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Abstract: The energy of a graph is defined as the sum of the absolute values
of the eigenvalues of its adjacency matrix. The first Zagreb index of a graph is
defined as the sum of squares of the degrees of the vertices of the graph. The
second Zagreb index of a graph is defined as the sum of products of the degrees
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Let
G = (V(G),E(G)) be a simple graph of order n with vertex set V(G) =
{v1,v2,...,vn} and edge set E(G). Denote by e(G) = |E(G)| the number
of edges of the graph G, Ng(v) the set of vertices which are adjacent to v in
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G. The degree of v is denoted by dg(v) = |Ng(v)| (or simply d(v)), the min-
imum degree of G is denoted by §(G), the maximum degree of G is denoted
by A(G). Let G = (X,Y; E) be a bipartite graph with two part sets X,Y. If
|X| = |Y], G = (X,Y;E) is called a balance bipartite graph. If [X| = |Y| + 1,
G = (X,Y;E) is called a nearly balance bipartite graph. For a bipartite graph
G = (X,Y;E), the quasi-complement of G is denoted by G* = (X,Y; E*),
where E* = {zy:z € X,y € Y,zy ¢ E}.

The adjacency matriz of G is defined to be a matrix A(G) = [a;;] of order n,
where a;; = 1if v; is adjacent to v;, and a;; = 0 otherwise. The degree matrix of
G is denoted by D(G) = diag (dg(v),dg(v2),-..,dg(va)). The matrix Q(G) =
D(G) + A(G) is the signless Laplacian matriz (or Q-matriz) of G. Obviously,
A(G) and Q(G) are real symmetric matrix. So their eigenvalues are real number
and can be ordered. Let the eigenvalues of A(G) be arranged as A1(G) <
X2(G) < -+ £ Aa(G). The largest eigenvalue of A(G), An(G), denoted by A(G),
is called the spectral radius of G. The largest eigenvalue of Q(G), denoted by
q(G), is called the signless Laplacian spectral radius of G. The energy of G is
defined as the sum of the absolute values of the eigenvalues of its adjacency

matrix, i.e. £(G) = Elf\ (G)].

A graph mvanant 1s a function on a graph that does not depend on a labeling
of its vertices. Such quantities are also called topological indices. Among more
useful of them appear three that are known under various names, but mostly
as energy and Zagreb indices. The first Zagreb index Z)(G) of G is defined as
the sum of squares of the degrees of the vertices of the graph G, i.e. 21(G) =

Y d%(u). The second Zagreb index Z2(G) of G is defined as the sum of
ueV(G)
products of the degrees of a pairs of the adjacent vertices of the graph G, i.e.

5G)= Y dg(u)ds(v).
wvEE(G)
A Hamiltonian cycle of the graph G is a cycle which contains all vertices

in G, and a Hamiltonian path of G is a path which contains all vertices in G.
The graph G is said to be Hamiltonian if it contain a Hamiltonian cycle, and is
said to be traceable if it contain a Hamiltonian path. The problem of deciding
whether a graph is Hamiltonian or traceable is one of the most difficult classical
problems in graph theory.

Recently, some topological indices have been applied to this problem. We
refer readers to see [4, 5, 6, 7,9, 10, 11, 12, 13, 19, 23, 24, 36, 37]. Particularly,
Li [23] presents energy sufficient conditions for a graph to be traceable, Hamilto-
nian, respectively; Li [24] obtains sufficient conditions for some stable properties
of the graphs using energy and the first Zagreb index of the complement of a

110



graph; Yu et al. [19] give sufficient conditions for a graph with large maximum
degree to be traceable, Hamiltonian, Hamilton-connected in terms of the energy
of the complement of the graph, respectively. Inspired by these studies, in this
paper, we study the sufficient conditions for a nearly balanced bipartite graph
G = (X,Y; E) with large minimum degree to be traceable in terms of the en-
ergy, the first Zagreb index and the second Zagreb index of G* = (X,Y;E*),
respectively.

2 Preliminaries

The definition of the closure of a balanced bipartite graph can be found in [3).
For an integer k > 0, the k-closure of a balanced bipartite graph G = (X,Y; E),
denoted by clx(G), is a graph obtained from G = (X,Y;E) by successively
joining pairs of nonadjacent vertices z € Xand y € Y, whose degree sum is at
least k until no such pairs remains. We note that d.i, (¢)(z) + du, () (y) < k-1
for any pair of nonadjacent vertices z € X, and y € Y of cli(G).

We need the following results as lemmas to prove our theorems.

LEMMA 2.1 (1] A balanced bipartite graph G = (X,Y; E), where | X| = |Y| = n,
is Hamiltonian if and only if clp4+1(G) is so.

LEMMA 2.2 [2] Let G = (X,Y;E) be a bipartite graph, where | X| =|Y|=n>
2, with degree sequence (dy,dy, - - -,d2,), where dy < dp < --- < dyy,. If there is
no integer k < 3 such that dy < k and d, <n —k. Then G is Hamiltonian.

LEMMA 2.3 [14] Let e be an edge in a graph G. Then
e(G) —2<¢&(G —{e}) <&(G) +2,

where G — {e} be obtained G by deleting the edge e € E(G), the left equality
holds if and only if e is an isolated edge of G and equality on the right-hand side
never holds.

LEMMA 2.4 (17] Let G be a bipartite graph. Then

MG) < Ve(G).

LEMMA 2.5 [18] Let G be a graph of order n with degree sequence d < dy <
-+ < dp. Then

1 n
Ne)y>-=-9 &
wnn§“

where equality holds if and only if G is reqular graph or semi-regular bipartite.
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LEMMA 2.6 [28] Let G be a graph with non-empty edge set. Then
AG) 2 min{\/d(u)d(v) : uv € E(G)}.

Moreover, if G is connected, then equality holds if and only if G is regular or
semi-regular bipartite.

LEMMA 2.7 [32] Let G be a graph with at least one edge. Then

Zy(G)

d@zewr

where equality holds if and only if G is regular or semi-regular bipartite.

Let M be a Hermitian matrix of order n, and let A;(M) be the i—th largest
eigenvalue of M, 1 <i < n.

LEMMA 2.8 [34] Let B and C be Hermitian matrices of order n, and let 1 <
,j<n. Ifi+j<n+1, then

Ai(B) + Ai(C) 2 Aiyj-1(B + C).

Moreover, equality holds if and only if there exists a unit vector x such that
Bx = )\i(B)x,Cx = Xi(C)x, and (B + C)x = Aiyj-1(B + C)x.

LEMMA 2.9 [35]Let G = (V, E) be a graph with n vertices. Denote by d(v) the
degree of v € V and by m(v) the average of the degrees of the vertices of G
adjacent to v. Then

q¢(G) < maz{m(v) +d(v) :v € V}.

LEMMA 2.10 Let G be a graph with at least one edge. Then
X6 2 2 - 8(6),
where equality holds if and only if G is regular.
Proof. Since Q(G) = A(G) + D(G), by Lemma 2.8, let i = j = 1, we have
A (A(G)) + M(D(G)) 2 M(Q(G)).
Recalling that A, (4(G)) = A(G), Ai(D(G)) = A(G) and A (Q(G)) = ¢(G), then

MG) 2 ¢(G) - A(G).
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By Lemma 2.7,
Z1(G)
e(G)

Moreover, equality holds if and only if G is regular or semi-regular bipartite
and there exists a unit vector x such that A(G)x = A(G)x, D(G)x = A(G)x,
and Q(G)x = ¢(G)x. This implies that A\(G) + A(G) = ¢(G).

(i) If G is regular with n vertices and m edges. Let any vertex u € V(G),
and dg(u) = d. By Lemma 2.5, \(G) = d. Note that A(G) = d, Z,(G) = nd?,
e= "7“, then we have A\(G) = %16%1 — A(G). Namely, the equality can be hold.

(if) If G = (X,Y) is a semi-regular bipartite graph. Let any vertex u €
X,dg(u) = dy, any vertex v € Y,dg(v) = d;, where d; # d,.

Suppose that F} = (X1,Y;) is a non-trivial connected component of G, which
has largest eigenvalue of A(G), then by Lemma 2.6, A(G) = A(F}) = Vd1d>.
Obvious, A(G) = maz{d;,d2}. Next we will consider ¢(G).

Suppose that F; = (X2, Y2) is a non-trivial connected component which has
largest eigenvalue of Q(G), and d; > d2. By Lemma 2.9

MG) 2 — A(G).

4(G) < maz{m(v) +d(v) : v € V(G)} = dy + .
Then by AG) + A(G) = ¢(G), we get

Vdidz + maz{d,,d2} = ¢(G),

thus
Vdidz +dy = ¢(G) < d, +d,
hence
dl S d2,
a contradiction.
So the result follows. o

3 The main results

Let G = (X,Y;E) be a nearly balanced bipartite graph with |X| = |Y| + 1,
G’ be obtained from G by adding a vertex v to Y which is adjacent to every
vertices in X, then G’ be a balanced bipartite graph. We note that if G’ is
Hamiltonian then G is traceable.

Denote Om,n = K, , a bipartite graph without edges. In this section,
On,m and O, are considered as different bipartite graphs, unless m = n. Let
G, Gy be two bipartite graphs, with the bipartitions {X;,Y1} and {X3, Y2},
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respectively. We use G) U G2 to denote the graph obtained from G; + G, by
adding all possible edges between X; and Y;. We use Gy U G, to denote the
graph obtained from G + G2 by adding all possible edges between X; and Y5,
and all possible edges between X and Y;.

THEOREM 3.1 Let G = (X,Y;E), where |[X| = [Y|+1=r>k+1, be a nearly
balanced bipartite graph of odern =2r—12>3 and §(G) > k > 1. G* is the
quasi-complement of G. Denote €(G*) the energy of G*. Then G is traceable,
(1) if
€(G*) > Ve(G*)(V2r =2+ V2) + 2¢(G*) — 2kr + 2k2.
(i) if

&(G™) 2 2V/(r—1)(e(G*) - (r— A(G*))?) +2¢(G*) - 2A(G*) - 2(k — 1)r + 2k?

and A(G*) <r—/r.
(i) if

(G") > 2\/(r - 1)(e(G*) — kr + k2) + 2¢(G") — 2kr + 2k* + 2(\/k(r — k)),

and G # Kr—g—1 r—k UKk i (r 2> 2k +1).

Proof. Let G’ = (X,Y’; E') be obtained from G as mentioned above, then
G’ be a balanced bipartite graph. Suppose that G be not traceable. Then
G’ be not Hamiltonian. By Lemma 2.1, H := d-4+1(G’) be not Hamiltonian
too. Then we note that H is not K, ,, and dy(u) + dy(v) < r for any pair of
nonadjacent vertices u € X and v € Y’ (always existing) in H. Hence for any
edge uv € E(H*), we have that

dg-(u) +dg-(v)=r—dy(u)+r—du(v) 2 2r—r=r. (3.1)
We notice that for any graph G of order n, Y A?(G) must be equal to the
i=1

trace of A%(G), and the trace of A%(G) just equal ¥ dg(v;). So
i=1

n+l n+l

Y N(H) =) due(v) = 2e(H").
i=1 i=1

Since H* is a balanced bipartite graph, A(H*) = Ap1(H®) = =\ (H?).
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From the definition of e(H*) and Cauchy-Schwartz inequality, we have that

n+1

e(H?) =) IMH)| < ’\(H.)'*'|’\I(H‘)|+\J(n"l)i)‘?(ﬂ')
i=1

i=2

n+4l

2A(H*) + \ (n=1)()_ AH(H*) - 2X2(H"))
i=1

= 2MH*)+ /(n—-1)(2e(H*) — 2)2(H"*)) (3.2)

the equality holds if and only if Ay(H*) =-.- = )\, (H*).
Let f(z) = 2z + /(n—1)(2e(H*) - 222). If \/2—‘,‘%—1 <z < \e(H?), we
baye -2(n-1)z
f'(z) =2+

<0,
V(n—1)(2e(H*) — 222)
then f(z) is monotonously decreasing when ‘/Z—iff—l)- 2 el H").

We consider converse-negative proposition of Lemma 2.2. Suppose H has
the degree sequence (d;,ds,- - +,d,.), since H be not Hamiltoninan, there is a
integer p < %, such that d, <p and d. <r—p. So

2r
_1 PP+ (r—p’+r?
e(H) =5 Y d; >

i=1

IA

= rl—pr+p’
= rl—kr+k —(p—k)(r—p—k)

Since p > dp > 6(H) 2 6(G) > kand r — p > d. > 6(H) > 6(G) > k. Hence
(p—k)(r —p—k) 2 0. Thus

e(H) < r? —kr+ k2% (3.3)

The equality of (3.3) holds if and only if e(H) = r? —kr + k2 and (p—k)(r—
p—k)=0.Thenp—k=00rr—p—k=0.
If p =k, then H is a bipartite graph with r2 —kr + k% edges and d; = --- =

de =k, degr =+ =dv = r—k and dpyy =+ + = dae = r. This implies that
H=Kq rUKgx (r>2k+1). If p=r—k, then H is a bipartite graph
with r2 —kr+ k% edgesand d; =+ - =dp_x =r—k,dr—gy1 = --- = d, = k and
dr41 = - - = dg, = 1. This also implies that H = Ky _gr—k UKj i (r > 2k +1).

Then H* = Ky—gk + Ok,r—x, and A(H*) = \/k(r — k), e(H*) = k(r — k).
Let s := e(G*) — e(H*). Namely,

s=e(G") - [r® —e(H)] = e(G*) + e(H) — 2.
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Then by Lemma 2.3 and (3.3), we get that

e(H") > €(G") - 25 2 €(G") — 2¢(G") + 2kr — 2K". (3-4)
(i) By (3.1), we get
Y (dne () + dir-(0) 2 re(H").
uv€EE(H*)
Moreover, we note that
Yo dh= Y (due(u)+due(v)) > re(H).
ueV(H*) uwveE(H*®)
By Lemma 2.5, we have that
arNHHY) > Y, diy.(u) 2 re(H").
u€V(H*)
Thus
e(H*)

MNH) 2\ =5

By Lemma 2.4 and n > 3, we find that

\/26(H‘) <\/C(H‘) S/\(HQ)S /C(H‘)

n+l 2

Then by (3.2) and monotonicity of f(z), we get

«(#) < S < 1/ ) = VAT VR 39)

By e(H*) < e(G*), (3.4) and (3.5), we have that

£(G*)—2¢(G*)+2kr—2k* <e(H") <\/e(H*)(Vn—1+V2) </e(G*) (Vn—14V?)

So

e(G*) < Ve(G)(Vn—1+V2)+2e(G") — 2kr + 2k*

= \/e(G*)(V2r—2+V2) +2¢(G") — 2kr + 2k?,

where the equality holds if and only if all inequalities in the above argument
should be equalities. By above discussion, if (3.3) holds, when r > k + 1 and

k> 1, we get Jk(r—k) # \/ﬂ-r-z-—kl, namely \(H*) # \/5(-}—2':)-, and then the
equality of (3.5) can’t hold.

116



Thus

&(G*) < Ve(G*)(V2r =2 + V2) +2¢(G*) — 2kr + 282,

a contradiction.
(ii) By (3.1), we get

Z(H)= Y d(u)= > (du-(u) + dy-(v) > re(H").

ueV(H*) wweE(H*)

By Lemma 2.10, we have that

. Z * . ’e
AH") > e—‘((lf—)) —AH) 27— AH) 21— AC") =1~ AG"). (36)

By Lemma 2.4, we notice that

'i‘i(f ) < VATE) < VA@) < Vi < - AG) < A(H") < /el

when A(G*) <r —/r.
Because f(z) is monotonously decreasing when 1/ 2—‘,&'—11 <z<\/e(H*), by
(3.2), we get

e(H") < fMH)) < f(r—A(G))

= 2(r—A(G*))+ /(n—1)(2e(H*) — 2(r — A(G*))?). (3.7)

By e(H*) < e(G*), (3.4) and (3.7), we have that

e(G*) e(H™) + 2e(G*) — 2kr + 2k?
2r—A(G*))++/(n—1)(2e(H*)=2(r—A(G*))?)+2¢(G*) — 2kr+2k?

21/ (r—1)(e(G*)—(r—A(G*))2)+2¢(G*) —2A(G*) —2(k—1)r+2k2,

A A

where the equality holds if and only if all inequalities in the above argument
should be equalities. By above discussion, if (3.3) holds, H* = K,_k x + Ok, r—&
is not regular. If (3.6) holds, H* be regular, a contradiction. So the equality
doesn’t hold. Namely,

e(G*) < 21/(r = D)(e(G*) — (r — A(G*)2) +26(G*) —2A(G*) —2(k — 1)r +2K?,

a contradiction.
(iii) By (3.1), for any edge uv € E(H*), we get

dg-(u)dy-(v) 2 dy- (u)(r — dy- (u)).
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Since dy(u) > dg (u) > dg(u) > k and dy(v) 2 de'(v) 2 dg(v) > k, we have
dy-(u) < r—k and dy-(v) € r— k. Thus dy+(u) =2 r —dy-(v) 2 k and
dy-(v) > k. Let g(z) = z(r — z) with k <z < r -k, we note g(z) is convex in
x. Then we have g(z) > g(k)(or g(r — k)), namely g(z) = k(r — k), the equality
holds if and only if = = k(or z = r — k). Hence

dy- ('u)dH- (v) >dy- (‘U)(T —dy- (u)) 2 k(r o k)v (3'8)

where the equality holds if and only if dy-(u) = k and dy-(v) = r — k. By
lemma 2.6, we have that

MH*) > miny/dp-(w)dy- (v) = VE(r - k). (3.9)

Because f(z) is monotonously decreasing when -2—%‘%-2 <z < Ve(H?),
r>k+1,k>1,and (k—1)(r—k—1) =k(r—k) —(r—1) >0, we have

\/Z‘i(H_') . \/M < ViTT< VEG=F) < AH") < Ve@Y).

ndl = ¥ nil
Then by (3.2),

e(H*) < fIMH?)) < f(Vk(r—=k))=2Vk(r—k)+/(n—1)(2e(H*)—2(kr—k2)).
(3.10)

By (3.4), (3.10) and e(H*) < e(G*), we get that

e(G*) < e(H*)+2e(G*)—2kr+2k?
< 2(Vk(r—k))+v/(n—1)(2e(H*)—2(kr—k2))+2e(G*) — 2kr+ 2k2
<

2v/(r—1)(e(G*) —kr+k2)+2e(G*)—2kr+2k*+2(\/k(r—k)), (3.11)

where the equality holds if and only if all inequalities in the above argument
should be equalities. The equality of (3.3) holds if and only if H* = Kp_j ;. +
Ok,r—k (r 2 2k +1). The equality of (3.11) holds if and only if e(G*) = e(H*),
namely G = K x UKy, r—k—1 (r > 2k + 1), a contradiction. ]

Remark :

Now we compare (i), (ii) and (iii) of Theorem 3.1.

We consider that f(z) = 2z + /(n — 1)(2¢(G*) — 272) is monotonously
decreasing when 4/ 3:—51?—11 Sz g \/m, and some other results in the proof
of Theorem 3.1.

Assume 1: (1) Theorem 3.1 (i) improves Theorem 3.1 (i), when e(G*) <
2(r— A(G*))? and A(G®) < r — /r;



(2) Theorem 3.1 (i) improves Theorem 3.1 (ii), when e(G*) > 2(r — A(G*))?
and A(G*) <t — T
Proof. We notice that if e(G*) < 2(r — A(G*))?,

2:(51) < \/ e(g,-.) <r—A(G*) < /e(G,

Then by monotonicity of f(z), we get

Ve(G)(Ver =2+ V2) + 2¢(G*) — 2kr + 2k?

= 2e(G"*) — 2kr + 2k* + f( e(g‘))

> 2e(G*) — 2kr + 2k% + f(r — A(G*))
=2/ (r—1)(e(G*)—(r—A(G*))?)+2e(G*)—-2A(G*) - 2(k—1)r+2k2.

Thus (1) follows. By the similar discussion, we get (2). o
Assume 2: (1) Theorem 3.1 (iii) improves Theorem 3.1 (i), when e(G*) <
2k(r — k);
(2) Theorem 3.1 (i) improves Theorem 3.1 (iii), when e(G*) > 2k(r — k).
Proof. We notice that if ¢(G*) < 2k(r — k), we have

\/ L\C) \/ &) < ir=h < V@),

n+1 — 2

Then by monotonicity of f(z), we get

Ve(G*)(V2r =2 + V2) + 2¢(G*) — 2kr + 2k?
= 2¢(G"*) — 2kr + 2k% + f( e(g“))

> 2e(G*) — 2kr + 2k% + f(Vk(r — k))
=2/(r — 1)(e(G*) — kr + k2) + 2¢(G*) — 2kr + 2k? + 2(\/k(r — k)).

Thus (1) follows. By the similar discussion, we get (2). s}
Assume 3: (1) Theorem 3.1 (iii) improves Theorem 3.1 (ii), when A(G*) >
r—/k(r—k);

(2) Theorem 3.1 (ii) improves Theorem 3.1 (iii), when A(G*) <r—/k(r—k),
wherek:lork22,r2%.
Proof. If A(G*) > r — \/k(r — k), we can find that

2;3(5;) <1 = A(G") < Vk(r—k) < Ve(G).
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Then by monotonicity of f(x), we get

2/(r = 1)(e(G*) = (r — A(G"))?) + 2¢(G*) — 2A(G*) — 2(k — 1)r + 2k
= 2¢(G*) — 2kr + 2k* + f(r — A(G"))

> 2e(G") — 2kr + 2k* + f(/k(r — k))

= 2/(r = 1)(e(G*) — kr + k%) + 2¢(G*) — 2kr + 2k? + 2(V/k(r — K)).

Thus (1) follows. By the similar discussion, we get (2). (]

THEOREM 3.2 Let G = (X,Y;E), where | X| = |[Y|+1=r2k+1, be q
nearly balanced bipartite graph of order n = 2r — 1 and §(G) 2 k > 1. Then
G = (X,Y; E)(# Kr—kyr—k-1 U Ki ke (r 2 2k + 1)) is traceable, if
(1)
Z\(G*) L kr(r—k).
(ii)
Z5(G*) < K¥(r - k)4,
(ii1)
4 Z di. (u) < ket — K3,

ueV(G*)

Proof. Similar to the Proof of Theorem 3.1.
(i) By (3.1), we get

ZiHY)= Y dh.(w= ) (du-(u)+dn-(v)) 2 re(H").

ueV(H*) weE(H*)
Note that
ZI(H‘) — Z d%{.(ﬂ) _<_ Z d2G‘ (‘U) = ZI(G.)) (312)
u€V(H*) ueVv(G*)

then by (3.3), we have
Z\(G*) 2 Zy(H*) > re(H") = r(r* — e(H)) > kr(r — k),

where the equality holds if and only if all inequalities in the above argument
should be equalities. The equality of (3.3) holds if and only if H = Ky r—x U
Kix (r 2 2k + 1). The equality of (3.12) holds if and only if G = H. This
implies that G = Ky_gr—k—1 U Ky (r > 2k + 1), a contradiction.
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(ii) By (3.8), we have that

= ) dy-(u)dy-(v) > k(r - k)e(H*).
uwveE(H*)
Note that
Zy(H*)= Y du-(udp-()< Y. dg-(u)dg-(v) = Z2(G").
uveEE(H*) w€EE(G*)

Then by (3.3), we have
Z2(G*) 2 Za(H*) > k(r — k)e(H®) = k(r — k)(r? — e(H)) > k*(r — k)*.

By the similar analysis, the equality hold if and only if G = Kr—gr—k—1U
Ky (r 2 2k + 1), a contradiction
(iii) By (3.1) and Hélder inequality, we have that

re(H') < Y (dp-(u)+dy-(v))

uwweE(H*)

= ) dn(
u€V(H*)

=e ) db. (u) Y (dh(u)}
ueV(H*) ueV(H*)

< (Y dp@i Y di)?
ueV(H*) u€V(H*)

= @eE NI Y dh.()l.

ueV(H*)

Also by (3.3), we have that

4 Z d.(u) >4 Z dj;- (u) > rie(H*) = r3(r? — e(H)) > kr' — k*r3.

uev(G*) weV(H*)

By the similar analysis, the equality hold if and only if G = K,_jr_x_ U
Kk (r 2 2k + 1), a contradiction. o
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