to 2(¢g% — 1)).
The nice non-central idempotent

7T3+M1,1= A-B)

2(q—1)(

projects SCq onto the eigenspace of eigenvalue 1—g of the map X +— BX.
The projection of SCq onto the eigenspace of eigenvalue ¢ — 1 of the

map X — BX is similarly given by

T+ g+ My = (A + B).

1
2(¢—1)
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3.2 A few commutative subalgebras of SCq

The previous section shows that the dimension of a commutative subalgebra
of SCq cannot exceed 5.

The center of SCq is of course of rank 4 and spanned by the four minimal
central idempotents 7y,...,m4 of the previous Section.

Splitting mq = My,) + My 2, we get a maximal commutative subalgebra
of rank 5 by considering the vector space spanned by the minimal idempo-
tents 1,2, T3, M1,1, Mo o. Equivalently, this vector space is spanned by
A B,C,D=Dy+D_,E=Ey+E_, as shown by the formulae for 7; and
My 1, M2

In terms of A, B, C, D, E, minimal idempotents 7y, w9, 73, M1,1, M2 2 are
given by

1
m = 5_ (A+B+C+D+E)

S 2(?12_—2q) b ) a(g i 1)20 A 2(1(qq——21)2 b
™ = ggan @Bty y(-D+B)
Mis = p_ A-B)tya (D-B)
Hab = q21— i (q+1)?q— 1e¢ ¥
*ag+ 1~ P+ B

They define five characters given by QA+ --- + QE — Q given by

A B C D E
m g-1 g-1 (¢g=1)>%*g-2) 2(g—1)* 2(g — 1)2
T q-1 ¢g-1 2(¢-1) 2(1-q) 2(1 -q)
T3 q—1 1-—¢ 0 2(1-q) 2(q 1)
My g-1 l-g 0 (g —1)? —(g—1)?

Mya q-1 g-1 2(1-¢q)(g-2) (g-1)(g-3) (¢-1(@-3)

Moreover, A, B,C, F = D + E span a commutative 4-dimensional sub-
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algebra. Minimal idempotents are

1
= A+B+C+F
m qg_q( +C+F),
q—2 1 =
= A+B 8 — sl
. %ﬁ-Q% )+ﬂq—U2 2ﬂq~1yﬁz

7r3+Ml,1 = 2(q_1)(A_B))

1 2
Mys = —(A+B)-
o ‘12‘1( el @+D@-12 "
q-—3
2(¢+1)(g~-1)2
with character-table
A B C F
m g—-1{qg-1|(q-1)%*g-2)] 4(¢g—1)°
2 g-1|qg-1{ 2(q-1) 4(1~q)
ma+Mi|lg=-1]|1-g¢ 0 0
Mas |g—1[qg-1|2(1-q)(¢—2)|2(q—1)(q—3)

I = A+B,C,F = E+D span a commutative 3—dimensional subalgebr
of SCc. Generators of this last algebra are sums of elements in SLy (Fq) wit:
supports of given cardinality. I is the sum of all elements with two non-zer
coefficients, C contains all elements having only non-zero coefficients aru
F contains all elements with three non-zero coefficients.

Products are given by IX = XI =2(¢—1)X for X € {I,C, F} and

C* = (¢-1)*q-2I+(g-1)g-3)g-4C
+g-1)(g-2)(g-3)F,

CF = FC=4(q-1)(g-3)C+2(g-1)(g—2)F,

F? = 4(q-1)2I+8(q—1)C+2(q—1)F.

Idempotents are given by

1

WS I[+C+F),

b T )

g—2 1 q—2

Ty = I+ a = F,
A =Y)" " q@=IE T " 2(g=1)°
1 92

My, = I = C
-1  G+)g-1 "

q—3
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with character-table

¥ C F

m  2¢-1) (¢-1)7%*-2) d(g-1)°
m 2q-1)  2g-1) 4(1-q)
Moo 2(g-1) 201-q)(g-2) 2(¢q-1)(¢~3)

Working over C (or over a suitable extension of Q) and setting
1

1 N 1 i
I[,C = C,F = F
2(q - 1) V2(g-1)%q-2) V8(q —1)3

we get products XY = 37,7 a #) Nx,v,2Z which are defined by sym-

metric structure-constants Nx,v,z = Ny x,z = Nx zy for all X|Y,Z €

{f 6, F‘}. Up to symmetric permutations, the structure-constants are given
by

I=

Ni,x,Y = Oxy
Nans = (@-3(-4)
“OC T Valg-1)g-2)
D
N-,C',F = (q—3)\/q—]_

q-1

qg-1
2

where 6xy = 1 if and only if X = Y and dxy = 0 otherwise. The
evaluation at ¢ = 3 leads to particularly nice structure constants with
values in {0,1}.

Algebras with generating systems having symmetric structure-constants
and a character taking real positive values on generators (satisfied by m,
for ¢ > 2) are sometimes called algebraic fusion-algebras, see for example

13)-

=
o5 1]
I
=
=
|
o

Np p p

4 Association schemes and Bose-Mesner al-
gebras
An association scheme is a set of d+1 square matrices Co, . . . ,Cq4 With coeffi-

cients in {0, 1} such that Cy is the identity-matrix, Co+- - -+Cq is the all-one
matrix and ZCo+ - - -+ ZCq is a commutative ring with (necessarily integral)
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structure constants p,j = pJ| defined by C;C; = C;C; = Zk Op,,jCk An
association scheme is symmetric if Cy,...,Cq are symmetric matrices. The
algebra (over a field) generated by the elements C; is called a Bose-Mesner
algebra. See for example the monograph (1] for additional information.
Identifying an element g of SLy(F,) with the permutation-matrix asso-
ciated to left-multiplication by g we get a commutative association scheme

with d = 5 if ¢ > 4 by setting
Co=1d,6; =A-1d,C, = B,C3 = C,C4 = Dy +D_,Cs=F, + y

where we consider sums of permutation-matrices. All matrices are symmet-
ric. Products with Cy,C; are given by CoX = XCp = X,C? = (¢ — 2)Co +
(g-3)C1,C1Y =YC, = (¢-2)Y for X € {Co,...,C5} and Y € {Cs,...,C5}.
The remaining products are given by

€3 = (g-1)(Co+C),
Col3=C3C, = (¢—1)C5
C2C4 = C4Cg = (q = 1)C5
Cols =CsCy = (q9—1)Cq
€2 = (@-1)%g-2)(Co+C1+C2)+(g—1)(g—3)(g — 4)C3
+(g—1)(g-2)(g—3)(Cs +Cs)
CiCs=CsC3 = 2(q—1)(g—3)Ca+(q—1)(g—2)(Ca+Cs)
CiCs =CsC3 = 2(q—1)(¢-3)Ca+(g—1)(g—2)(Ca+Cs)
¢z = 2(g-1)*(Co+C1)+2(g-1)Cs
+(g-1)(g-2)Cs + (g —1)Cs
CiCs =Cs5Cs = 2(q—1)°Ca+2(q—1)Cs
+(g—1)Cs+ (g - 1)(g - 2)C5
€2 = 2(g-1)%(Co+C1)+2(g - 1)Cs
+(g—1)(g—2)Cs+ (g -1)Cs

The reader should be warned that C; behaves not exactly like (¢ — 2)Co.

We leave it to the reader to write down matrices for multiplications with
basis-elements and to compute the complete list of minimal idempotents.

Additional association schemes are given by Co,C;,C2,C3,C4 + Cs and
Co,C1 + C3,C3,C4 + Cs. It is also possible to split C; and/or Ca according
to subgroups of F 7 into several matrices (or classes, as they are sometimes
called).

We discuss now with a little bit more details the smallest interesting
association scheme with classes Co,C; = Cy +C, Gy = G iCs = CastCa.



Products are given by CoX = XC, and
¢ = |
éléz = ézél = (2¢-3)C,
6163 = éSél = (
¢ = (@-D*a-2)Co+C)+(g-1)(q-3)q -4
+(g-1)(g-2)(g - 3)Cs
CoCy=CaCy = 4(g—1)(q—3)Ca+2(q—1)(g - 2)C
C; = 4(¢-1)*(Co+Ci)+8(q—1)Co+2(g - 1)%Cs

Matrices My, . - - , M3 corresponding to multiplication by (,70, feg 53 are given
by
1000 0 299=8: .0 0
6 = 0100 & 1 g9y ™0 0
=R L TP L0 0 54 =9 ' 4
000 1 0 0 0" 9423
0 0 (g-1)%¢-2) 0
s 06 q-1)%(q-2) 0
271 1 2g-3 (g-1)(g-3)(g-4) 4a-1)g-3) |’
0 0 (¢g—-1(g-2)(q—3) 2(q-1)(g—2)
0 0 0 4(q—1)?
F 0 -0 4(g - 1)
Gy =

1 a o po z
fo = qs_q(C0+C1+C2+Cs),
q—2 ~ 1 = q—2
2 G 4°C G = ¢
A 2(q2—q)( Jal 1)JrQ(q-l)2 27 9q(q-1)2 7%
0~ 3 5 i 2
= G ¢
S TR R PR
dio b2 e 2 5 q-3 5
2 G 30 4 Cy + Cs.
B OO e P g -1+ )

The coefficient of Cy multiplied by (¢® — q) gives the dimension of the asso-
ciated eigenspace. Eigenvalues (with multiplicities) of generators, obtained
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by evaluating the characters fo, ..., By onCy,...,Cs, are given by

dim é() él éz éz
Bo 1 1 2-3 (¢-1)>%*g-2)  4(g-1)
g W=D g 99-3  2(g-1) 4(1-q)
By q§2q—§)§q+l) 1 | 0 0
Bs q 1 29-3 2(1-q)(g-2) 2(¢—-1)(g—3)

Remark 4.1 There ezists a few more exotic variations of this construc-
tion. An ezample is given by partitioning the elements of SLo(Fs) according
to the 30 possible values of the Legendre symbol (;) on entries. Since —1
is a square modulo 5, these classes are well-defined on PSLo(Fs) which is
isomorphic to the simple group As. Details (and o few similar ezamples)
will hopefully appear in a future paper.

Remark 4.2 E. Bannai constructed in [2] subschemes of group association
schemes by considering suitable unions of conjugacy classes in PSLa(IFgq).
This leads to ezamples which are fairly different from the ezamples con-
structed in this section as can be seen as follows: Sizes of classes and
structure constants in [2] are quiet different. Moreover, the results of the
next section imply that the classes of our examples are very far from being
unions of conjugacy classes but slice instead through many different conju-
gacy classes (as should be expected for classes defined in terms of supports,
a notion which is not at all preserved by conjugation). Our ezxamples are
thus in some sense “orthogonal” to Bannai’s assocation schemes in [2].

5 Representation-theoretic aspects

In this Section, we work over C for the sake of simplicity.

5.1 Traces

Left-multiplication by the identity qllA of SCc defines an idempotent on
Q[SL2(IF,)] whose trace is the dimension qll (¢® —q) = q(¢+1) of the non-
trivial eigenspace. Indeed, every non-trivial element of SLq(IF,) has trace 0
and the identity-matrix has trace ¢* — q since it fixes all ¢° — ¢ elements of
SLy(Fy). A basis of the non-trivial g(q+ 1)-dimensional eigenspace of qil A
is given by sums over all matrices with fows representing two distinct fixed
elements of the projective line over F,.

The traces tr(m), ..., tr(my) of the minimal central projectors my, . . .,y
of SC¢ are equal to g* — g times the coefficient of A in m;. They are thus



given by

'
llmo,l h—T);@- QFU 2(,”

q(g + 1) = tr(my) + tr(mg) + tr(ma) + te(my),

and we have

as expected.

5.2 Characters

Since simple matrix-algebras of C[SLy(IF,)] are indexed by characters of
C[SLa(IFy)], it is perhaps interesting to understand all irreducible characters
involved in idempotents of SC¢ C C[SLy(IF,)).

The algebra SC¢ is in some sense almost “orthogonal” to the center of
C[SLa(IF,)]. The algebra SC should thus involve many different irreducible
characters of SLa(IF,). We will see that this is indeed the case.

We decompose first the identity . 1A according to irreducible charac-
ters of C[SLa(FF,)]. We refine this decomposition to the minimal central
idempotents 71, ..., of SC¢ in Section 5.4.

For simplicity we work over GLy(IF;) which has essentially the same
character-theory as SLa(IFg). We work over C and we identify (irreducible)
characters with the corresponding (irreducible) representations.

In order to do this, we introduce F' =) AEF: < (1) ())\ ) € Z[GLy(F,)).
We have F?2 = (¢— 1)F and FX = XF for X € {A,B,C,D4,E+}, con-
sidered as an element of Z[GLg(F,)]. The map X +— ; ! FX preserves
traces and defines an injective homomorphism of SC into Q[GLq(F,)].

We use the conventions of Chapter 5 of [4] for conjugacy classes of
GLy(F,). More precisely, we denote by a, conjugacy classes of central
diagonal matrices with common diagonal value = in Iy, by b, conjugacy
classes given by multiplying unipotent matrices by a scalal z in F3, by
cz,y conjugacy classes with two distinct eigenvalues z,y € F? and by de
conjugacy classes with two conjugate eigenvalues &,£9 ¢ IF* \ Fq. The
number of conjugacy classes of each type is given by

ax bI C:L')y d£
=1)(g-2 oy Rt
i=1 B=1 (9 )2(0 ) q(q2 1)
The character table of GLa(F,), copied from [4], is now given by
1 ¢’ -1 9’ +q 9’ -q
Ay b: Cr,y df
U, a(z?) a(z?) a(zy) ageth)
Va qa(z?) 0 a(zy) —a(§"t)
Was | (g4 Da(z)B(z) a(z)f(z) o(z)B(y)+ a(y)f(z) 0
Xe  (a-Dep(a) =¢(z) 0 =(p(€) + 0 (€"))
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where a,f are distinct characters of [* and where ¢ is a character of
Fes with 7! non-trivial. The first row indicates the number of elements
m a conjugacy class indicated by the second row. The remaining rows
give the character-table. U, are the one-dimensional representations fac-
toring through the determinant, V, = V ® U, are obtained from the
permutation-representation V' = V; 4- U, describing the permutation-action
of GLy(Fg) on all p + 1 points of the projective line over Fg. W, g (iso-
morphic to Wp o) are induced from non-trivial 1-dimensional representa-
tions of a Borel subgroup (given for example by all upper triangular matri-
ces). X, (isomorphic to X)) are the remaining irreducible representations
V1®W¢|Fa 1= W), 1=Ind,, with Ind,, obtained by inducing a 1-dimensional
representation ¢ # ¢? of a cyclic subgroup isomorphic to F g

The trace of the idempotent 7 = Zq_—‘lTTTFA in irreducible representations

of GLy(F,) is now given by:

2

1
Ua . W Za('r)

z€Fg
2
1 1
Ves <2 g q__‘I(zgaa(ﬂ)-l—(q_l)z x%;.a(x)
. qg+1 2(¢+1)
Ws q_1z§;a(z)ﬂ(m)+(q_l)z z%;;a(x) 2 A

Xe + (@=1)) ¢

The factors q,q & 1 are the multiplicities of the irreducible representations
Va,Wa,p and X, in the regular (left or right) representation. They are of
course equal to the dimensions of V,,, W, 5 and Xo:

Irreducible representations U, are involved in 7 only if e is the trivial
character. This corresponds of course to the central idempotent ; of SCq.

For Vo we get 2q for o trivial, ¢ for odd ¢ if a is the quadratic char-
acter (defined by the Legendre-symbol and existing only for odd ¢) and 0
otherwise.

For W, p we get ¢+ 1if B =&, # a and 0 otherwise. There are 9"—3
such representations for odd q and 9— such representations for even q.

For X, we get ¢ — 1 if the character @ of ]F;, with non-trivial 9= re-
stricts to the trivial character of I3 and 0 otherwise. Characters of F*; with
trivial restrictions to IF; are in one to-one correspondence with characters
of the additive group Z/ (g + 1)Z. The character @91 is trivial for two of
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them (the trivial and the quadratic one) if ¢ is odd. This gives thus 4!
such irreducible representations for odd ¢. For even ¢ we get 1 irreducible
representations.

All irreducible representations of GLy(F,) involved in n = TJ?'TT’ FA
have irreducible restrictions to SLa(F, ).

The following table sums up contributions of all different irreducible
characters to the trace of 7 = iquﬁ’F A:

UVl wo| X

odd 1 3¢ (g+1)% (¢-1)%"

2
even 1 2¢ (q+ 1)(1-2-2 (g—1)3

and we have

q-—3

respectively
B " q—2 q
tr(7) =q(g+1)=1+2q+(q+1) +(¢=1)

as expected.

5.3 Decompositions of m,...,m4 for even ¢

Over a finite field of characteristic 2, conjugacy classes are involved in
generators of SC as follows:

L% g (g=1)(g=2) alg=1)
4 g 2 )
ar b:,; Cx,y#zx dg
FA| 1 0 2 0
FB| 0 g—1 0 0
FCL 0 {a~4)g=2) la-1)a=4) i{a=1)}q-2)
FDy| 0 q=1 2(q—1) 0
FE+| 0 0 =1 (g—1)
1 g° = °+q 7 —q

This implies the following decompositions of central idempotents of SC:
The idempotent 7; of rank 1 is involved with multiplicity 1 in the trivial rep-
resentation of type U. The idempotent 75 of rank Sq—wéﬂ (in C[SL2(IFy)))
is involved with multiplicity ¢+ 1 in all 9—;2 relevant characters of type W.
The idempotent 73 of rank "(L;il is involved with multiplicity ¢—1 in all 4

relevant characters of type X. Finally, the idempotent 74 is involved with
multiplicity ¢ in the irreducible representation V.
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5.4 Decompositions of my,...,m for odd ¢

Over a finite field of odd characteristic, contributions of the different con-
jugacy classes to the elements FX (for X a generator of SC) are given

by

2
¢-1 -1 = i s fasp=
ay z Cy,—z Czy#tz dE,u(g):O dg,zr(ﬁ)#o
FA 1 0 2 2 0 0
FB| 0 0 g=1 0 g-1 0
FC| 0 q*-49+3 ¢*-4943 (a-1(@g-4) @-1* (¢9-1(@—2)
FDy | O g-1 2(q-1) 2(q-1) 0 0
FE+ | © q-1 0 g-1 0 g—1
1 =1 ¢ +q ¢ +q 7 -q

and conjugacy classes of GLy(F,) are involved in all four projectors 71 =
q—l-TvrlF, . al—lmF with the following coefficients

-1 qg-1 9_;_1_ £4—122§q-32 25_1 (q_21 2
az b, Cz—z  Cry#iz de tr(€)=0 dE,tr{E);éO
m (q—1)21q§q+1) q(ql— 1) (q—l 122 (q_l Pz 3%-—1 71
™ 'A’q(qqz—l)2 q(q_—ll) 2(3211)7 (q:l)z 2—@__—1) (1)
1.~.r3 %72?1_) E(G—Tl) (2) 2(%1) q'z—_z 1
T (ge1@r) 0 (ol (12 AL =z

The idempotent #; (or equivalently the idempotent m; of SC) is only
involved in the trivial representation with multiplicity 1. The idempotent
4 appears (with multiplicity g) only in the unique non-trivial g-dimensional
irreducible representation V' involved in the permutation-representation of
GLy(FF,) acting on all g +1 points of the projective line over [F.

The character Vi, = V ® a, where o, is the quadratic character of IFq
given by the Legendre-symbo] has mean-values given by

g=1 g-1 4! Ne3 i (g-1)
Gr b Coma Coype deu(e)=o df,tr((Eh;O
=] 1+(7) N 1=(=2
B e ; ( 1 ) = (Tl> g-1

on conjugacy-classes. The character V, involves thus 75 (or m2) with mul-
tiplicity ¢ if ¢ = 1 (mod 4) and 73 (or m3) with multiplicity ¢ if ¢ = 3
(mod 4).

Mean-values of a character W, g with non-real 3 = @ on conjugacy
classes are given by

e

2
@z br s Coyprr dene=o dear€) 0
Wosp|g+1 1 20(-1) e g 0
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They depend on the value a(-1) € {£1}. For ¢ = 1 (mod 4) there are
";5 such characters W, g with a(=1) = 1 and L,! such characters with
a(-1) = =1. For ¢ = 3 (mod 4), there are the same number 9—‘-15 of such
characters for both possible values of a(—1). Such representations involve
g (or mp of SC) with multiplicity g4 1if a(=1) = 1 and &3 with multiplicity
g + 1 otherwise.

We consider now a non-real character ¢ of lP';, with trivial restriction
to IF;. Since £2 belongs to [y if € has trace 0, we have ¢ = ¢(£) € {£1}.

Mean-values on conjugacy-classes of a character X, with ¢ as ahove are
thus given by

e e I
@z b:  Crz Coygtr  dearg)=0  dew(g)zo
Xp[qg-1 -1 0 0 ~20 A2 |

For ¢ = 1 (mod 4), there are 9—;—1 such characters for both possible val-
ues of 0. For ¢ = 3 (mod 4), the value ¢ = 1 is achieved by 9;—3 such
representations and the value ¢ = —1 by 9—1—”1 representations.

Each such representation with o = 1 involves 3 (or m3) with multiplicity
g — 1 and each such representation with ¢ = —1 involves 7, (or m2) with

multiplicity ¢ — 1.
I thank M. Brion, O. Garotta and P. de la Harpe for useful discussions
and remarks.
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