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Abstract

For a positive integer k, let [k] = {1,2,...,k}, let P([k]) denote
the power set of the set [k] and let P*([k]) = P([k]) — {#}. For
each integer t with 1 < t < k, let P([k]) denote the set of
t-element subsets of P([k]). For an edge coloring ¢ : E(G) —
P:([k]) of a graph G, where adjacent edges may be colored the
same, ¢’ : V(G) — P*([k]) is the vertex coloring in which ¢/(v) is
the union of the color sets of the edges incident with v. If ¢’ is a
proper vertex coloring of G, then c is a majestic t-tone k-coloring
of G. For a fixed positive integer ¢, the minimum positive integer
k for which a graph G has a majestic t-tone k-coloring is the
majestic ¢{-tone index maj,(G) of G. It is known that if G is a
connected bipartite graph of order at least 3, then maj,(G) =
t +1 or maj,(G) =t + 2 for each positive integer t. It is shown
that (i) if G is a 2-connected bipartite graph of arbitrarily large
order n whose longest cycles have length £ where n —5 < ¢ <n
and t > 2 is an integer, then maj,(G) =t+1 and (ii) there is a
2-connected bipartite graph F of arbitrarily large order n whose
longest cycles have length n—6 and maj,(F) = 4. Furthermore,
it is shown for integers k,t > 2 that there exists a k-connected
bipartite graph G such that maj,(G) =t +2. Other results and
open questions are also presented.
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1 Introduction

For a nontrivial connected graph G, an edge coloring ¢ of G is a function
¢: E(G) = [k) = {1,2,...,k} for some positive integer k. Such a coloring
¢ is a k-edge coloring. An edge coloring ¢ is unrestricted if no condition
is placed on how the edges may be colored and so adjacent edges may be
colored the same. If every two adjacent edges of G are colored differently,
then c is a proper edge coloring and the minimum number of colors required
of a proper edge coloring of G is its chromatic indez x'(G). A vertex coloring
of G is a function ¢’ : V(G) — [k] for some positive integer k. A vertex
coloring ¢ of a graph G is proper if adjacent vertices are colored differently
and the minimum number of colors required of a proper vertex coloring of
G is its chromatic number x(G). We refer to the book [5] for graph theory
notation and terminology not described in this paper. All graphs under
consideration are connected graph of order at least 3.

During the past three decades, a number of edge colorings of graphs
have been described that give rise to various vertex colorings of the graphs
(see [1, 4, 7, 11, 12, 13] for example). In [2, 3, 6, 10], the color of a vertex
is defined as the set of colors of the edges incident with the vertex, where
the goal is to minimize the number of colors assigned to the edges so that
the resulting vertex coloring is proper.

For a nontrivial connected graph G on which has been defined an edge
coloring ¢ : E(G) — [k], the associated vertex coloring ¢’ is defined by

d(v) = {c(e) : e € Ey}, (1)

where E, is the set of edges incident with v; that is, ¢/(v) is the set of colors
of those edges incident with v. The edge coloring c is called a majestic k-
edge coloring of G (or, more simply a majestic coloring of G) if the induced
vertex coloring ¢’ is a proper vertex coloring of G. The minimum positive
integer k for which G has a majestic k-edge coloring is the majestic chro-
matic indezx of G (or, more simply the majestic indezx of G) and denoted
by maj(G) (or x7,,(G), which is used in [2]). In [6, 10], the majestic index
of a graph G is called the general neighbour-distinguishing indez of G and
is denoted hy gndi(G). Since there is no majestic edge coloring of K5, the
majestic index does not exist for K. Thus, we consider only connected
graphs of order at least 3. If G is a connected graph of size m > 2, then
maj(G) exists and 2 < maj(G) < m. In the case of bipartite graphs G of
order at least 3, maj(G) is either 2 or 3.

Theorem 1.1 (2,6, 10] If G is a connected bipartite graph of order 3 or
more, then

2 <maj(G) <3.
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A generalization of majestic colorings was introduced by Chartrand and
studied in [8, 9]. For a positive integer k, let P([k]) denote the power set
of the set [k] and let P*([k]) = P([k]) — {0} denote the set of nonempty
subsets of [k]. For each integer t with 1 <t < k, let Pt([k]z denote the
set of t-element subsets of P([k]); consequently, [P([k])| = (7). For each
unrestricted edge coloring ¢ : E(G) — P([k]) of a graph G, the vertex
coloring ¢’ : V(G) — P*([k]) is defined as described in (1); that is, ¢/(v)
of a vertex v is the set of colors of those edges incident with v. If ¢/ is a
proper vertex coloring of G, then c is called a majestic t-tone k-coloring
of G. An edge coloring of G is a majestic t-tone coloring if it is a majestic
t-tone k-coloring for some integer k > t. For a fixed positive integer ¢,
the minimum positive integer k for which a graph G has a majestic ¢-tone
k-coloring is called the majestic t-tone indez maj,(G) of G. In particular, a
majestic 1-tone k-coloring is a majestic k-coloring and the majestic 1-tone
index of a graph G is the majestic index of G.

The following results were obtained in (8, 9].

Theorem 1.2 If G is a connected graph of order at least 3 and t > 2 is
an integer, then t +1 < maj,(G) < maj(G) + (¢t - 1).

Proposition 1.3 If G is a connected graph of order at least 3 and s and
t are positive integers with s < t, then

maj,(G) < maj,(G) + (t - )

It is known for an integer ¢ > 2 that only bipartite graphs have majestic
t-tone index ¢ + 1.

Theorem 1.4 If G is a connected graph such that maj,(G) =t + 1 for
some integer t > 2, then G is bipartite.

There are bipartite graphs having the majestic ¢-tone index ¢ + 2, how-
ever.

Theorem 1.5 If G is a connected bipartite graph of order at least 3 and
t > 2 is an integer, then t + 1 < maj,(G) <t +2.

For a positive integer ¢, a connected bipartite graph G is of type 1 if
maj,(G) =t + 1 and is of type 2 if maj,(G) =t + 2. Theorems 1.1 and 1.5
give rise to the natural question of determining which connected bipartite
graphs are of which type. This question is answered for some well-known
classes of bipartite graphs, namely complete bipartite graphs, trees and
connected unicyclic bipartite graphs.
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Proposition 1.6 Let r,s,t be integers where r,s,t > 2. Then
maj,(Krs) =t +1.

Theorem 1.7 Let T be a tree of order 3 or more and t > 2 an integer.

Then maj(T) = t+1 if and only if all end-vertices of T belong to the same
partite set of T

A unicyclic graph is a connected graph containing exactly one cycle.
In particular, the graph Cj is a unicyclic graph. A unicyclic graph G is
therefore bipartite only when the unique cycle of G is an even cycle.

Theorem 1.8 Let G be a unicyclic bipartite connected graph and ¢ e X,
an integer. Then maj,(G) = t+1 if and only if all end-vertices of G belong
to the same partite set of G.

2 On 2-Connected Bipartite Graphs of Type 1

We now investigate majestic ¢-tone indices of connected bipartite graphs
“having large cycles. In order to do this, we first determine the majestic
t-tone index of cycles for each positive integer t. For each integer n > 3, it
is known (see [2]) that

: _ [ 2 ifn=0 (mod 4)
maj(Cn) = { 3 ifn#0 (mod 4). 2)

Thus, maj(C,) =2 if and only if n =0 (mod 4).

Proposition 2.1 For integersn > 3 and t > 2,

_ t+1 ifniseven
maj,(Cn) = { B
t+2 ifnisodd

Proof. Let C, = (v1,v2,...,Vn,vn41 = ;) be a cycle of order n > 3. We
consider two cases, according to whether n is even or n is odd.

Case 1. n > 4 is even. Thus, either n =0 (mod 4) or n = 2 (mod 4).
If n =0 (mod 4), then maj(Cr) = 2 by (2) and so maj,(Cr) =t + 1 by
Theorem 1.2. In fact, the edge coloring ¢ : E(Cy,) = Py([t + 1]) defined by

([t+1]—{t+1} if eis incident with v; for i =0 (mod 4)
and4<i<n

t+1] - {t} if e is incident with v; for i =2 (mod 4)
and2<i<n-2

c(e) = |

\
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is a majestic t-tone coloring of C,,. If n = 2 (mod 4), the edge coloring
c: E(Cy) — Pe([t + 1)) defined by

([t+1) - {t+1} if e s incident with v; for i =2 (mod 4)
and2<i<n-2
ce) = J [t+1] - {t} if e is incident with v; for i = 0 (mod 4)
and4<i<n-2
£+ 1] = {1} if e is incident with v,,.

In each case, ¢/(v;) = [t + 1] for all odd integers i with 1 <i <n -1 and
|’ (v;)] = t for all even integers ¢ with 2 < i < n. Since ¢’ is proper, it
follows that c is a majestic t-tone coloring of C, and so maj,(C,) <t + 1.
Therefore, maj,(C,) =t + 1 when n is even.

Case 2. n > 3 is odd. Since C,, is an odd cycle, it follows by Theorem 1.4
that maj,(C,) > t + 2. By Theorem 1.2 and (2), maj,(C,) < (t — 1) +
maj(C,) =t + 2. Thus, maj,(Cs) =t + 2 if n is odd. =

It is useful to observe that the majestic t-tone (¢ + 1)-colorings of the
even cycle C, of order n > 4 in the proof of Proposition 2.1 use only three
distinct t-element subsets of [t + 1]. Furthermore, there is a majestic t-
tone (t + 1)-coloring ¢ of C,, = (v1,v2,...,Vn,Vnt1 = 1), Wwhere n > 4 is
even, that uses only three distinct t-element subsets of [t + 1] such that for
1 < i < n either

x /(v;) = [t + 1] for all even integers i and |¢/(v;)| = t for all odd
integers i or

* |¢/(v;)| = t for all even integers i and c(v;) = [t + 1] for all odd
integers 1.

Figure 1 shows such colorings for ¢t = 2 and n € {10, 12}.

Remarks: With the previous comments and Proposition 1.3 in mind, we
may therefore state the following theorems for an integer ¢t > 2 in general
but we need only verify them for t = 2. Let S}, S5, S3 be the three distinct
2-element subsets of [3] = {1,2,3}.

Since the largest cycle that a graph can have is a Hamiltonian cycle, we
begin with Hamiltonian bipartite graphs. The result below follows imme-
diately from the proof of Proposition 2.1.

Corollary 2.2 If G is a Hamiltonian bipartite graph of even order at
least 4 and t > 2 is an integer, then maj,(G) =t + 1.

Proof. Let C = (v1,v2,...,Vn,Un+1 = ¥1) be a Hamiltonian cycle of G,
where n > 4 is even, and let ¢c : E(C) — P2([3]) be a majestic 2-tone




- IG # C, then G contains chords. Each chord e of C joins
Vet a:d v, of f C such that either (1) [ci-(v;)| =2 and c;(v;) = [3] or
] = 3 znd c(v;)] = 2. We may assume, without of generality,
thzt (r;)] = 2. In this case, define c(v;v;) = c/z(v;). Coloring all chords
his way produces an edge coloring ¢ : E(G) — P,([3]) such that

defn) = c"f'r,; for 2l 1 with 1 € 1 < n. Thus, ¢ is a majestic 2-tone
3ooloring of G and so maj,(G) =t + 1. o

§
@

Theorem 2.3 IfG is a connected bipartite graph of odd order n > 5 whose
ngest cycles have grdern—1 and t > 2 is an integer, then maj,(G) = t+1.

Proof. Let C = (vy,v5....,05-1,v, = v;) be a longest cycle of G and let
v bz the vertex of G that is not on C. Then the subgraph H = G — v is
Hzmilonian. By Corollary 2.2, maj (H) =t +1. Let cy : E(H) — P,([3])
bz z majestic 2-tone rco‘ormv of H. We now construct a majestic 2-tone
Zenloring ¢ : E(G) — P,l13)) of G as follows. Necessarily, the neighbors
oz’ in G 2ll have an odd =uhscnpt or all have an even subscript. Hence,
either exch neighbor of v has vertex, color [3] or each neighbor of v has a 2-
clement subset of 3] 25 its vertex color. Let S),5,, 54 be the three distinct
2element subsets of 3] = {1,2,3}. If each neighbor of v has vertex color
3., then assign each r:d;;v incident with v the color S;. Then d(v) = S,
and the resulting edge eoloring is a majestic 2-tone 3-coloring of G. If each
neighbor of v has 5 2-€lement subset of 3] as its vertex color, then relabel
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the vertices of H such that v; is relabeled as v,y for all integers j with
1 < j < n—1 and reapply the majestic coloring cy to the new labeling of
H. Thus, each neighbor of v has vertex color (3] and we proceed as ahove.

In each case, the graph G has a majestic 2-tone 3-coloring and so
maj,(G) =t + 1. o

We now show that if G is a 2-connected bipartite graph of sufficiently
large order n which fails to contain either an n-cycle (when n is even) or
an (n — 1)-cycle(when n is odd) but does contain an (n — 2)-cycle, then we
still have the same conclusion as in Theorem 2.3.

In the proofs of the next two results, let Sy, Sz, S3 be the three distinct

2-element subsets of [3] = {1,2,3}.

Theorem 2.4 If G is a 2-connected bipartite graph of even order n >
12 whose longest cycles have order n — 2 and t > 2 is an integer, then

maj,(G) =t+ 1.

Proof. Let C = (v1,v2,-.-,Vn-2,Vn—1 = v1) be a longest cycle of G and
let H = G[V(C)] be the subgraph of G induced by V(C). Let u,v € V(G)
such that H = G —u—v. Thus, H is a Hamiltonian bipartite graph of order
n — 2. By Corollary 2.2, maj,(H) =t+ 1. Let cy : E(H) — P»([3]) be a
majestic 2-tone 3-coloring of H. We show that there is 2 majestic 2-tone
3-coloring c of G.

Since G is bipartite, the vertex u is adjacent to vertices v; (1 < i < n—2)
of C such that all integers i are odd or all integers i are even. The same
is true of the vertex v. Consequently, either (1) each neighbor of u has
a 2-element subset of [3] as its vertex color or (2) each neighbor of u has
[3] as its vertex color. The same is true of the vertex v. We consider the
following two cases:

Case 1. u and v are adjacent in G. Without loss of generality, we may
assume that the neighbors of u in H are colored (3] and the neighbors of v
are colored with 2-element subsets of [3]. Furthermore, we may assume some
neighbor of v is colored S;. We define a coloring of G as follows: For each
edge e incident with u define c(e) = Ss, for each edge vv; (1 <i<n—2),
define c(vv;) = cy(vi), and for each edge e € E(H) define c(e) = cy(e).
Then ¢/(v;) = cy(v;) for 1 <i<n-2,d(u) =85, and ¢'(v) = [3]. Thus, c
is a majestic 2-tone 3-coloring of G and so maj,(G) =t + 1.

Case 2. u and v are not adjacent in G. We consider three possible
situations here.

Subcase 2.1. The neighbors of u and v are all colored [3]. We define a
coloring of G as follows: For each edge e incident with u or v, define c(e) =
S1, and for each edge e € E(H) define c(e) = cy(e). Then ¢/(v;) = g (vi)
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for 1 <i<n-2andc(u) =c(v) =8; Thus, cis a majestic 2-tone
3-coloring of G and so maj,(G) =t + 1.

Subcase 2.2. Without loss of generality, the neighbors of u are colored
[3] and the neighbors of v are colored with 2-element subsets of [3].

Subcase 2.2.1. Two neighbors of v are colored differently. For each edge
e incident with u define ¢(e) = Sy, for each edge vv; (1 <i < n—2), define
c(vv;) = cy(vi), and for each edge e € E(H) define c(e) = cy(e). Then
c(vi) =cy(vi) for1<i<n-2 ¢(u) =5 and ¢'(v) = [3]. Thus, cisa
majestic 2-tone 3-coloring of G and so maj,(G) =t + 1.

Subcase 2.2.2. All neighbors of v are colored with the same 2-element
subset of [3]. We may assume that every neighbor of v is colored S;. Since
G is 2-connected, it follows that v is adjacent to two or more vertices of
the cycle C in G. We may assume that vs is one of the neighbors of v and
cy(vs) = S1. Thus, cy(vavs) = cy(vsvg) = S;. Furthermore, ci(v3) =
cr(vau3) = cy(vavy) # 51 and cjy(v7) = ey (vevr) = c(vrvs) # Sh.

* If ¢y (v3) = ciy(vr), say cjy(vs) = cly(v7) = Sa, then we recolor the
edges v4v5 and v5vg with the color Sz as well as recolor any edge of H
not on C that is incident with vs with the color S3. We then proceed
as in Subcase 2.2.1.

* If ciy(va) # cfy(v7), then we may assume that cj;(v3) = cy(vouz) =
ch(v3va) = Sq and ¢y (vr) = cy(vevr) = cu(vrvs) = S3. If ¢y (vg) =
ch(vsvg) = cp(vovyp) = Sy, then we recolor the edges v4vs and vgvg
(and any other edges with incident with vs) with the color S5 and
recolor the edges vgv; and v7vg (and any other edges with incident
with v7) with the color S;. We then proceed as in Subcase 2.2.1.
If ¢jy(ve) = cy(vsvg) = cy(vguio) = Sa, then we recolor the edges
v4vs and vsvs (and any other edges with incident with vs) with the
color S3 and recolor the edges vgv; and vyvg (and any other edges
with incident with v7) with the color S;. We then proceed as in
Subcase 2.2.1. ‘

Subcase 2.3. The neighbors of u and v are colored with 2-element subsets
of [3]. We relabel the vertices of H such that v; is relabeled as v;4; for
all integers j with 1 < j < n — 2 and reapply the coloring ¢y to the new
labeling of H. Thus, each neighbor of u and v has vertex color [3] and we
proceed as in Suhcase 2.1.

In each case, the graph G has a majestic 2-tone 3-coloring and so
maj(G) =t + 1. o

The next three results show that Theorem 2.4 can be extended even
further. We will only provide a proof of the first result since the proofs for
the other two results are similar but much more complicated and lengthy.
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Theorem 2.5 If G is a 2-connected bipartite graph of odd order n >
13 whose longest cycles have order n — 3 and t > 2 is an integer, then
maj,(G) =t+1.

Proof. Let C = (v1,v2,...,Un_3,Un_2 = 1) be a longest cycle of G and
let H = G[V(C)] be the subgraph of G induced by V(C). Let u,v,w €
V(G) such that H = G — {u,v,w}. Thus, H is a Hamiltonian bipartite
graph of order n — 3. By Corollary 2.2, maj,(H) =t+1. Let cy : E(H) —
P,([3]) be a majestic 2-tone 3-coloring of H. We show that there is a
majestic 2-tone 3-coloring c of G. We now consider three cases. Recall that
S1, Sa, S3 are the three distinct 2-element subsets of [3].

Case 1. No two of u,v,w are adjacent. There are four suhcases.

Subcase 1.1. Each neighbor of u,v and w is colored [3]. We define
a coloring ¢ of G as follows: For each edge e incident with u, v and w,
define c(e) = S; and for each edge e € E(H), define c(e) = cy(e). Then
¢(z) = cfy(z) for each z € V(H) and ¢(u) = ¢(v) = ¢'(w) = S1. Thus, c
is a majestic 2-tone 3-coloring of G and so maj,(G) =t + 1.

Subcase 1.2. Each neighbor of u, v and w is colored with a 2-element
subset of [3]. We relabel the vertices of H such that v; is relabeled as v;4;
for all integers j with 1 < j < n—3 and reapply the coloring cy to the new
labeling of H. We then proceed as in Subcase 1.1.

Subcase 1.3. Each neighbor of two of u, v and w is colored (3] and each
neighbor of the other, say w, is colored with a 2-element subset of [3].

Subcase 1.3.1. Two neighbors of w are colored differently. We define
a coloring ¢ of G as follows: For each edge e incident with u or v, define
c(e) = S, for each edge e = v;w where 1 < i < n — 3, define c(e) = ¢'(vi),
and for each edge e € E(H), define c(e) = cy(e). Then ¢'(z) = ciy(z) for
each = € V(H), c/(u) = ¢'(v) = S; and ¢/(w) = [3]. Thus, c is a majestic
2-tone 3-coloring of G and so maj,(G) =t + 1.

Subcase 1.3.2. All neighbors of w are colored with the same 2-element
subset of [3]. We may assume that vy is one of the neighbors of w and
chy(va) = S1. Thus, cy(vavy) = cy(vaus) = S1. Hence, cy(vive) =
cy(vavs) # Sy and cy(vsvs) = cy(vevr) # S1. We may assume, with-
out loss of generality, that cy(vivs) = cgy(vous) = Sa.

* First, suppose that cgy(vsvg) = cy(vgvr) = S2. We recolor the edges
v3v4 and vqus (and any other edges with incident with vg) with the
color S3. We then proceed as in Subcase 1.3.1.

*x Next, suppose that cy(vsvg) = cu(vev7) # S2, say cp(vsve)
cH(v6v7) = 53. Thus, CH(U7U3) = CH(‘Usvg) 7': 33. If cH(v7vg)
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cy (vsvg) = S, then we (1) recolor the edges v3vy and vyus (and
any other edges with incident with vs) with the color S3 and (2)
recolor the edges vsug and vgu; (and any other edges with incident
with vg) with the color S;. We then proceed as in Subcase 1.3.1. If
cr(vrvg) = cy(vgvg) # Sy, then cp(vrvs) = cy(vsvg) = Sy and we
(1) recolor the edges v3vy and v4us (and any other edges with incident
with v4) with the color S3 and (2) recolor the edges vsvg and vgv;
(and any other edges with incident with vg) with the color S;. We
then proceed as in Subcase 1.3.1.

Subcase 1.4. Each neighbor of two of u, v and w is colored with a 2-
element subset of [3] and each neighbor of the other, say w, is colored [3].
We relabel the vertices of H such that v; is relabeled as v;4; for all integers
7 with 1 < j < n—3 and reapply the coloring cy to the new labeling of H.
We then proceed as in Subcase 1.3.

Case 2. G[{u,v,w}] = K3 + K;. We may assume that uv € E(G).

Subcase 2.1. Each neighbor of w is colored (3]. Since uv € E(G), we
may assume that each neighbor of u is colored [3] and each neighbor of v
is colored with a 2-element subset of (3], at least one of which is colored
S1. We define a coloring c of G as follows: For each edge e incident with u
or w, define c(e) = S,, for each edge e = v;v where 1 < i < n — 3, define
c(e) = c'(vi), and for each edge e € E(H), define c(e) = cH( ). Then
c'(z) = cly(z) for each z € V(H), ¢/(u) = ¢/(w) = Sz and ¢'(v) = 3]. Thus,
¢ is a majestic 2-tone 3-coloring of G and so maj,(G) =t + 1

Subcase 2.2. Each neighbor of w is colored with a 2-element subset of
[3]. We relabel the vertices of H such that vj is relabeled as v;j;; for all
integers j with 1 < j < n — 3 and reapply the coloring ¢y to the new
labeling of H. We then proceed as in Subcase 2.1.

Case 3. G[{u,v,w}] = We may assume that (u,v,w) is a path in G.

Subcase 3.1. Each nezghbor ofv is colored with a 2-element subset of [3].
Thus, every neighbor of u and w is colored [3]. We define a coloring c of G
as follows: For each edge e incident with u, define c(e) = S, for each edge e
incident with w, define c(e) = S, for each edge e = v;v where 1 < i < n—3,
define c(e) = ¢/(v;), and for each edge e € E(H), define c(e) = CH( ) Then
d(z) = CH( ) for each z € V(H), ¢'(u) = Sy, ¢'(w) = S1 and '(v) = [3].

Thus, c is a majestic 2-tone 3-coloring of G and so maj,(G) =t + 1

Subcase 3.2. Fach neighbor of v is colored [3]. Thus, every neighbor of
u and w is colored with a 2-element subset of [3]. We relabel the vertices
of H such that v; is relabeled as v;;; for all integers j with1<j <n —3
and reapply the coloring cy to the new labeling of H. We then proceed as
in Subcase 3.1. |
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Theorem 2.6 If G is a 2-connected bipartite graph of even order n >
14 whose longest cycles have order n — 4 and t > 2 is an integer, then
maj,(G) =t +1.

Theorem 2.7 If G is a 2-connected bipartite graph of odd order n >
15 whose longest cycles have order n — 5 and t > 2 is an integer, then
maj,(G) =t +1.

In summary, it follows by Corollary 2.2 and Theorems 2.3-2.7 that if G
is a 2-connected bipartite graph of arbitrarily large order n whose longest
cycles have length ¢ where n — 5 < ¢ < nand t > 2 is an integer, then
maj,(G) = t + 1. There is a limit, however, on how small the length of a
longest cycle can be in terms of the order of a 2-connected bipartite graph
G to guarantee that G has a majestic 2-tone 3-coloring. As we will see in
the following section, there are infinitely many 2-connected hipartite graphs
of arbitrarily large order n having maximum cycle length n — 6 and 2-tone
majestic index 4. We are not aware of any 2-connected bipartite graph of
arbitrarily large order n having maximum cycle length n — 6 and t-tone
majestic index ¢ + 2 for all integers ¢ > 2, however. This gives rise to the
following more general question.

Problem 2.8 For given integerst and r witht > 2 and r > 6, does there
exist a 2-connected bipartite graph G of arbitrarily large order n having
mazimum cycle length n — r such that maj,(G) =t +2?

3 On 2-Connected Bipartite Graphs of Type 2

We now present a class of 2-connected bipartite graphs having majestic
t-tone index t + 2.

Theorem 3.1 For each integer t > 2, there ezxists a 2-connected bipartite
graph G such that maj,(G) =t + 2.

Proof. Let s = (*1?). First, we construct a bipartite graph G of order
25+ 2(t +2) = 2(s+t+2) as follows. Let X = {z),z9,...,Zs42} and
Y = {y1,y2, . ,yt+2}. The partite sets of G are

i -5 {ul,ug,...,us}UY
W = {w,ws,...,ws}UX.

The subgraph G[X UY] of G induced by XUY is Kt42,e42. Let X1, ){2,.. -
X, be the s distinct 2-element subsets of X and Y;,Y3,...,Y; the s distinct
2-element subsets of Y. For each integer i with 1 < i <'s, the vertex u;
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is joined to the two vertices in X; and the vertex w; is joined to the two
vertices in Y;. This completes the construction of G, which is illustrated in
Figure 2 for ¢t = 2. Thus, degu; = degw; = 2 for 1 < i < 5. The graph
G is 2-connected but not Hamiltonian (as a vertex in X UY is adjacent to
three vertices of degree 2 in G).

uj

uwn

Figure 2: A 2-connected bipartite graph G with maj,(G) = 4

Next, we show that maj,(G) = t + 2. Assume, to the contrary, that
maj,(G) = t + 1. Then there exists a majestic t-tone (t + 1)-coloring
c: E(G) = [t +1] of G. Thus, either |c'(u)] = ¢ for each u € U or
|c'(w)| =t for each w € W. Because of the symmetry of G, we may assume
that |c’(u)| = ¢ for each u € U. Therefore, ¢/(w) = [t + 1] for each w € W.
In particular, ¢'(w;) = [t +1] for i = 1,2,...,s. Since deggw; = 2 and
c'(w;) = [t+1] for each integer i with 1 < i < s, the two neighbors of w; have
distinct vertex colors. Since |¢/(u)| = t for each u € U and there are exactly
t + 1 distinct t-element sets of [t 4 1], there are two vertices in Y that have
the same vertex color, say ¢'(y,) = ¢/(y,), where p,q € {1,2,...,t+2} and
p # q. Let w € W such that w is adjacent only to yp and yq in G. However
then, |¢'(w)| = t, which is a contradiction. Therefore, maj,(G) =t+2. m

As an example, we provide a majestic 2-tone 4-coloring ¢ of the graph
G in Figure 2 as follows: Color each edge incident with u; and ug with
the 2-element set {1,4}, color each edge incident with w; and wg with the

2-element set {3,4} and color all remaining edges with the 2-element set
{2,4}. Observe that

* c'(u) = c'(us) = {1,4}, ¢'(ui) = {2,4} for 2 < i < 5 and c(y;) =
{2,3,4} for 1 < j <4 and
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x c(wy) = c'(wg) = {3,4}, ¢'(wi) = {2,4} for 2 < i <5 and d(z;) =
{1,2,4} for 1 <j < 4.

Thus, ¢’ is a proper vertex coloring of G and so ¢ is a majestic 2-tone 4-
coloring of G. Redrawing the graph G as in Figure 3, we see that G has
maximum cycle length n — 6.

Figure 3: A 2-connected bipartite graph G of order 20
whose longest cycle has length 14 with maj,(G) = 4

If we wanted to continue in the same vein as Theorems 2.3-2.7 to classify
the 2-connected bipartite graphs of type 1 having maximum cycle length
n — 6, it would be necessary to require n to be at least 22. However,
the graph G provides us with a means of constructing infinitely many 2-
connected bipartite graphs having maximum cycle length n — 6 and 2-tone
majestic index 4. Let P = (v1,vs,...,va) be a path of length 2k > 2
and define the graph H by V(H) = V(G) U V(P) and E(H) = E(G) U
E(P) U {z1v1,y1vox}. Then H is a 2-connected bipartite graph of order
n = 20 + 2k with maximum cycle length n — 6. An argument similar
to the one given in the proof of Theorem 3.1 shows that maj,(H) = 4.
Theorem 3.1 can, in fact, be extended from 2-connected bipartite graphs
to k-connected bipartite graphs for all integers k > 2.
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Theorem 3.2 Letk and t be integers such that k,t > 2. Then there exists
a k-connected bipartite graph G such that maj,(G) =t + 2.

Proof. Lets= ("*7'*¥). First, we construct a bipartite graph G of order
2s+2(th—t+k) = 2(s+tk—t+k) as follows. Let X = {z),z9,...,Ttk—t+k}
and Y = {y1,¥2,- .., Ytk—t4x}. The partite sets of G are

U = {ul,uz,...,us}UY
W = {w,wy...,ws}UX.

The subgraph G[XUY] of G induced by XUY is Ky_ ¢4k (k—t4+x. There are
s distinct k-element subsets Xi (1 <i < s) of X and s distinct k-element
subsets Y; (1 < i < s) of Y. For each integer 7 with 1 < i < s, the vertex
u, is joined to the k vertices in X; and the vertex w; is joined to the k
vertices in Y;. This completes the construction of G. This is illustrated in
Figure 2 for t = 2. Thus, degu; =degw; =k for 1 <i < 5. The graph G
is k-connected.

Next, we show that maj,(G) = t + 2. Assume, to the contrary, that
maj,(G) = t + 1. Then there exists a majestic t-tone (¢ + 1)-coloring
c: E(G) —» [t+ 1] of G. Thus, either |¢'(u)| = t for each u € U or
|c'(w)| =t for each w € W. Because of the symmetry of G, we may assume
that |c'(u)| =t for each u € U. Therefore, ¢'(w) = [t 4 1] for each w € W,
In particular, ¢'(w;) = [t+ 1] for i = 1,2,...,s. Since degsw; = k and
¢/(w;) = [t + 1] for each integer ¢ with 1 < i < s, the two neighbors of w;
have distinct vertex colors. Since (1) |Y| =tk —t+k, (2) |c'(v)] = k for
each u € U, (3) there are exactly t + 1 distinct t-element sets of [t + 1] and
(4)tk—t+k>thk—t+k—1=(k—-1)(t+1), it follows that there are
k vertices in Y that have the same vertex color, say Y; consists of these
k vertices of Y for some integer j with 1 < j < s. However, w; is only
adjacent to the k vertices of Y; in G, which implies that |¢/(w;)| = ¢, which
is a contradiction. Therefore, maj,(G) =t + 2. E

The proofs of Theorems 2.7 and 3.1 suggest the following conjecture.

Conjecture 3.3 Let G be a connected bipartite graph of sufficiently large
order n whose longest cycles have order n—6. If C is a cycle of length n —6
in G and the subgraph induced by the set V(G) -V (C) of siz vertices is not
an empty graph, then maj,(G) =t +1 for each integert > 2.
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