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ADSTRACT. The subject matter for this paper is GDDs with three
groups of sizes ny,n (n > ny) and n + 1, for ny = 1 or 2 and block
size four. A block having Configuration (1, 1,2) means that the block
contains 1 point from two different groups and 2 points from the re-
maining group. A block having Configuration (2,2) means that the
block has exactly two points from two of the three groups. First, we

~  prove that a GDD(ny,n,n + 1,4; A1, A2) for n1 = 1 or 2 does not
exist if we require that exactly half of the blocks have the Configura-
tion (1,1,2) and the other half of the blocks have the Configuration
(2,2) except possibly for n = 7 when n; = 2. Then we provide nec-
essary conditions for the existence of a GDD(ny,n,n + 1,4; A1, A2)
for ny = 1 and 2, and prove that these conditions are sufficient for
several families of GDDs. For n; = 2, these usual necessary condi-
tions are not sufficient in general as we provide specific examples of
existence and non-existence of GDDs, which also provide a glimpse
of challenges which exist even for the case of nj = 2. A general
result that a GDD(ny, na, n3,4; A1, A2) exists if ny +ny +n3 =0,4
(mod 12) is also given.

1. Introduction

Group divisible designs (GDDs) have been studied for their usefulness
in statistics and for their universal application to constructions of new de-
signs [10, 17, 18]. Certain difficulties are present especially when the
number of groups is smaller than the block size. In (2, 3], the question of
existence of GDDs for block size three was settled. There is a more tech-
nical proof given in the book “Triple Systems” [1]. Similar results were
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established for GDDs with block size four in [4, 6, 8, 13, 19). Also, re.
sults about GDDs with two groups and block size four with equal number
of even and odd blocks were given in [12]. In [15], results on GDDs with
number of groups 2 or 3 and block size four were established. Furthermore,
in [5, 7], results about GDDs with two groups and block size five with
fixed block configuration were presented. In [16], results about GDDs with
three groups and block size five with fixed block configuration were ad-
dressed. In [11], results about GDDs with fours groups and block size five
with fixed block configuration were established. In [14], generalizations of
designs for block size five from Clatworthy’s Table are given. In [9], results
about GDDs with block size six with fixed block configuration were studied.

A group divisible design, GDD(n, m, k; A1, A2), is a collection of k-
element subsets of a v-set V' called blocks which satisfies the following prop-
erties: the v = nm elements of V' are partitioned into m subsets (called

groups) of size n each; each point of V' appears in r = M"-”:_:\f"(""l)
(called replication number) of the b = %= blocks; points within the same
group are called first associates of each other and appear together in A
hlocks; any two points not in the same group are called second associates
of each other and appear together in Ay blocks. In the literature this defi-
nition has been generalized to include situations where the groups are not

of the same sizes.

DEFINITION 1. A4 group divisible design GDD(ny,na, ...,y k; A1, A2)
is a collection of k-element subsets of a v-set V called blocks which satisfies
the following properties:

o the elements of V are partitioned into m subsets (called groups)
of sizes ny,na, -+ , Ny, respectively;

o points within the same group are called first associates of each
other and appear together in Ay blocks;

e any two points not in the same group are called second associates
of each other and appear together in Ay blocks.

EXAMPLE 1. The blocks of a GDD(2,3,3;3,1) with Gy = {a,b}, G, =
{1,2,3} are {1,a,b},{2,a,b}, {3,a,b},{1,2,3},{1,2,3} and {1,2,3}.

In 4, 19], the necessary conditions are proved to be sufficient for the
existence of a GDD(n,3,4; A1, A2) with Configuration (1,1,2) (note that
three groups have the same size n in this problem). The main purpose of
this paper is to establish results for GDDs with three groups of different
sizes ny,n(n > 2) and n+ 1, respectively, and block size four. There are, as
mentioned earlier, several papers where GDDs with equal number of blocks
of different configuration are studied. Interestingly here we prove that such
GDDs in which exactly half of the number of blocks have the Configuration
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(1,1,2) and the other half of the blocks have the Configuration (2,2), do not
exists for n; = 1 in general and for n; = 2 except for possibly n = 7. Unless
otherwise stated, we say that the number of blocks having the Configuration
(1,1, 2) equals the number of the blocks having the Configuration (2,2) in
the remaining of this paper to mean that exactly half of the number of
blocks have the Configuration (1,1,2) and the other half of the blocks have

the Configuration (2,2).
- & GDD(I, n,mn+ 1,4;A1,/\2)

2.1. Non-existence result with configuration restriction.

THEOREM 1. The necessary conditions for the eristence of a GDD
(1,n,n + 1,4; A, A2) with equal number of blocks for each Configuration

(1,1,2) and (2,2) are g = 72222, A =0 (mod 3(n? +3n +1)), n > 3
and % =1

PROOF. Suppose a GDD(1,n,n+1,4; ), A;) exists and has b blocks.
The number of the first associate pairs equals A‘("("'U;"("“) ) and it also
equals —22—" +’-2’ since half of the blocks have Configuration (1,1,2) and half of
the blocks have Configuration (2,2), we have 2 + 2 = ’\‘("("'1;“("“)).
That:is. b= '\‘("("’13,+"("+1)). In addition, the number of second asso-

ciate pairs equals Ay(n+ (n+ 1)+ n(n+ 1)) = 47" + %, we have b =

22z (n+(n+1)+n(n+1)) a(nt(n+1)+n(n+l)) _ A(n(n=D+n(n+1)) _
2 5 . From 5 = = - = b,

Ap = T?:Tl.zs%i—l This implies A, =0 (mod 3).

Note that the replication number 7, for an arbitrary point in group G,

is 222040 Giilarly, rp = ME=DEID Hpg g inbdalnd]) g,
2
e have' b = r;+nr2.-§(n+1)ra kY 2nqz\1 (use Ay = ;!3-’;%}}—1 and ?imp]ify),
This implies that b is even and satisfies the requirement for having equal
number of blocks having Configurations (1,1,2) and (2,2), respectively.
Since b = ?-";—"l, either \; = 0 (mod 3) or n = 0 (mod 3). Also, since
3 2 a p

To = ’\‘(""1);’\’("”) = *“";}nz“i’;,,f{)‘ D) either A, =0 (mod 3)orn =1
(mod 3). Combining these two conditions, we have A\; = 0 (mod 3). Fur-

2
thermore, since Ay = ;}_;_‘Tﬁf, A =0 (mod (n? +3n + 1)).

Since there are equal number of blocks having Configurations (1,1, 2)

1 n
and (2,2), respectively, the number of blocks b > A, "; 2 )\m(2 +1)
(the number of first associate pairs from group 3). Note that the equal

sign holds when each block has two points from group 3. Also, since
e Al(n(1|-1)+n(n+l))____2n:A we have z\ln(zn-l,-l) < Al(n(n—1:)3+n(n+l)) that
- —3 =L < ,
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is, n(n+1) <2n(n-1),0rn > 3.

Lastly, since the point in G| must appear in % blocks having Config-
uration (1,1,2) and not appear in any blocks having Configuration (2, 2),
we must have r; = g m}

COROLLARY 1. A GDD (1,n,n + 1,4; A\, \2) with equal number of
blocks for each Configuration (1,1,2) and (2,2) does not erist.

PROOF. One of the necessary conditions of the problem in Theorem 1

g o iAa(2n+41 2(2n+1)A 2
IsT) = %. That is, a ;,;+ ) = nn§+3n+)ll i na'\l’ we have n? - 3n -2 =0,

and there's no integer solution for n. Therefore, for any positive integer
n > 2a GDD (1,n,n + 1,4; A\;, A2) with equal number of blocks for each
Configuration (1,1,2) and (2,2) does not exist. | B

Next we study GDD (1,n,n+1,4; Aj, A2) without configuration restric-
tions.

2.2. The necessary conditions for GDD(1,n,n+1,4; A, \5).

As a GDD (1,n,n +1,4; A1, A2) with equal number of blocks of Con-
figuration (1,1,2) and (2,2) does not exist, our next step is to study the
existence of these designs in general without configurations. We let G, G2
and G3 denote the three groups. We can assume that n > 1 as we have the
following.

LEMMA 1. A GDD(1.1.2,4; A1, A2) exist only when Ay = Ay and the
blocks of the trivial GDD are Ay copies of V (i.e. Gy UGy UG3).

In this section we will find necessary conditions for the existence of
GDD(1,n,n + 1,4; A1, A2). By simple counting, the replication numbers r;

: (2n+1)A 3
for the elements of it* group are : ry = Z2EA ) = (EDNA=DY, 4, g
3 ndi+(n+1)Az
ry = SEOEER

. 2 - 2
Since 4b = 1 x 1y +n X 12+ (n +1) X r3, we have b = 22t Lot

» 4622 t? oy
Case i neven. Let n =2t. Thenb = 1t G+G'+”'\’ which implies

that Ay must be even.

Case ii n odd. Let n =2t +1. Then b = (4‘2““”"‘*6(‘“2“0“*5)'\2
which implies that A, and Az are of the same parity.

The parameters ry,79,73 and b must be integers, hence we get the
following restrictions on n in Table 1 where “None” means the design does
not exists for any n.
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A\A2 [0 1 2 3 4 5
0 any n | None None None None None
1 None |n = 1| None None n = 4| None
(mod 6) (mod 6)
2 None | None n = 1| None None None
(mod 3)
3 even | None None n = | None None
n 1.3:9
(mod 6)
4 None | None None None n = 1| None
(mod 3)
5 None | None n = 4| None None n-= 1
(mod 6) (mod 6)

TABLE 1. The necessary conditions for GDD(1,n,n 4+ 1,4; A1, A;)

The following lemma gives another necessary condition.

LEMMA 2. A necessary condition for the existence of a GDD(ny,n,, n,
4;M1,A2) is b > max(2r; — A1), i = 1,2,3. Note that whenny =1, b >

maI(2r,~ -y /\1), 3= 2,3

PROOF. Consider a first associate pair, say z and y from a group G;,
then as both of them come together A; times, the number of blocks must

be at least 2r; — A\; to accommodate z and y r; times in the design.

An example where b ? 2r; — A, is given below.

EXAMPLE 2. A GDD(1,2,3,4;3,6) does not exist because for this de-
sign to exist b =13, r; = 10,72 = 9 and r3 = 8 and clearly b is less than

27'] = /\1.

The following is an example of a GDD that exists when b > 2r; — A;.

EXAMPLE 3. A GDD(1,2,3,4;9,6), hereb=17 and if \; =9,A2 =6
then 1y = 10,79 = 11 and r3 = 12. Let G, = {z},G, = {a,b} and G3 =

{1,2,3}. The blocks of the GDD are given below in columns.

— o R R
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Observe that every block contains at least two first associate pairs
except for the blocks which contain the element from the first group of
size 1. These r; blocks which contain group 1 element contain at least 1
first associate pair. So we must have at least ry + 2(b — ry) = 2b — r first

associate pairs. That is we have [(;) + (n -2}' 1)])\1 > 2b —r,. Hence, we

have

LEMMA 3. A necessary condition for the existence of a GDD(1,n,n +
1,4; M\, Ag) is Apn? > 2b—ry.

In several cases it is easy to show that a specific design does not ex-
ist from the necessary conditions. For a GDD(1,4,5,4;3,6) to exist b =

37, = 15 the number of first associate pairs in the design [(;) + (2)]3 =

48 but as 2b — r; = 59, the design does not exist. Another example, a
GDD(1.2.3.4;12,18) does not exist as b = 41, rp = 28, 2b — r, = 54 and
n’\; = 48.

Though general results are hard to obtain, we have an interesting bound
for how far away As can go from A;.

THEOREM 2. A necessary condition for the existence of a GDD(1,n.n+
1.42/\1,)\2) 15 Ay < 2.

PRrOOF. Substitute the values of b and ry in A\yn? > 2b — r1, we have

/\gs%i\f<2/\lforn22. |

2.3. GDD(1,n,n +1,4;A;,A2) when A} < 3.

A balanced incomplete block design BIBD(v,k,A) (A > 1) is a pair
(V, B) where B is a collection of blocks of V' such that every block contains
exactly k < v points and every pair of distinct elements is contained in ex-
actly A blocks. It is known that a BIBD(v,4, A) exists if A = 1,5 (mod 6)
and v = 1,4 (\mod 12), or if A = 2,4 (mod 6) and v = 1 (mod 3), or if
A=3 (mod 6) and v=0,1 (mod 4), or if A =0 (mod 6).

We will use BIBDs extensively in the remaining of the paper. We start
with A} = 3.

2.3.1. GDD(1,n,n+1,4;3,A7).

For A\; =3, A2 <6 from Theorem 2.
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A GDD(1,n,n + 1,4;3,3) is just a BIBD(2n + 2,4,3). For n odd, a
BIBD(2n + 2,4, 3) exists, and for n even, it does not exist as evident also
from Table 1. Also, from Table 1, GDD(1,n,n+1,4;3,Az) for A, =1,2.4,5
does not exist. For A\ = 0, in general, the blocks of a GDD((1,n,n +
1,4; X;,0) are the collection of blocks of BIBD(n,4,A;) and BIBD(n +
1,4, \;). Therefore, we have the following result.

LEMMA 4. GDD(1,n,n+1,4;3, ;) does not exist except when Ay =3
and in this case it exists only for odd values of n and it is a BIBD(2n +
2,4,3).

We note that when A\; = 3, a GDD((1,n,n + 1,4; A;,0) exists only
when n =0 (mod 4).

2.3.2. GDD(1,n,n+1,4;1,A2).

For A\ =1, A €1 from Theorem 2. Therefore, we have:

LEMMA 5. GDD(1,n,n + 1,4;1, ;) does not ezist for any Ay except
when Ay =1 and in this case it is just a BIBD(2n + 2,4,1).

2.3.3. GDD(1,n,n+1,4;2, ),).

For a GDD(1,n,n+1,4;2,A,), A, < 3 from Theorem 2. A GDD(1,n,n+
1,4; 2, A2) does not exist for A, = 0,1 or 3 from Table 1, and a GDD(1, n, n+
1,4;2,2) is just a BIBD (2n + 2,4,2) which exist when n =1 (mod 3).

LEMMA 6. A GDD(1,n,n+1,4;2, \;) does not exist except when Ay = 2
and in this case it is a BIBD(2n +2,4,2) and n =1 (mod 3).

In summary, a GDD(1,n,n + 1,4; A\;, \p) for A\; < 3 exists only when
A1 = A2 and in that case it exists if and only if a BIBD(2n + 2,4, A) exists.

2.4, GDD(I,R,TI + 1,4;/\1,/\2) where /\1 > /\2.

In this section, we study GDD(1,n,n + 1,4; A1, A;) where A; > Ao.
We proceed with the cases on the main diagonal of Table 1 first (where
A1 = A2 (mod 6)), and then study the three cases on the off-diagonal en-
tries (where Ay = 3 (mod 6) and A; = 0 (mod 6), and A\; = 5 (mod 6)
and A2 = 2 (mod 6). and Ay = 1 (mod 6) and A, = 4 (mod 6)). Note
that a GDD does not exist for all other cases. Also, a brief discussion of
GDD(1,n,n + 1,4; A1, A2) where A; < Ay is included in the summary of
this paper.
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24.1. Case Ay = A3 (mod 6).

In general, a GDD(ny,na,n3,4; A1, A7) exists when Ay < \; and A1 =
A2 (mod 6), if a BIBD(n; + nj + n3,4, A;) exists as a BIBD(wv, 4, 6) exists
for all integers v > 4. More generally,

THEOREM 3. If a BIBD(ny + ng + n3,4,\9), and a BIBD(ni,4, 1)
eists for1=1,2,3, then a GDD(ny,ng,n3,4; Ay + Ay, \y) erists.

For example, a GDD(1,4, 5,4; 5, 2) exists.

COROLLARY 2. 4 GDD(ny,n2,n3,4; Ay = Ay +6s, \p) exists if a BIBD
(ny + ny +n3,4,A2) exists.

ProoF. As BIBD(n,4,6) exist for all n. The blocks of the GDD are
obtained by taking the union of the collection of blocks of BIBD(n, 4, 65)
on G,, 1 = 1,2,3 and BIBD(n; + na + n3,4,A2) on G, U G, U G3 that
exist. 0

COROLLARY 3. For all values of ny,ng,n3 where ny +ny 4+ ng = 0,4
(mod 12), a GDD(ny,ny,n3, 4; A + 65, Ag) exists for all Ay’s.

COROLLARY 4. 4 GDD(1,6t+1,6t+2,4; A2 +6s, A2) exists for all A2,
and t,s > 0.

Proor. The blocks of GDD are obtained by taking the union of the
collection of blocks of a BIBD(6t + 1,4,6) on G» and a BIBD(6t + 2,4, 6)
on G3 and BIBD(12t +4,4,A3) on G, U G, U G3. O

2.4.1.1. Subcase A\; =0 (mod 6) and A, =0 (mod 6).

For any value of n, a GDD(1,n,n + 1,4;6s,6t) is possible, but as we
will see the situation is more involved.

First from Theorem 2, a GDD(1,n,n + 1,4;6t,67") does not exist for
T > 2t. Note for t = 2,n = 2, for example, a GDD(1, 2,3, 4;12, 18) satis-
fies this condition but does not exist as seen in Section 2 and similarly a
GDD(1,n,n + 1,4;12,18) does not exist for n = 3 though the parameters
of a GDD(1,3,4,4;12,18) satisfy the condition. Here b = 75, r; = 42,
ro =38 and r3 = 36. Now 12-9 < 150 — 38 = 112.

LEMMA 7. For all values of n > 4, a GDD(1,n,n + 1,4;6s,6t) exists
if 6t < Gs.

ProoF. The blocks of the GDD are obtained by taking union of the
collection of blocks of these BIBDs: BIBD(2n + 2,4,6t) on G, |J G2 |J G3,
BIBD(n,4,6(s —t)) on G and BIBD(n +1,4,6(s — t)) on Gg. ]
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2.4.1.2. Subcase A} =1 (mod 6) and A2 =1 (mod 6).

From Table 1, for this case n = 1 (mod 6), and from Corollary 4, we
proved the existence of the required GDDs.

2.4.1.3. Subcase A} = 2 (mod 6) and A, =2 (mod 6).

LEMMA 8. Necessary conditions are sufficient for the eristence of a
GDD(1,n,n+1,4,A; =2 (mod 6), A2 =2 (mod 6)) for A3 < A;.

PROOF. From the necessary conditions n = 1 (mod 3). Also note that
A2 is even. As the cardinality of the union of the three groups is 6t + 4 for
some integer t, a BIBD(6t + 4,4, A2) exists. The blocks of the BIBD along
with the hlocks of il—g—ﬁz copies of BIBD(3t +1,4,6) and BIBD(3t +2,4,6)
provide the hlocks of the required GDD. o

2.4.1.4. Subcase A; = 3 (mod 6) and A; =3 (mod 6).

Here from Table 1, n is odd, say n = 2t + 1 for some positive integer
t. Notice that a BIBD(4t + 4,4, A2) exists. The blocks of the BIBD along
with the blocks of 2222 copies of BIBD(2t +1,4,6) and BIBD(2t +2,4,6)
provide the blocks of a GDD(1,2t 41,2t +2,4;6a+3,6b+3), when a > b.

Hence we have

LEMMA 9. Necessary conditions are sufficient for the eristence of a
GDD(1,n,n+ 1,4, A =3 (mod 6), 2 =3 (mod 6)) for A, < A1.

2.4.1.5. Subcase A\; =4 (mod 6) and A, =4 (mod 6).

This case is identical to the case when A; = 2 (mod 6) and Ay = 2
(mod 6) and hence we have

LEMMA 10. Necessary conditions are sufficient for the existence of a
GDD(1,n,n +1,4,A; =4 (mod 6), A2 =4 (mod 6)) for Ay < A;.
2.4.1.6. Subcase Ay =5 (mod 6) and A2 =5 (mod 6).

From Table 1, n =1 (mod 6), and hence from Corollary 4, we have

LEMMA 11. Necessary condztzons are sufficient for the ezistence of a
GDD(1,n,n+1,4,A; =5 (mod 6), /\2 =5 (mod 6)) for Ay < A;.

In summary, the ahove subsections together prove
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THEOREM 4. Necessary conditions are sufficient for the existence of
GDD(1,n,n+1,4; A1, A2) when Ay > Ay and A} = Ay (mod 6).

2.4.2. Case Ay =5 (mod 6) and A2 =2 (mod 6).

The necessary condition for the existence of a GDD(1,n,n + 1,4;5,2)
is n =4 (mod 6) (i.e., n = 4,10 (mod 12)) from Table 1. The following
result gives half of these designs (where n = 4 (mod 12)).

THEOREM 5. Ifn =4 (mod 12) then a GDD(1,n,n + 1,4;5,2) ezists
and hence a GDD(1,n,n+ 1,4;5t,2t) ezists for all t > 1.

PRrRooF. The blocks of the GDD with groups Gy, G2 and G5 are blocks
of a BIBD(2n +2,4,2) on G, |JG2JG3, the blocks of a BIBD(n, 4, 3) on
G, and the blocks of BIBD (n + 1,4, 3) on Gj.

Note when n = 4 (mod 12), n = 0 (mod 4) and n + 1 = 1 (mod 4)
and 2n+2 = 1 (mod 3) conditions required for the existence of the BIBDs
used in the construction are satisfied. u]

2.4.3. Case \y =3 (mod 6) and A2 =0 (mod 6).

In this case, the smallest A\; we need to consider is 9 as A\; = 3 case
has been discussed in Section 2.3. From Table 1, n is even, i.e., n = 0,2
(mod 4).

If n =0 (mod 4), for any A\; = 65y 4+ 3 and Ay = 6s where A\; > )y,
a GDD(1,n,n+1,4; 65, + 3, 6s5) exists by using the blocks of BIBD(2n +
2.4,6s5) and BIBD(n,4,6(s; — s2) +3).

Ifn =2 (mod 4), a GDD(1,4t+2, 4t+3,4;65+3,0) does not exist since
a BIBD(dt + 2,4, 65 + 3) does not exist. For n = 2, a GDD(1,2,3,4;9,6)
exists from Example 3, also it is known that a BIBD(G,4,6) exists. So
the blocks of the copies of s — 1 BIBD(6,4,6) together with blocks of a
GDD(1,2,3,4;9,6) give a GDD(1,2,3,4; 6t +3,6t). For n =6, a GDD(1,6,
7,4;9,6) exists. Suppose z is the single element from Gy. The blocks of a
GDD(1,6,7,4;9,6) are the union of the following collection of blocks: (1)
{z} U B where B is a block of a BIBD(13,3, 1) on elements from G2 U Gj;
(2) {1} U B where i € G; and B is a block of a BIBD(7,3,1) on elements
from Gs: (3) blocks from a BIBD(6,4,6) on elements from G2; (4) blocks
from a BIBD(13,4,2) on elements from G, U G3.

2.4.4. Case \y =1 (mod 6) and A\, =4 (mod 6).
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The necessary condition for the existence of a GDD(1,n,n + 1,4;7,4)
is n = 4 (mod 6) (i.e., n = 4,10 (mod 12)) from Table 1. The following
result gives half of these designs (where n =4 (mod 12)).

THEOREM 6. If n =4 (mod 12) then a GDD(1,n,n + 1,4;7,4) exists
and hence a GDD(1,n,n + 1,4;7t,4t) exists for all t > 1.

PRrOOF. The blocks of the GDD with groups G, G2 and G3 are blocks
of a BIBD(2n + 2,4,4) on Gy |J G, G3, the blocks of a BIBD(n,4,3) on
G2 and the blocks of BIBD (n + 1,4, 3) on Gs. o

In summary of the GDDs where n; = 1, we have the following theorem.

THEOREM 7. Necessary conditions are sufficient for a GDD(1,n,n +
1,4; A1, A2) where Ay > Ap, except possibly for a GDD(1,n,n + 1,4;5t,2t)
or a GDD(1,n,n+1,4;7t,4t) (t > 1) when n =10 (mod 12).

In the next section, we study GDDs where n; = 2, and give some
examples and find necessary conditions for their existence, and prove that
even for this case GDDs with equal number of blocks of Configuration
(1,1,2) and (2,2) do not exist except possibly for n = 7.

3. GDD(2,n,n+1,4; A1, A2)

3.1. Non-existence result with configuration restriction.

In this subsection, we establish that if we require equal number of
hlocks of Configurations (1,1,2) and (2,2), respectively, a GDD(2,n,n +
1,4; A1, A2) does not exist except for possibly n = 7.

LEMMA 12. A GDD(2,n,n + 1,4; A1, A;) with equal number of blocks
with Configuration (1,1,2) and (2,2) does not ezist for n > 8.

PROOF. There are A;(n? + 1) first associate pairs, and there are equal

number of blocks of Configuration (1,1,2) and (2,2). Therefore, 37" =

A (n® 4 1) implies b = M—%ﬂ

There are four second associate pairs from the blocks with Configura-
tion (2 2) and five from the blocks with Configuration (1,1,2) and there
are (n? 4 5n + 2))\; second associate pairs. Hence, 2 = (n? + 5n + 2),.

Therefore, we have A\, = (lii’%{l)\g From Lemma 16 b < -i[(Bn +2)+

—"!—2(2?.4}.1);5:0“)]- Substituting b and simplify, n? < 7n®+2n? 4+2n+2, which

is true only for n < 7. a]

LEMMA 13. A GDD(2,n,n + 1,4; A1, A2) with equal number of blocks
with Configuration (1,1,2) and (2,2) does not exist for 2 < n < 6.
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Proor. We observe that the blocks with Configuration (1, 1, 2) contajp
at least one element from G,. Since there are exactly 2r; — 2A; blocks
containing exactly one element from Gy, we must have (2r) = Ay) - 5” <AL

y Ai(n3+1 . M+(2n+1)A
Using 3 = —’1"—3-—1 and ry = 2HEEDN e got 73 _ 2 _ 13— 4 < ne

which is true only whenn=1orn>7 O

Combining the above two lemmas we have

THEOREM 8. A GDD(2,n,n+1,4; A}, Ay) with equal number of blocks
with Configuration (1,1,2) and (2,2) does not ezist except possibly for n =

[

3.2. Necessary conditions for GDD(2,n,n + 1,4; A1, Ap).

Asa GDD (2,n,n+1,4; Ay, A2) with equal number of blocks with Con-
figuration (1,1,2) and (2,2) does not exist except possibly for n = 7, our
next step is to find the necessary conditions of the existence of these designs
in general without configurations. A GDD(2,n,n+1,4; \;,0) does not ex-
ist as group size 2 is less than the block size 4. A GDD(2,n,n + 1,4;0, ;)
does not exist because there are only three groups but the block size is four.
Unless otherwise stated, we assume A; > 0 and A2 > 0 in this section.

The parameters for GDD(2,n,n + 1,4; A1, A2) are given hy:

2 2,r M+(2n+1)A n—1)A 3)A
b= A (n +l)+z\62(" +on+2)‘ ry = _‘_(3__3., ro'= ( ) ";'("+ ) 2' and

_ nh+(n+2)A;
ry = ST TR,

There are 2(r; —A; ) blocks containing exactly one element of Gy. These
blocks contain at least one first associate pair from G2 or G3. Therefore, a

4 n n-+1
necessary condition for existence of these GDDs is [( 2) + ( 9 >]/\1 >

2(ry = Xy), ie., (n? +2)A; > 2r. Substituting the expression for ry, we
have A, < ﬂ',‘%;/\l. For example, a GDD(2,5,6,4;1,4) does not exist.

LEMMA 14. If a GDD(2,n,n + 1,4; Ay, Ag) exists, then Ay < w

PRoOF. Let Gy = {a,b}. The blocks that contain both a and b have
2), second associate pairs with a and 2); second associate pairs with b
giving a total of 4); second associate pairs with the first group. Hence,
as there are a total of 2(2n + 1), second associate pairs with a and b,

4\ < 2(2n + 1))y, Thus ), < Gotdl o
LEMMA 15. If a GDD(2,n,n+1,4; A1, \p) exists, then b < (n® +1)\,.
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AM\A2 [0 1 . 3 4 5
0 Any n | None None Any n | None None
1 None |n = 5| None None |n = 5| None
(mod 6) (mod 6)
2 None | None n=2,5| None | None n=25
(mod 6) (mod 6)
3 Odd n | None None Odd n | None None
4 None [n=2,5| None None |n=2,5( None
(mod 6) (mod 6)
5 None [ None n = 5| None | None n =25
(mod 6) (mod 6)
TABLE 2. Necessary conditions for GDD(2,n,n +

1,4; A1, A2) subject to the bound A; < (2—"—+21)i

PROOF. Every block has at least one first associate pair, and there are
(n? + 1)A; first associate pairs. For example, a GDD(2,3,4,4;3,6) does
not exist as b = 31 and there are 30 first associate pairs. a

LEMMA 16. If a GDD(2,n,n + 1,4; A1, A2) exists, then b < %[(an -
2n?
A1 + (2(2n + 1))No] and A < Et ),

PROOF. The blocks containing the elements from first group have at
least one first associate pair and the remaining b— (2r; — A1) blocks have at
least two first associate pairs. The total number of first associate pairs is
A(n?+1). Therefore, 2(b—2r; + X)) +2r; = \; < A1(n?+1). Substituting
ry and simplify, we have b < £[(3n% 4 2)A; + 2(2n + 1)X,]. Substituting b,
(2n+1) X! a)

we have A, < 2

From Lemma 16, if A\; = 1, then A < 1, i.e. Ay = 1. That is, a
GDD(2,n,n+1,4;1, A2) only exists for A\, = 1. Notice that a GDD(2, n, n+
1,4;1,1) is a BIBD(2n + 3,4,1) which exists when n = 5 (mod 6) as re-
quired from Table 2 as well. We summarize this in the following remark.

REMARK 1. A GDD(2,n,n + 1,4; A\, \) is equivalent to a BIBD(2n +
3,4,A). For example, a GDD(2,n,n + 1,4;\,)\) exists for any A\ when
n=>5 (mod 6), as a BIBD(2n + 3,4, \) exists. Similarly, « GDD(2,n,n +
1,4;3A,3)) = BIBD(2n+3, 4, 3)) ezists for all odd n and any A as BIBD(2n
+3,4,3) exists for odd n. If one construct a GDD(2,n,n+1,4; A1, A2), then
we also have a GDD(2,n,n+ 1,4; A1 + A\, A + ) if we have a BIBD(2n +
3,4, A) exists.

In the next three subsections, we provide construction examples of a
GDD (2,n,n+1,4; A1, A2) for n = 2,3 and 4, respectively.
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3.3. n=2.

If a GDD(2,2,3,4;/\1,A2) QXiStS, then ™ =T9 = iL*é_s’ll and r3 =
2_*.1131’-& which imply A} = Ay (mod 3). Also, since b = “_'1;:&1, we have
A =0 (mod 2).

Since Every block of a GDD(2,2,3,4; A1, A2) must contain at least one
first associate pair, we have b < 5A;, which gives a necessary condition:
Ay < %/\1. Another bound for A; is obtained by observing that the two
elements in the first group, say {a,b}, occur as a pair in A; blocks, then
these blocks must have 2\, second associate pairs with a. Also, the required
number of second associate pairs with a is 52, and it must be greater than
or equal to 2);. Hence we have the following lemma.

LEMMA 17. Necessary conditions for the eristence of a GDD(2,2, 3, 4;
A, A2) wnclude Ay < :f%/\l and \; < %/\2.

As an immediate example of the above lemma, a GDD(2,2,3,4; A\, =
2,A;) does not exist for any A,. Notice that for A\; = 2, the only pos-
sible value of Ag is 3, but 2 is not congruent 3 modulo 3. Similarly, a
GDD(2,2,3,4;\; = 8, = 2), a GDD(2,2,3,4;\; = 6,1, = 12) and
a GDD(2,2,3,4;18,6) do not exist. Also, a GDD(2,2,3,4;12,18) and a
GDD(2,2,3,4;18,12) do not exist, but it requires a different argument to
prove these as follows.

A GDD(2.2,3,4:12,18) does not exist: If a design exists, then the re-
quired number of blocks is 58 and there are 60 first associate pairs. As each
block contains at least one first associate pairs, there can be at most one
hlock containing G3. If a block contains G3, then there should be 33 more
blocks containing a pair from G3, and the replication of each element from
G35 in these 34 blocks is 1 4+ 11+ 11 = 23. The required replication number
ry is 32 if a design exists, hence we need 3 x (32 — 23) = 27 more blocks for
the elements of G3, but the required number of blocks for the design is 58.

A GDD(2.2,3,4;18,12) does not exist: Since at most 18 blocks can
contain G3 and r3 = 28, the minimum number of blocks needed for the
elements from G3 is 18 + 3 x (28 — 18) = 48 , but the required number of
blocks for a design is 47 if it exists.

On the other hand a GDD(2,2,3,4; A\; = 12, A\, = 6) exists, the blocks
are given below: Let G = {a,b},G2 = {c,d} and G3 = {1,2,3}. Take six
copies of G UG, two copies of G;Ue for i = 1,2 and for all edges e of K3
on G3, and two copies of G3 U {x} for all x € G, U G,.
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3.d5n =:8:

In this section, we provide GDD constructions for GDD(2, 3,4, 4; Aj, A2)
where A =3 or 6. We let G; = {a,b},G; = {z,y,2} and G3 = {1,2,3,4}.

If A2 = 3, then A; < 10. Since A\; = 0,3 (mod 6) from Table 2, the
possible values of A are 3,6 and 9.

EXAMPLE 4. We construct a GDD(2, 3,4,4; A\1,3) where A\ = 3,6 and

9.
(a) A GDD(2,3,4,4;3,3): It is a BIBD(9,4,3) which is known to
exist.
(b) A GDD(2,3,4,4;6,3): The blocks are as follows.
8 a4 & oa a0 m D
i B L R e bl W (O Ty TR |
ol PR Bt AR LF T BR D B e ey B
A F iydig 2 V3, 4rid v3+44" 4
and
1y 1; 4 -2 242 2.2 2 8 1
2. 34,3 8. 3.9 N Y. 0 2
g ogox 44 4 x E.Z 43
Z o ray 2ol 8 8.4 4
(c) A GDD(2,3,4,4;9,3): Seven copies of G3 along with the following
blocks written in columns give the required collection of blocks.
RN Al A R B T T PR SR Y B T 20N N A i P |
. U, Y Y iy gsyadly 122, 3. 82373 3. .9 22,2552
Y 2 8.8 @ @ b e 2 BB 030, Byl B 38 ;8.3
9 8 b 8 e d-a6 3 B'h e d g od e 04

If A2 = 6, we have A\; < :2'- X 6 = 21. Since A\; = 0,3 (mod 6) from
Table 2, the possible values of A, are 3,6,9,12,15,18 and 21. Notice that
if Ay = 3, a GDD does not exist because b = 31, and from Lemma 15, we

require b < 30.

EXAMPLE 5. We construct a GDD(2,3,4,4; A1, 6) where \; = 6,9,12,15,
18 and 21.

(a) A GDD(2,3,4,4;6,6): It is a BIBD(9,4,6) which is known to
erist.

(b) A GDD(2,3,4,4;9,6): It can be constructed by combining a GDD
(2,3,4,4;3,3) with a GDD(2,3,4,4; 6,3).

(c) A GDD(2,3,4,4;12,6): It can be obtained by combining a GDD(2,
3,4,4:9,3) with a GDD(2,3,4,4; 3,3)(i.e. a BIBD(9,4,3)).
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(d) A GDD(2,3.4,4:15,6): It can be constructed by combining a Gpp
(2,3,4,4;6,3) with a« GDD(2,3,4,4; 9,3).

(e) A GDD(2,3,4,4;18,6): The blocks are two copies of {a,b} Ue
where e € K3 on Gy and ¢ € K3 on Gj, respectively, two copies
of {z,y,z,a} and {x,y,z,b}, 3 copies of {x,y,2,¢} for all c € Gy,
{1,2,3,d},{1,2,4,d},{1,3,4,d},{2,3,4,d)} foralld € G2, and 10
copies of {1,2,3,4}.

(f) 4 GDD(2,3,4,4,21,6): The blocks are {a,b} Ue for all e € 2K,
on G3, {a,b}Ue for all ¢ € 3K3 on G, 4 copies of GoU{u} for all
u€ Gy, {r,y,1,2}, {z.9,3,4}, {z,2,1,3}, {,2,2,4}, {v,2,1,4)},
{v,2,2,3}, and 18 copies of G3.

3.5. n=4.

In general, if n is even and Ay = 3, then A} =0 (mod 6). For n = 4
and A, = 3, an additional condition is A} < 13. Therefore, only possible
values for A; are 6 and 12. We construct GDDs for these two values of A,
below: a GDD(2,4,5,4;6,3) and a GDD(2,4,5,4;12,3). As usual, let the
groups be G; = {a,b}, G2 = {z,y,z} and G3 = {1,2,3,4,5}.

If the blocks in a design can be partitioned into resolution (or paral-
lel) classes such that the blocks of each class partition the set V| then the
design is called resolvable. A complete multigraph AK,, (A > 1) is a graph
on v points with A edges between every pair of distinct points. A con-
struction of a GDD(2,4,5,4;6,3) uses the following blocks. The blocks of
a BIBD(9,4,3) on G,UG3, blocks obtained by taking the union of the first
3-resolvable class of a BIBD(5, 3, 3) on G3 with {a} and union of the second
3-resolvable classes with {b}, the blocks obtained by taking the union of
G, with each edge of a Ky labeled with the elements of G, and 2 copies
of G, as two blocks.

A construction of a GDD(2, 4, 5, 4; 12, 3) uses the following blocks. The
blocks of a BIBD(9,4,3) on G2 U G3, blocks of a BIBD(5,4,3) on Gj,
hlocks obtained by taking the union of G; with each edge of a Kj la-
heled with G, 8 copies of G3, the blocks obtained by taking union of
G, with {1,4},{2,4}, {3,4},{1,5},{2, 5}, and {3, 5}, the blocks {q, 1,2, 3},
{b,1,2.3}, {4,1,2,3}, {5,1,2,3} and two copies of the blocks {1,2,4,5},
{1,3,4,5}, and {2,3,4,5}.

In addition, for A, = 6, we have the following three construction where
A\ = 12. A 2-factor of a graph G is a spanning subgraph of G which is
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regular of degree 2. A 2-factorization of a graph G is an edge disjoint de-
composition of G into 2 factors.

First, the blocks of a construction of a GDD(2, 4,5, 4;12,6) are as he-
low. The first set of blocks are constructed by taking union of G; with all
edges of a K4 on G, twice. In other words, the blocks {a,b} U e for all
e € 2I{4; on G,. The second set of blocks are obtained by taking the union
B U {a} and B U {b} for all blocks B of a BIBD(5,3,2) on G3. The next
set of blocks is constructed using 3K on G3 and 5K on G as follows: a
3Ks has 6 2—factors, say Fy, Fp, F3, Fy, F5 and Fg. Let Kj has the edges
ey, €2, e3,eq,es and eg. The blocks are constructed by taking the union for
allee F,,eUe; fori=1,---,6. The remaining blocks are 5 copies of G,
as blocks and the blocks of BIBD(S, 4, 3) on G3.

The following is the second construction of a GDD(2,4, 5,4;12,6). Two
copies of {{z,y}Ue | e is an edge of K4 on Go; {{x}Jb | b is a block of
BIBD(5,3,3) on G3}; {{y}Ub| bis a block of BIBD(S,3,3) on G3}; These
blocks together with the blocks of BIBD(4,4,5) on G, and the blocks of
BIBD(5,4,3) on G3 and the following blocks as written in columns.

1 2 3 4<53 #2348 res]t 245354 §
22 T3TH) =118 iR T LI h R T EE4 R 1
@ 6.8 °'6a 6 a4 0 a0 & g0 6. n.a
b b..b, babee.c c.c ecd. d d:dod
and
il ol i Rt ] b Tt e’ SR W B BT SRl e
- Sl et e iyl R e ¢ e’ Sl ey el iy B S|
b b G b b B b b by B BB RS
¢c ¢ ¢ cx6.dididod-ds dirdedsdesd

The third construction of a GDD(2,4,5,4;12,6) is as follows. A BIBD
(6,4,6) on Gy U Gy, a BIBD(7,4,6) on G, UG3; and a BIBD(9,4,6) on
G2 U G3. This example motivates the following general theorem.

THEOREM 9. A GDD(2,n,n+ 1,4;12,6) for all n > 4 exists.

PROOF. Use the blocks of a BIBD(n + 2,4,6) on G; UG, BIBD(n +
3,4,6) on G, UG3 and BIBD(2n + 1,4,6) on G2 U Gs. o

A construction of a GDD(2,4,5, 4;18,6) is as follows: {a,b}Ue for all
e € 2K4 on Gy, {a,b} Ue for all e € K4 on G3\ {5}, {a,5} Ue for all
e € Kqon {1,2,3,4} and {b,5} Ue for all e € K4 on {1,2,3,4}, 3 copies
of {1,2,3,4} (Note the element 5 has come 6 times with {1,2,3,4}), a
BIBD(5, 3, 3) with each = € G5, and 16 copies of {z,y, z, w}.
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4. Summary

In this paper we obtained necessary conditions for the existence of
GDD(ny, n2,n3,4; A1, A2) for np = 1 and n; = 2. We proved nonexistence
of these designs when we require equal number of blocks with Configuration
(1,1,2) and (2,2) for ny = 1, and for n; = 2 except possibly for n = 7,
Also, we proved that the necessary conditions are sufficient for the exis-
tence of GDD(1,n,n+1,4; A1, A2) whenever A\; > ), except for two cases.
Note that for a GDD(1,n,n +1,4; A;, A7) where Ay > Ay, from Table 1,

ifn=6t+1and Ay = 6s+1, then Aggz(-t%%)x(65+l) < 2(6s +1).

Hence, if t > 2s, then a GDD(1,6t + 1,6t + 2,4;6s + 1,125 + 1) may exist.
We also obtain several examples for n; = 2.
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