INVERSE-CONJUGATE COMPOSITIONS MODULO m

AUGUSTINE O. MUNAGI

ABSTRACT. We consider inverse-conjugate compositions of a positive
integer n in which the parts belong to the residue class of 1 modulo
an integer m > 0. It is proved that such compositions exist only
for values of n that belong to the residue class of 1 modulo 2m.
An enumeration result is provided using the properties of inverse-
conjugate compositions. This work extends recent results for inverse-
conjugate compositions with odd parts.

1. INTRODUCTION

A composition of a positive integer n is a representation of n as a se-
quence of positive integers that sum to n. The terms are called parts while n
is the weight of the composition. It is well known that there are c(n) = 271
compositions of n, and ¢(n, k) = (Z:i) compositions of n with exactly k
parts which are also called k-compositions.

The conjugate of a composition may be obtained by drawing its zig-zag
graph. Here each part is represented by a row of dots such that the first
dot on a row is aligned with the last dot on the previous row. For example,
the zig-zag graph of the composition (5,3,1,2,2) is

Figure 1

The conjugate is the composition corresponding to the columns of the
graph, from left to right. Thus the conjugate of (5, 3, 1,2, 2), from Figure 1,
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is (1,1,1,1,2,1,3,2,1). The conjugate of a composition C will be denoted
by C'.

The inverse of a composition C, denoted by C, is the composition ob-
tained by reversing the order of the parts of C. A composition C is called
self-inverse if it satisfies C = C, and inverse-conjugate if C' = C. For
example one can verify that (1,1,2,1,1,1,5,3) is an inverse-conjugate com-
position of 15.

A composition C = (c1, g, . . . ) will be said to be congruent to an integer
t > 0 modulo an integer m > 0, denoted by C =t (mod m), if each part
¢; satisfies ¢; =t (mod m).

We will study the enumeration properties of inverse-conjugate composi-
tions that are = 1 (mod m). Note that an inverse-conjugate composition
of n > 1 always contains 1 and a big part, i.e., a part > 1.

The number of compositions of n using only odd parts is known to be
the nth Fibonacci number Fy, (F, = Fy_y + Fog, Fo = 0, F; = 1) [2],[8,
A000045). The set of compositions of n that are = 1 (mod m) is in bi-
jection with the set of compositions of n +m — 1 into parts greater that
m — 1, where the common enumerator is the generalized Fibonacci number
Yiz0 ("'1"(;"'1)]) (see [9]).

Specializing to inverse-conjugate compositions, Guo [1] recently proved
that inverse-conjugate compositions using only odd parts exist for odd num-
bers of the type 4k + 1 but not 4k + 3. In the former case the inverse-
conjugate compositions are enumerated by 2%, k > 0.

We remark that Guo’s result is a special case, m = 2, of the following
results.

Theorem 1. Let m > 1 be an integer. Then a positive integer n has an
inverse-conjugate composition C =1 (mod m) if and only if n has the form
n=2mk+1 for some k > 1.

Theorem 2. The number of inverse-conjugate compositions of 2mk + 1
that are = 1 (mod m) is 2%.

The following stronger assertion also holds.

Theorem 3. Let m > 1,k > 0 be integers. Then a number of the form
2mk + 1 has an inverse-conjugate composition C = 1 (mod m) with  big
parts, where 1 <7 <k, and not 7 > k.

Denoting the number of inverse-conjugate compositions of n that are
= 1 (mod m) by v(n,m), we have, for example, v(9,3) = 0 = v(17,3)
while v(n,3) > 0 for n = 7,13,19,.... We will prove Theorems 1 to 3
in Section 3 as well as the following adaptation of a classical identity of P.
A. MacMahon between inverse-conjugate and self-inverse compositions (see

3, 6]).
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Theorem 4. The number of inverse-conjugate compositions of 2mk + 1
that are = 1 (mod m) is equal to the number of self-inverse compositions
C of 2mk + 1 such that both C and C’ are =1 (mod m).

We begin, in Section 2, by summarizing additional properties of compo-
sitions that will be used in the proofs.

2. PROPERTIES OF COMPOSITIONS AND PRELIMINARY RESULTS

We recall an alternative method of obtaining the conjugate of a composi-
tion that is known as the Direct Detection (DD) technique, [5, 6]. It will be
convenient to write compositions symbolically by representing a maximal
string of 1’s of length = by 1%, where two adjacent big parts are assumed
to be separated by 1°. Then the general composition has the following two
forms up to inversion.

(1) C=(1%,b,,1%,bs,...), a1 >0,a; 2 0,i> 1, b; > 2 Vi;

(2) E=(b1,1%,b2,1%,...), a; 2 0,b; > 2.

The conjugate, in each case, is given by the rule:

(1) C' =(a1+1,1172,05 42,1022 ),

(2) E'=(1"71a; 42,142, a5 42....).

For example, the conjugate of (5,3,1,2,2) = (5,1°,3,1,2,1%2) is given by
(1%4,2,1,8,1°%2,1), that is, (5,3,1,2,2) =(14,2,1,3,2;1).

If C is a composition of n with f parts, then it is known that C’ has
n — f + 1 parts; and if n > 1, then C # C’ (there is no self-conjugate
composition besides (1)). But when C is inverse-conjugate, then f = n —
f+1lorn =2f—1. Thus inverse-conjugate compositions are defined
only for odd weights. We recall the general form of an inverse-conjugate
composition which may be verified using the DD technique (see [4, 6]):

Lemma 5. An inverse-conjugate composition C (or its inverse) has the
form:

@ = (1% by, 107152 b 102358 By o bt 192, B, B 2 28 D)

The following properties follow at once from Lemma 5.

(i) The length of C is given by f =by + -+ b — 7 + 1.

(i) The sum of big parts of Cis by + -+ b, =f+r—-1,1<r < f.

(iii) An inverse-conjugate composition C of n = 2f —1 > 1 is completely
determined by the sequence of its big parts. Lemma 5 implies an obvious
algorithm for obtaining the inverse-conjugate composition corresponding to
a finite sequence of big parts. Accordingly for each integer s > 0 we define
a function InvConj from the set of all s-tuples (b1,...,bs), b > 1V 1, to
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the set of all sequences of the form (1), that is,

InvConj : (by,...,bs) —> (lb"l,bl,lb“"z,bg,...,bs_l,1”1-2,1,3), (2)
In particular the set of inverse-conjugate compositions of n = 2f — 1 with
r big parts is given by the image of the restriction of InvConj to the set of
r-tuples (b1,...,br) satisfying property (ii).

We will also use the operations of concatenation ‘|’ and join ‘¢’ which
are defined for two compositions A = (ay,...,a;) and B = (by,...,b;) by
AlB = (ay,.--,ai,b1,...,b;) and AYB = (a1,...,ai_1,a;+b1, b, . .., bj).

The following theorem from [6] gives a useful method of dissecting inverse-
conjugate compositions.

Theorem 6. If C = (cy,...,Ck) is an inverse-conjugate composition of
n=2k—1>1, or its inverse, then there is an indez j such that c; + - - - +
CJ‘ =k-1 andcj+1 4+ 4 ck = k with Cj+1 > 1.

Moreover,

(BLy vy G5) = (g2 — ity - s G (3)
Thus C can be written in the form

C=A|(1)¥B suchthat B =4, (4)

where A and B are generally different compositions of k — 1.
The following lemma will play a useful role in the next section.

Lemma 7. The number of r-compositions of N into parts greater than m
N-—t

that are =1 (mod m) is equal to the number of r-compositions of ="

Proof. Let (by,...,b:) be a composition of N with m < b; =1 (mod m)
for all i. Then applying the operation b; — 9'"‘71 to each part we obtain the

map
by —1 by —1

(bl,...,b,-)i——)( s Al rm ), (5)

where the image is a composition of Qﬁl +- 4 émil = % This map is

clearly one-to-one. 0

The numbers v(2mk + 1,m) fulfill the following recurrence relation.

Proposition 8. We have

v(2mk +1,m) = 2v(2m(k - 1)+ 1,m), n> 1, v(l,m) = 1. (6)
Proof. Let V(n) denote the set of compositions enumerated by v(n,m) and
let Vi(n) be the subset containing only compositions with first part 1, with
Va(n) = V(n) \ Va(n). Then we define two maps 6; : V(2m(k — 1) + 1) —
Vi(2mk + 1), i = 1,2, as follows.

6,:C > (I™)[C'W (m). (7)
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62:C— (m)w|C|1™). (8)

Note that 6;(C) € Vi(2mk +1). To illustrate 6; we consider

C=Q1m*me; +1,1me-1=1  qmei-1 me, +1). Then

61(C) = (1™C*N) mey +1,1me-1-1_ 1mei=1 m(c, 4+ 1) 4 1),
and for C = (me; +1,1ma=1 | me, + 1,1™m¢t) # C, we have

61(C) = (I™,mee + 1,1ma11 | mey 4 1,1m1 ;4 1),
This map is clearly invertible. Thus for instance, if T = (1™*r ms; +
1,...,1m" 7 ms, + 1) € Vi(2mk + 1), then

g7t T e (1™ msy +1,...,1™m0 7 (s, — 1) +1), 8, > 1,
and when s, =1, we have

o7 : T+ (msy +1,1mor-171  img, g +1,1m91),
Thus 6, is a bijection. By a similar reasoning one can show that 6, is a
bijection.

Therefore (7) and (8) imply
2lV(2m(k —1)+1)| = [Im(0,)| + [Im(02)| = [V1(2mk + 1)| + |Va(2mk +
1)| = |V(2mk + 1)|, which gives the recurrence (6). 0

3. PROOFS OF THE MAIN THEOREMS

In this section we present two proofs of Theorems 1 and 2, and a proof
of Theorems 3 and 4.

First Proof of Theorem 1. Let the inverse-conjugate composition C in (1)
satisfy C = 1 (mod m). Then b; = mt; + 1, ¢; > 0 for each i. Thus by
property (i) after Lemma 5, and because n = 2f — 1, we have

n=2mti+1+---+mt,+1—-r+1)-1=2m(t1+---+¢,)+ 1.

Setting k =t; + --- + t, gives n =2mk + 1.
Conversely we show that if n = 2mk + 1,k > 0, then n has an inverse-

conjugate composition C = 1 (mod m). It will suffice to choose C =
(1™, mk +1). O

Second Proof of Theorem 1. The proof will be deduced from Lemma 7. As-
sume that n = 2f —1 has an inverse-conjugate composition C =1 (mod m)
with C as in (1). Then by +---+ b, = f +r — 1, and by Lemma 7, the
sum Y +’;1)_r = f;I is integral, equal to some k. That is, L,-;l =k or
f = mk + 1 which implies that n = 2mk + 1.
Conversely, we show that when n =2mk+1, k > 0, then n has an inverse-
conjugate composition = 1 (mod m). We construct such composition C.
Consider any composition (c1, .. ,¢) of k. Then reversing the map (5), we
have (¢, ...,¢) = (mey+1,...,mer+1), where the latter is a composition
of mk + r. Lastly we invoke InvConj and find that

InvConj((mey + 1,...,mer + 1)) = (1™, mey + 1,1m1 71, mey +
1""1m01—177nc1‘ ¥ i 1)7
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which is a composition whose weight is mk+r+ 3" (mc; —1)+1 = 2mk+1.

i=1

Hence the proof. O

First Proof of Theorem 2. The proof may be deduced from the second proof
of Theorem 1. The construction there implies that there are as many stan-
dard compositions of k as there are inverse-conjugate compositions C' of
9mk + 1 that are = 1 (mod m) and have first part 1. The inverses (i.e.,
conjugates), C = C' # C are similarly identified by compositions of k via
the construction

(mey+1,...,mer +1) ¥ (mey + 1,1™ 71 yme +1,179). (9)

Hence the total number of inverse-conjugate compositions is 2¢(k) = 2 -
ok-1 _ ok, O

Example 9. Let m = 3,k = 7 so that 2mk + 1 = 43, and consider
(7,4,10,4) =1 (mod 3). Then we have
InuConj((7,4,10,4)) = (13,7,18,4,1%,10,1°,4)
while (9) gives
(7,4,10,4) —> (7,12, 4,18,10,1% 4,1°).
Similarly (4,10,4,7) produces (1°,4,1%,10,18,4,12,7) and
[4,1%10,1%,4,1%,7,1%).
Remark 10. It is easy to deduce from the foregoing proofs that the number

of inverse-conjugate compositions of 2mk + 1 with ezactly r big parts = 1
(mod m) is 2c(k,r) =2(*_}).

Second Proof of Theorem 2. The proof is obtained by iterating the recur-
rence (6) to obtain
v(2mk +1,m) = Pv(2m(k - j) +1,m), 1 < j <k,
which leads to v(2mk+1,m) = 2¥v(1,m) or v(2mk+1,m) = 2% as desired.
O

Proof of Theorem 3. We will give an explicit construction of an inverse-
conjugate composition C of n = 2mk + 1 with C =1 (mod m) such that
C has r big parts, 1 <r < k. Let the sequence of r big parts of C be
B=(m+1,m+1,...,m+1,y), where
y=(mk+r)—(r-1)(m+1)=mk-r+1)+1=1 (mod m).
Thatis, B=(m+1,m+1,...,m+1,m(k—r+1)+1).
We now apply InvConj to obtain InvConj(B) = C, where

C= (1™ m4 1,1 m4 1, 1m0 m L 1™ (k=4 1) +1)
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which is an inverse-conjugate composition of 2mk + 1 with the first r — 1

big parts equal to m + 1.
Lastly, note that we cannot have an inverse-conjugate composition C = 1

(mod m) of 2mk + 1 with r > k big parts, otherwise its weight would be
2(by+- - +b—r+1)—1 > 2(r(m+1)—r+1)—1 = 2rm+1 > 2mk+1. O

We now turn to Theorem 4 which we restate in the extended form

Theorem 11. The following sets of compositions contain the same number

of objects.

(i) Compositions C of mk + 1 where both C and C’ are =1 (mod m).

(ii) Self-inverse compositions T of n = 2mk + 1 where both T and T' are
=1 (mod m).

(iii) Inverse-conjugate compositions of n = 2mk+1 which are= 1 (mod m).

(Note that Theorem 4 corresponds to (i1) <= (iii) in Theorem 11).

Proof. The proof will be given in the order: (i) = (i) = (iii)) =
(). Let the corresponding sets be denoted by

(¢) : C(mk +1) (i) : SI(2mk + 1) (iii) : IC(2mk + 1).
(i) = (4i): Define a map C(mk + 1) = SI(2mk + 1) by
(Cl, 1 ,Cj) — (Cl, eeeyCj—1, 2Cj = l,CJ'_l, K ,Cl).

This map is clearly injective. The weight of the image composition is
2((mk +1) —¢j) +2¢j —1 =2mk+1. Since c; = ms+1,s > 0, we
have 2c; — 1 = 2ms + 1, and the inherited parts insure that the image and
its conjugate are =1 (mod m).
(i) = (#i): ¥ T = (ay,---,05,d,a;,...,a1) € SI(2mk + 1), then d is
odd and satisfies d = 1 (mod m), that is, d = 2ms+1,s > 0. So T has
the form T = A|(2ms + 1)|A, where A is a composition of M < mk. We
define a map SI(2mk + 1) — IC(2mk + 1) and use Theorem 6 to clarify
the resulting images:
If s = 0, then T = A|(1)[4 — A| ((1)|A)’ which is a member of IC(2mk+1)
of type A|(1) & A’ (from Theorem 6).
If s > 0, then T = A|(2ms + 1)|A — A|(ms) ¥ ((ms + 1)|Z)’ which is a
member of IC(2mk + 1) of type AW (1)[A'.
Each image consists of inherited parts from T and T” except the two middle
strings of parts, 1™$~1 and ms 4 1. But these also fulfill the required
properties. The second case is illustrated below.

Let s>0 and T = (101, bl, veisiy bt—-ly 1“‘,2ms + 1, lat,bt—ly seey bl‘) 101)’
where a; = 0 (mod m), a; = —1 (mod m),i > 1, b; = 1 (mod m). Then
T € SI(2mk +1), and
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I'= (lalvbl) eerybe-1, la‘)l(2ms + l)l(la‘) bt—lv Sis ony bl) lal) = E’
where E = (181, by,...,b—1,1%)|(ms) ¥ (ms+1,1%,b,_y,..., 192 b, 101y,
Using the DD technique we obtain
E=(19,by,...,b,_1,1%)|(ms) ¥ (1™, a +2,1%-172 g, 4 2, 151~2,
ap+1). ;
= (1%, b1,...,be-1,1%, ms+1, et 2,14 . ,a2+2, 1b1~2,
a; + 1)
which may be classified as
E=(1%,by,...,0-1,1%,ms) ¥ (1)| (1™, @y + 2,1%-1-2,
ay+2,1%72,a; +1).
=Au(1)/A".
(i1i) = (i): Let E = (e1,...,emk+1) € IC(2mk +1). Then Theorem 6
implies that E satisfies either of the following properties:
(8) e1+::-+ej =mk, ej41 + -+ en =mk +1 with ej4; > 1, and
(61, <0y €5y 1)’ = (ej+1a ceey en)'
(b) ATk RS o T =mk+1, éjr1 ¥ +eq = mk with ej > 1, and
(e1,-.. €5 = 1) = (€j41,---,€n)-
So if E satisfies (a), then E — (e, ..., €;,1), and if it satisfies (b), then E
(e1,---,€;). In either case we obtain a unique member of C(mk +1). O

As an illustration of the three maps in the proof of Theorem 11 consider
m=4and k =3, ie, mk+1 =13 and 2mk + 1 = 25. Then we have

C(13) = 8 = SI(25) = IC(25). The details of correspondences of the
compositions are given in Table 1.

c(13) - SI(25) - 1C(25)
(13) (25) > (13,1'%)
(14,9), = (1417,1Y) = (14,9,17, 5)
(5,13,5) — (5,13,9,13,5) — (5,13,5,13,5,1%)
9,19 w— (9,17,9) 5 (9,13,5,18)
(1%5,5) ~ (18,9,18) —  (18,5,13,9)
(14,519 ~» (14,5,17,5,14) — (14,5,13,5,13,5)
5,15) =  (5,1155) =  (517,9,19)
(13%)  =w (1%) — (112,13)
TABLE 1. The maps in the proof of Theorem 11 when
m=4and k=3.
REFERENCES

1. Y. Guo, Inverse-conjugate compositions with odd parts, Ars Combinatoria, 135
(2017), 93-102.

256



2. S. Heubach, T. Mansour, Combinatorics of Compositions and Words (Discrete
Mathematics and Its Applications), CRC, Taylor & Francis Group, Boca Raton,
2010.

3. P. A. MacMahon, Combinatory Analysis, vol 1, Cambridge: at the University Press,
1915.

4. P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers. Philos.
Trans. Roy. Soc. London Ser. A 184, 835-901 (1893).

5. A. O. Munagi, Euler-type Identities for integer compositions via zig-zag graphs,

Integers 12 (2012), A60, 10pp.
6. A. O. Munagi, Primary classes of compositions of numbers, Ann. Math. Inform. 41

(2013), 193-204 (Proceedings of the 15th Fibonacci Conference Eger, Hungary, June

25-30, 2012).
7. A. O. Munagi, Zig-zag graphs and partition identities of A. K. Agarwal, Ann. Comb.

19 (2015), 557-566.
8. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published elec-

tronically at http://oeis.org, 2011.

AUGUSTINE MUNAGI, THE JOHN KNOPFMACHER CENTRE FOR APPLICABLE ANALYSIS
AND NUMBER THEORY, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND,
P. O. WiTs, 2050 JOHANNESBURG, SOUTH AFRICA

E-mail address: Augustine.MunagiCuits.ac.za

257



