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Abstract

Recently GDDs with two groups and block size four were studied
in a paper where the authors constructed two families out of four
possible cases with an equal number of even, odd, and group blocks.
In this paper, we prove partial existence of one of the two remaining

families, namely GDD(11¢ +1,2,4; 11t +1,7t), with 7{ (11¢+1). In
addition, we show a useful construction of GDD(6t + 4,2,4;2,3).

1 Introduction

Group Divisible Designs (GDDs) are building blocks for constructions of
many other combinatorial designs, those including Balanced Incomplete
Block Designs. These designs and other combinatorial structures play an
important role in the constructions of GDDs as well.

Definition 1.1. A group divisible design GDD(n, m, k; A1, A7) is a collec-
tion of k-element subsets, called blocks, of an nm-set X where the elements
of X are partitioned into m subsets (called groups) of size n each; pairs of
distinct elements within the same group are called first associates of each
other and appear together in Ay blocks while any two elements not in the
same group are called second associates and appear together in Ay blocks.

Definition 1.2. A Balanced Incomplete Block Design, BIBD(v,b,r, k, ),
is a collection of b k-subsets (called blocks) of a v-set V, such that each
element appears in ezactly v blocks, every pair of distinct elements of V
occurs in A blocks and k < v. A BIBD(v,b,7,k,)) can also be denoted by a
BIBD(v, k, A).

. A GDD(v, k, k;0,1) is also called a transversal design TD(k,v), and it
has v? blocks. GDDs are building blocks for constructions of many other
designs including balanced incomplete block designs defined helow.

Another helpful tool for constructing the GDDs in question is the fac-
torization of a complete graphs. A complete graph K,, is a graph on n
vertices where each distinct pair of vertices is connected by an edge. Later,
we use the edges of certain complete graphs, paired with a single element,
in order to achieve required A; values, whereas the Balanced Incomplete
Block Designs are useful for contributing to A; value of the GDDs.
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2 Necessary Conditions

The replication number r of an element X, i.e. the number of blocks in
which the element x appears in the GDD(n,2,4; A1, A2) can be found by
r= *—‘(1"—;&1’—"- Clearly r is independent of the element chosen. There-
fore, A\y(n — 1) + Aon = 0 (mod 3). Let b be the number of blocks of
the GDD. Since each of the 2n elements occur in r blocks, 2nr = 4b and
b= m—'\ﬂﬁu'—) Both b and r must be integers.

A block of size four with elements from either one or hoth of two groups
can have only three intersection patterns: (1,3), which is called an odd
block, (2,2), which is called an even block, and (0,4), which is called a
group block. Nanfuka and Sarvate have studied such GDDs with equal
numbers of all three block types in [11]. However, only two of the four
cases described in [11] have been constructed.

As seen above, % = mﬁ%—’-ﬂ is the number of blocks of each type,

and, from [11], \; = ":l(%\fj The two remaining cases for which existence
is not known are:

(i) GDD(11t +1,2,4;11t + 1, 7t)
(i) GDD(77t +56,2,4;11t + 8,7t +5)

3 GDD(11t+1,2,4;11t + 1, 7t)

In order to show that such a GDD with equal number of even, odd, and
group blocks exists for all t > 1, one should look at the cases of ¢ modulo

12,

3.1 t=1 (mod 12)

Let t = 125 + 1 for some integer ¢ > 1. Then, the GDD to is construct
GDD(132s +12,2,4;132s + 12,84s + 7). Let Gy = {z,...,Z132s+12} and
Ga ={y1,...,Y132s+12}. Split the groups into three subsets each in a natu-
ral way, e.g. split Gy into Ay = {zy,...,Taas44}, B1 = {Tas45,- - -, Tess+8}s
and C; = {T88s49,-..,T132s+12}. Similarly, split G into Az, Ba, and Co.
It is required that there are % = 517"—2 = (125+1)(1325+12)? blocks of each
type. In order to get odd blocks, use the blocks of TD(44s +4,4,4;0,1) on
certain groups as described in Table 1.

These blocks contribute 3(12s+1) to the count of Ay. However, this will
contribute to A} count in between the groups A; By, A;C), and B,C) by
6(12s+1) and between the groups Ay By, A2C5, and BoC, by 3(12s+1). In
order to get even blocks, use the blocks of TD(44s +4,4,4;0,1) on certain
groups as described in Table 2. :
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Table 1:

& M B A Ay B G
B Ay B NGB A VB
Cl A2 Bz C2 Cg A1 Bl Cl

(12s + 1) Copies  2(12s+ 1) Copies

Table 2:
AL By A, By |A B A C|A B, B, C
Al C A, By|A C A, C|A C By (
B, Ci A, B |\By C A, C|By C, By (
(125 + 1) Copies (12s + 1) Copies (12s + 1) Copies

These contribute to Ay count by 4(12s + 1), making Ay = 7(12s + 1)
as required by the necessary conditions. In addition, it will contribute to
/\1 count bhetween AlBl, A1Cl, BICI, Ang, AQCQ, and Bng by 3(128 +
1). From here, use the blocks of BIBD(132s + 12,4,24s + 3) on G, and
BIBD(132s+12,4,60s+6) on G, to get required A; between groups. To get
required A; within each group, we use the blocks of BIBD(44s+4,4,108s+
9) on each of Ay, By, and C) and the blocks of BIBD(44s + 4,4,72s + 6)
on each of As, By, and C,. One can see that this will make A; = 1325+ 12
within groups as well as get our required number of group blocks.

3.2 t=4,10 (mod 12)

Let t = 6s + 4 for some integer s > 1. The aim now is to construct
GDD(66s + 45,2,4;66s + 45,425 + 28). Let G| = {z1,...,T66s+45} and
G2 = {y,... ,Y66s+45 }. From here, split G, into three subsets each:

(i) A1 = {=z1,.--,Z225+15},
(ii) By = {Z22s+16s -+ T44s+30},
(iii) Cy = {T4as+31,:- -, T665+45}-

And similarly, split G» into As, Bs, and C;. From the necessary conditions,
it is required to have g &= 527"—2 = (65 + 4)(66s + 45)? blocks of each type.
In order to get the odd blocks, use the blocks of TD(22s + 15,4,4;0,1) on
certain groups as described in Table 3.

This will contribute 3(6s + 4) towards Az. In addition, A; increases by
9(3s + 2) between the elements of the subsets of the groups. From here, in
order to get our even blocks, use the blocks of TD(22s + 15,4,4;0,1) on
certain groups as described in Table 4.
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Table 3:
A A B, C; | A Ay By Cy
By, 4 B, G| B, A By C
C; A, By C|C, A B G
3(3s + 2) Copies 3(3s + 2) Copies

Table 4:
-41 Bl Ag Bg Al Bl Ag Cz Al Bl Bz C2
-41 Cl .42 Bg .‘11 Cl A2 Cg A1 C1 Bz C2
B, C, A, By|B C A C|B C By C
(6s + 4) Copies (6s + 4) Copies (6s +4) Copies
> e

This contributes 4(6s+4) to A, count, making Ay = 7(6s+4) as required.
In addition, A; increases by 6(3s + 2) between the elements of the groups.
Now, use the blocks of BIBD(66s + 45,4, 21s + 15) on hoth G, and G to
get required A; between subsets. Finally, use the blocks of BIBD(22s +
15,4,45s + 30) on each of the subsets of G and G2 to get required Ay
within subsets. One can also see that this will give the required number of
group blocks.

3.3 t=5,9 (mod 12)

Let t = 4s + 1 for some integer s > 1. The aim now is to construct
GDD(44S + 12,2,4, 44s + 12,283 + 7) Let Gl = {131,. oo ,$44,+12} and
Gy = {v1,. -, Yaas+12}. From here, split G} into four subsets:

(i)

(ii) By = {T11544s---1T22s16 ),

(iii)
)

(iv

Al = {z1,...,T11543},

C = {$225+7a---,-’17333+9},
Dy = {Z335410; - - - y Tads+12}-

Similarly, split Gy into Ay, By, Cy, and Dj. It is necessary to have & =
527"—2 = (4s + 1)(44s + 12)? blocks of each type. In order to get the odd
blocks, use the blocks of TD(11s+3, 4,4;0, 1) on certain groups as described
in Table 5:

This will increase Ay by 3(4s + 1) and A; in between the elements of
the subsets of G} and G by 4(4s+1). In order to get the even blocks, use

the blocks of 2(4s + 1) copies of TD(22s + 6,4, 4;0,2) on the following sets:
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Table 5:
A

(4s + 1) Copies (4s + 1) Copies

A,UB,, C1UD,, A2UB;, and CoU D,. This will increase A, by 4(4s+1),
making the total Ay = 7(4s + 1) as required. A; will increase by 4(4s + 1)
in between the subsets of G, and G, except hetween the following sets: A;
and By, Cy and Dy, A; and B,, and C; and D,.

Take the blocks of BIBD((11s+3) + (115 +3),4,4(4s + 1)) on each of the
pairings of sets given above. This also serves to increase A; within subsets
by 4(4s+1). All that remains is to increase A; within subsets by (28s + 8)
and between subsets by (12s + 4). This can easily be done by taking the
blocks of BIBD(11s+3,4,28s + 8) for each of the subsets of G; and G, as
well as forming TD(11s + 3,4, 4;0,12s + 4) on the four subsets of G, and
the four subsets of Go. One can see that this will give the required number
of group blocks. However, such BIBDs do not exist when s =0 (mod 3).

3.4 t=7 (mod12)

Let t = 12s 4 7 for some integer t 2 1. The aim now is to construct
GDD(132s+78,2,4;132s+78,84s+49). Let Gy = {z,...,T132s478} and
Gs = {y1,---,Y132s478}. We split G into six subsets each:

(i) A
(ii) By = {Ta4s426,-- -1 Te8s+50},
(i) C

(iv) Dy = {z132:476},

= {1'1, e y$44s+25}v
= {Tggs451s: 11325475}
(v) Ey = {T132:477},

(vi) Fy = {z132:478}-
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Similarly, we split Gz into Az, B2, C2, D2, E3, and F3. We need g =
5-."— = (12s + 7)(132s + 78)? blocks of each type. To get our odd blocks,
we use the blocks of (6s +4) copies of TD((44s+25) +(1),4,4;0,1) on the
groups on the left and (6s + 3) copies of the same design on the groups on
the right:

Table 6:
AiuD, BJUE, CUF, A2UD;|A2Up BaUq CoUr AjUa
AJUE, BiUF, CiuD; AjUE;[(AUq BoUr Coup A Ub
AJUF, ByuD, CiUE, A UF, |AUr BaUp CoUq AjUc
AiuD, BjUE, C\UF BoUDy|AyUp Bauq CoUr ByUa
AJUE, BjuF, CiUD, BUE;|A2Uq BaUr CoUp ByUDb
AlUF, BjuD, C,UE, BUF;|AyUr BoUp CoUq By Uc
AiuD, ByjUE, CCUF, CoUD;|A;Up BoUq CoUr CiUa
AJUE, BjUFy CyuD; CoUE;|AUq BaUr CoUp CUDb
AyUF, BjuD, CUE, CoUF,|AsUr BoUp CoUq CiUc

This will contribute 3(12s + 7) to A2 count. However, the effect on \; is
much more complicated.

From here on, a “multi-element subset pair” is a pair X, Y] that fulfills the
inequality |X;|,|Y;| > 1. A “single-element subset pair” is a pair X, Y],
where |X,|,|Y1| = 1. Finally, a “multi-element / single-element subset
pair” is a pair X1,Y;, where |X;| > 1 and |Y;| = 1. So, saying that a A,
count increases by = between one of these pairs means that each element
in the first subset comes z times with each element of the second subset.
Looking at our six groups in pairings like this is important for making sure
our required A; is met.

(i) Between each multi-element subset pair and between each single-
element subset pair of G, A\; count will increase by 9(6s + 4).

(ii) Between each multi-element / single-element subset pair of Gy, A,
count will increase by 6(6s + 4).

(iii) Between each multi-element subset pair and between each single-
element subset pair of G, A; count will increase by 9(6s + 3).

(iv) Between each multi-element / single-element subset pair of G2, A
count will increase by 6(6s + 3).

To get even blocks, we use the blocks of (12s 4 7) copies of each T'D((44s +
25) +(1),4,4;0,1) on the following groups:
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Table 7:
AiUa ByuUb AUp ByuUg
AjUb ByUc AyUq CpUr
AjUec ByUa Bur CyUp
AjUa CiUb A,Uq Byur
AjUb CiUc AUr CUp
AiUec CiUa B,Up CaUgq
ByUa CiuUb A,ur B,Up
Biub CiuUc AUp CyUgq
BiUc CyUa Bauq Cyur

This will contribute 4(12s + 7) to A, count, making X\, = 7(12s + 7) as
required by our necessary conditions. Again, the effect on A; is more in-
volved:

(i) Between each multi-element subset pair and between each single-
element subset pair of Gj, A; count will increase hy 3(12s + 7) to
(90s + 57).

(ii) Between each multi-element / single-element subset pair of Gy, A
count will increase by 2(12s + 7) to (60s + 38).

(iii) Between each multi-element subset pair and between each single-
element subset pair of G3, A; count will increase by 3(12s + 7) to
(90s + 48).

(iv) Between each multi-element / single-element subset pair of Ga, Aj
count will increase by 2(12s + 7) to (60s + 32).

Now, we need the group blocks. However, the way we get such group blocks
depends on whether or not s =2 (mod 3). As such, we need to look at the
process through two separate constructions for the required group blocks.

3.4.1 s=0,1 (mod 3)

To get the group blocks for s = 0,1 (mod 3), we take the blocks of BIBDs
of four separate designs. The first two are BIBD((44s + 25) + (445 4 25) +
(1) +(1),4,145 4+ 7) on G; with the upper groups and BIBD((44s +25) +
(44s + 25) 4+ (1) +(1),4, 145 + 10) on G, with the lower groups. These are
presented in Table 8. One can see such BI B Ds will always exist for s = 0,1
(mod 3). Finally, we take the blocks of BIBD((44s+25) 4 (1),4, 165 +12)
on the upper groups and BIBD((44s + 25) + (1),4,16s + 6) on the lower
groups. These are presented in Table 9.
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Table &:

4! B] a b A] B] a ¢ A] B] b C
4} C[ a b 41 01 a C¢C Al Cl b e
Bl Cl a b B] C} a C¢C Bl Cl b c
A, B, p q|A B p |4 Bi- g ¥
A, C p q| 4 Co p r|A he g - §
B, Co p q|Br Ca p v|B2 C2 q 7
Table 9:

Al a Al b s WL &

B] a Bl b Bl c

Cl a C] b Cl e

Ay p|A2 q|A T

B, p|B: q|By 1

Cy p Cy ¢ Cy, r

Again, one can see such BIBDs will always exist for s = 0,1 (mod 3).
These BIBDs will give us all of the required group blocks. In addition, we
can see we have the required A;:

(i) Between each multi-element subset pair and between each single-
element subset pair of G, A; count will increase by 3(14s + 7) to

(1325 + 78).

(ii) Between each multi-element / single-element subset pair of Gi, A1
count will increase by 4(14s + 7) + (16s + 12) to (132s + 78).

(iii) Within each multi-element subset of Gy, A, count will increase by
6(14s + 7) + 3(16s + 12) to (132s + 78).

(iv) Between each multi-element subset pair and between each single-
element subset pair of G3, A; count will increase by 3(14s + 10) to
(132s + 78).

(v) Between each multi-element / single-element subset pair of G2, A1
count will increase by 4(14s + 10) + (16s + 6) to (132s + 78).

(vi) Within each multi-element subset of G2, A; count will increase by
6(14s + 7) + 3(16s + 12) to (132s + 78).
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4 Additional GDD Construction

In the process of constructing the above GDDs, we came across another
useful construction. The GDD(6t +4, 2,4;2, 3) for t even provided a second
construction for one of the ahove cases. This GDD can easily be shown to
exist.

Proof. Let G, = {al,ag,...,amH}, with A; = {al,ag,...,(13,+2} and
By = {a3t+3,a3t44,...,06t44}. Let Ga, Az, and B be defined in a similar
fashion. First, take the blocks of TD(3t+2,4,4;0,2). Then, take the blocks
of BIBD(6t + 4,4,1) on each of A; U By, A; U By, A2U By, and A; U By,
all of which exist for ¢ even. O

This construction is useful for GDD(11t+1,2,4;11¢ +1,7t) for the case
of t = 9 (mod 12). In this case, the GDD to construct is GDD(132s +
100, 2,4; 1325 4100, 84t + 63) where t = 125+ 9 for some positive integer s.
First, take the blocks of 28t + 21 copies of GDD(132s +100,2,4;2,3). This
fulfills A, requirement and contributes 56t +42 to A; requirement. Finally,
use the blocks of BIBD(132s + 100, 4, 76t + 58) on G, and on Gy.
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