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Abstract. For a graph G and positive integers ay,---,a, if
every r-coloring of vertices in V(G) must result in a monochro-
matic a;-clique of color i for some i € {1,---, 7}, then we write
G — (a1, ,ar)". Fy(Kay, -+, Ka,; H) is the smallest inte-
ger n such that there is an H-free graph G of order n, and
G - (a1,-++,ar)?. In this paper we study upper and lower
bounds for some generalized vertex Folkman numbers of form
Fy(Kqa,, -+, Ka,; K4 — €), where r € {2,3} and a; € {2,3} for
any i € {1,---,7}. We prove that F,(K2, K2, K2; K4 — €) =
10 and F,(K;,K3; K4 — e) = 19 by computing, and prove
Fy(K3, K3; K4 — €) > F,,(K2, K2, K3; K4 — €) > 25.

1 Introduction

All graphs considered in this paper are finite and undirected graphs.
For any positive integer t, the complete graph of order ¢ is denoted by Kj;.
The graph obtained by deleting one edge from K; is denoted by K; — e for
integer t > 3. Note that K3 — e is same to P3, the path of order 3.
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Suppose that G is a graph and integer r > 2. For positive inte-
gers aj,--,ar, if every r-coloring of the vertices in V(G) must result
in a monochromatic a;-clique of color i for some i € {1,---,7}, then
we write G = (ay,---,ar)’. The generalized vertex Folkman number
Fy(Ka,,-*,Ka,;H) is the smallest positive integer n that there is an
H-free graph G of order n such that G = (a1, --,a;)?. When H is
Ki, Fy(Kay, ", Ka,;H) is denoted by Fy(a1,---,ar;t), where t > a;
holds for any ¢ € {1,---,r}. The generalized edge Folkman number-
s Fo(Kq,, Ko, ;H) and Fe(ay,---,ar;t) can be defined similarly. A
(G1,Ga)?~coloring of G is a red-blue coloring of V(G) in which there is
neither a red G, nor a blue Go. We can define G —» (Gy,---,Gr)?,
Fy(Gy,--+,Gr; H) and (Gy, -+, Gr)"-coloring similarly.

The generalized Ramsey number R(G, H) is the smallest positive in-
teger n such that K, = (G, H)®. Many known results on the exact values
and bounds for small Ramsey numbers can be found in [7].

In 1970, Folkman [2] proved that for positive integers k and a4, - - -, ar,
Fo(a1, -, ar; k) (Fe(ar,a2;k)) exists if and only if k > max{as,---, ar}
(k > max{aj,az}). For edge Folkman numbers, Folkman’s method works
only for two colors. The existence of Fe(ai,--+,ar; k) was proved in [5]
(also see [3]). The vertex Folkman numbers were studied in particular by
Dudek and Rédl (1] and Han, R6dl and Szab6 [4]. The latter work contains
Fy(s,s;s+1) < Cs®log® s as a special case.

In this paper we study the lower and upper bounds for some gener-
alized vertex Folkman numbers of form F,(K,,,:--, K, ;K4 — €), where
r€{2,3,4} and a; € {2,3} for any i € {1,---,r}.

The remaining parts of this paper are organized as follows. In Section
2, some inequalities on F, (K3, K3; K4—e) are proved. Fy, (K2, K2, K2; K4—
e) = 10 is proved in Section 3. In Section 4, we obtain exact values and
bounds for some vertex Folkman numbers, including F,, (K2, K3; K4 — e) =
19, and F,(K3,K3; K4 —¢) > 25.

2 Some inequalities on F, (K3, K3; K4 — e)

In (8] it was prove that Fe(K¢41, Ki41; Ki42—e€) and F, (K, Ki; Ky —
e) are finite for any integer ¢ > 3, based a theorem in [6]. In fact, the
theorem in [6] implies the following theorem on vertex Folkman numbers.

Theorem 2.1 Suppose that integer t > 3. There is a K;, — e-free graph
G such that G — (t,t)?, where for any pair t-cliques Uy and Uz in V(G),
Uy and U, share at most one common vertex.

When ¢t = 3, Theorem 2.1 is same to that F,(K3, K3; K4 — e) is finite.
But for ¢ > 3, Theorem 2.1 is stronger than that F, (K, Ki; Ki+1 — €) is
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finite.

Let Fy(Ka,,**, Kq,; H;ym) denote the set of all H-free graphs of order
m that arrow (ay,::*,a,)".

We can see that Fy (K2, K2, K2; K4 — e) < F(K2, K3; K4 — e) and

Fy(K3, K2, K2, K2; Ky —e) < Fy(K2, K3, K3; Ka—e) < Fy (K3, K3; Ky —e).
We know that R(K4—e, K¢) = 21. Let us prove the following theorem.
Theorem 2.2 If F (K2, K2, K3; K4 — ) > 21, then
F, (K3, K3; K4 — e) > Fy(K2, K2, K3; K4 — €) > Fy(K2, K3; K4 — e) +6.

Proof. Let n = Fy(K2, K2, K3; K3 —e) and G € Fy(K2, K2, K3; K4 — €;n).
If n > 21, then by R(K4 — e, Kg) = 21 we know that a(G) > 6. Suppose
that V) is a 6-independent set in V(G). Therefore G — Vi = (K>, K3)?
and |V(G) — Vi| > F, (K2, K3; K4 — €) because that G — V; is K4 — e-free.
So Fy(K3,K3; K4 —e) > Fy(K2, K2, K3; K4 — €) > F,,(K2,K3; Ky —e) +6.
Hence we have proved the theorem. O

Although we know that F,(K3,K3; K4 — e) is finite, no interesting
bounds for it are known. It is obvious that Fy,(K3,K3; K3 —e) = n >
F,(3,3;4) = 14. We can only obtain an upper bound for n based on [6] as
discussed in [8]. The upper bound obtained this way is very large, because
that we have to consider a K5 — e-free graph that arrows (K4, K4)¢, and
consider the subgraph induced by the neighbors of a vertex in this graph.
Although n may be much larger than 14, it may be much smaller than the
upper bound obtained by this method.

Let G — (K3, K3; K4 — e)?, and v be any vertex in V(G). Suppose
that |V(G)| = n = F,(K3, K3; K4—e). We may suppose that the subgraph
of G induced by the neighbors of v is a perfect match. In fact, if G is not
such a graph, we can obtain such a graph by deleting some edges from G
if necessary. For any edge deleted, say uv, v is a neighbor of u, and u and
v have no common neighbors.

If G - (K3,K3; K4 — e)?, then we can prove that the subgraph of G
induced by all the non-neighbors of v, say H, arrows (K3, K3)".

Theorem 2.3 Let integer t > 3 and G be K;y; — e-free. Suppose that
G = (K, K:)'. If v is any vertez in V(G), and H is the subgraph of G
induced by all the non-neighbors of v, then H — (K2, K;)".

Proof. Let V; be any independent set in the V(H). The subgraph of G
induced by the joint of V; and the set of all neighbors of v is K;-free. In
fact, if there is a K; in such an induced subgraph of G, it must contain
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one non-neighbor of v and ¢ — 1 adjacent neighbors of v. But this can not
be true because that G is K;; — e-free and such a K; together with v is
isomorphic to K;+1 — e. Therefore by G = (Ki, K;)" we know that the
subgraph of H obtained by deleting any independent set must contain K.
Hence H — (K;, K;)*. m]

The case t = 3 in Theorem 2.3 is useful in this paper. If |V(G)| =
F,(K3, K3; K4 — €), then we may suppose that §(G) > 4. Therefore by
Theorem 2.3 we have n > 5+ Fy, (K2, K3; K4 —e). If n is not small, then we
can obtain better lower bound by n > a(G)+F, (K2, K3; K4—e). Similarly,
we have the following theorem.

Theorem 2.4 Suppose that G is K4 — e-free and G — (K2, K3)". If v is
any vertez in V(G), and H is the subgraph of G induced by all the non-
neighbors of v, then H — (K2, K>)*.

We can also generalize Theorem 2.3 to multicolor cases. The following
theorem is an interesting special case.

Theorem 2.5 Suppose that G is K4 — e-free and G — (K3, K2, K3)V. If
v 1s any vertex in V(G), and H is the subgraph of G induced by all the
non-neighbors of v, then H — (K3, K5, K2)".

3 The exact value of F,(K,, Ky, Ko; K4 — €)

By R(K4 — e, K4) = 11, there is a K4 — e-free graph G of order 10, of
which the independence number a(G) < 3. Hence G = (K2, K2, K2)?, and
F,(K2,K2,K2; K4 — €) < 10. On the other hand, by computing we have
proved that for any K4 — e-free graph G of order 9, the chromatic number
of G is no larger than 3. Therefore F,(K2,K2,K2; K4 —e) > 10. So we
have the following result.

Theorem 3.1 F, (K32, K2, K3 K4 — ) = 10.

Similar to Theorem 2.2, we can see that F,, (K2, K2, K2, Ko; K4 —€) >
Fy (K2, Ko, K2; K4 — €) + 4, because that R(K4 — e, K4) = 11. Therefore
Fy(Ka, K2, K2, K2; K4—e) > 14. Note that R(K4—e, K5) = 16. If there is a
K4 — e-free graph G that arrows (2,2,2,2)?, and |V(G)| = 15, then a(G) <
5. On the other hand, F, (K2, K2, K2,K2; K4 — e) < 22 = F,,(2,2,2,2;3).

4 Computing F,(K,, K3; K; — e)

Let us consider the upper bound for F,(Kj, K3; K4 — e). We know
that Exoo proved R(K4 —e, K19 — e) > 41 based on a K4 — e-free graph of
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order 40. We prove Fy (K2, K3; K4 —e) < 19 based on an induced subgraph
of this graph of order 40. The adjacent matrix of the graph of order 19
used is shown in Fig. 1.

0000010011010001011
0000001001101000111
0000000100110100011
0000000010011010001
0000000001001101000
1000000000100110100
0100000100010011000
0010001010001000100
1001000101000100000
1100100010100010000
0110010001010001000
1011001000101000100
0101100100010100010
0010110010001010001
0001011001000101000
1000101000100010110
0100010100010001001
1110000000001001000
1111000000000100100

Figure 1: Adjacency matrix of a (K2, K3; K4 — €;19)? graph

For the lower bound on F, (K2, K3; K4—e), we know that F,,(K5, K3; K4—
e) > F,(K2, K2, K7; K4 — e) = 10. This lower bound is weak.

Suppose that graph G is a K4 — e-free graph such that G — (K3, K3)V.
It is not difficult to see that for any vertex v € V(G), the subgraph induced
by the non-neighbors of v can not be an independent set. Otherwise, if we
color v and all its non-neighbors in red, and color all neighbors of v in
blue, then we obtain a (K3, K3)"-coloring of V(G), which contradicts with
G — (K2, K3)". Hence for any vertex v € V(G), v has at least two non-
neighbors.

Furthermore, if G — v -» (K3, K3)" for any v € V(G), then §(G) > 3.
Otherwise, suppose that f1 : V(G) — {v} — {red,blue} is a (K2, K3)*-
coloring of V(G) — {v} for a vertex v € V(G), and d(v) < 2, then we can
obtain a (K2, K3)?-coloring of V(G) based on f;.

Let G be a K4 — e-free graph of order n, and V(G) = {vy,---,v,}.
Suppose that V(G) = Uf__.o Vi, where Vy = {v1,v2,v3}, and all vertices in
V; are neighbors of v; for any i € {1,2,3}, and any vertex in V4 has no
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neighbors in Vp. If n = F, (K>, K3; K4 — €) and G — (K32, K3)?, then by
the discussion above we know that §(G) > 3. We can see there is 3-clique
in V(G), otherwise we can color all vertices in V(G) with color blue, which
contradicts with G — (K32, K3)v.

We may study the lower bound for F (K>, K3; K;—e) based on R(K4—
e, Ks) = 16. Let G be a K4 — e-free graph on 18 vertices such that G —
(K2, K3)*. By R(Ks—e, K5) = 16 we know there must be a 5-independent
set V1 in V(G). We can see that there is a 3-clique in V(G) — V;. It is to
say, if G is a K4 — e-free graph on 18 vertices such that G — (K2, K3)V, we
may suppose that Uj is a 3-clique in V(G), and V; is a 5-independent set
V(G) — U;. Hence we can generate all possible K; — e-free graphs on 15
vertices that contain 5-independent set, and generate possible G of these
properties as discussed above.

We have checked all such K4 — e-free graph of order 18, and found
that none of them arrows (K3, K3)”. We use Theorem 2.4 when necessary.
Hence F,(K2, K3; K4 — e) > 18. By F,(K2,K3; K4 —e) < 19 we have
Fy(K2, K3; Ky — €) = 19.

Theorem 4.1 F (K, K3; K4 —e) =19.
We know that R(K4 — e, Kg) = 21. So by Theorem 4.1 we have
Fy(Ka, K, K3; K4 — €) > 6+ 19 = 25.
Hence
F,(K3,K3; K4 — €) > 25.
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