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Abstract

Let G be a finite and simple graph with vertex set V(G). A non-
negative signed Roman dominating function (NNSRDF') on a graph
G is a function f : V(G) — {-1, 1, 2} satisfying the conditions that
(1) Xzenp f(2) 2 0 for each v € V(G), where N[v] is the closed
neighborhood of v, and (ii) every vertex u for which f(u) = —1 has
a neighbor v for which f(v) = 2. The weight of an NNSRDF f is
w(f) = EveV(G) f(v). The nonnegative signed Roman domination
number v/ (G) of G is the minimum weight of an NNSRDF on G.
In this paper, we initiate the study of the nonnegative signed Roman
domination number of graphs, and we present different bounds on
g (G). We determine the nonnegative signed Roman domination
number of some classes of graphs. If n is the order and m the size
of the graph G, then we show that 77" (G) > 4(\/8n+ -1)-
and YWV (G) > (8n — 12m)/7. In addltlon, ifGis a blpartlte graph
of order n, then we prove that Y (G) > 3(v/4n+9 — 3) — n, and

we characterize the extremal graphs.
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1 Introduction

In this paper, we continue the study of Roman dominating functions in
graphs. Let G be a finite and simple graph with vertex set V = V(G) and
edge set E(G). The integers n = n(G) = |V(G)| and m = m(G) = |E(G))|
are the order and the size of the graph G, respectively. We write dg(v) =
d(v) for the degree of a vertex v. The minimum and maximum degree are
4(G) = 6 and A(G) = A. The sets Ng(v) = N(v) = {u | wv € E(G)} and
Ng[v] = N[v] = N(u) U {v} are called the open neighborhood and closed
neighborhood of the vertex v, respectively. A graph G is regular or r-regular
if A(G) = 6(G) = r. For disjoint subsets U and V of vertices, we denote
by [U, V] the set of edges between U and V. For a set S C V(G), its open
neighborhood is the set N(S) = U,eg N(v), and its closed neighborhood
is the set N[S] = N(S)US. Also if § C V(G), then G[S] is the subgraph
induced by S.

A cycle on n vertices is denoted by Cy, while a path on n vertices is
denoted by P,. We denote by K, the complete graph on n vertices and
by Knn the complete bipartite graph with one partite set of cardinality
m and the other of cardinality n. A star is a complete bipartite graph of
the form K . A vertex of degree one is called a leaf. The complement of
a graph G is denoted by G.

For a real-valued function f : V(G) = R, the weight of f is w(f) =
Y wev(e) f(v), and for S C V(G), we define f(S) = Y ves f(W), so w(f) =
f(V(G)). Consult [3] and [4] for notation and terminology which are not
defined here.

For an integer k > 1, a signed Roman k-dominating function (SREDF’)
on a graph G is defined in [6] as a function f : V(G) — {-1,1,2} such
that )¢ N[ £ (%) 2 k for every v € V(G), and every vertex u for which
f(u) = —1 is adjacent to a vertex v for which f(v) = 2. The weight of an
SREDF f on a graph G is w(f) = }_,cv () f(v). The signed Roman k-
domination number 7% (G) of G is the minimum weight of an SRkDF on G.
The special case k = 1 was introduced in [1]. Signed Roman domination
in graphs and digraphs is well studied in the literature, see for example
[2, 5, 7, 8, 9]. Following [6], we initiate the study of nonnegative signed
Roman dominating functions on graphs G.

A nonnegative signed Roman dominating function (NNSRDF) on G is
defined as a function f : V(G) — {-1,1,2} such that - .y, f(u) >0
for every v € V(G) and every vertex u for which f(u) = —1 has a neighbor
v for which f(v) = 2. For a vertex v € V, we denote f(N[v]) by f[v]
for notational convenience. The weight of an NNSRDF f on a graph G is
w(f) = ZveV(G) f(v). The nonnegative signed Roman domination number

YMV(G) of G is the minimum weight of an NNSRDF on G. A yNN(G)-
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function is a nonnegative signed Roman dominating function on G of weight
Yo% (G). For an NNSRDF f on G, let V; = V/ = {v € V(G) : f(v) =i}
fori= —1,1,2. An NNSRDF f:V(G) — {—1,1,2} can be represented by
the ordered partition (V_1, Vi, V2) of V(G). Further, we let n_y = |V_1|,
ny = |Vi|, na = |Va|, and so n = ny + ny + n_;. Therefore Y\ (G) =
2ng+n; —n_j.

We present different sharp lower and upper bounds on YNV (G). We de-
termine the nonnegative signed Roman domination number of some classes
of graphs. We show that YNN(G) > 3(v8n+1—1) — n and ¥} (G) >
(8n — 12m)/7. In addition, if G is a bipartite graph of order n, then we
prove that YV (G) > %(\/4n + 9-3) —n, and we characterize the extremal

graphs.

2 Special classes of graphs

In this section, we determine the nonnegative signed Roman domination
number of special classes of graphs. We start with an easy but useful
observation

Observation 1. If G is a graph of order n with maximum degree A(G),
then
ANN(G) > A(G) +1—n.

Proof. Let v € V(G) be a vertex of maximum degree, and let f be a
7N (G)-function. Then the definitions imply

WG = Y fw="Y fw+ Y f@

uEV(G) uEN|[v] u€V(G)-N[v]
>0+ Z f(u) > —(n—(A(G) +1)) =A(G) —n+1,
u€V(G)—N|[v]
and the proof is complete. s

Proposition 2. For n > 1, YNV (K1,,) = 0 with exception of the cases
that n =1 or n = 3, in which cases we have 'yﬁ{v(lﬁ,l) = ’YﬁgN(Kl,s) = 1.

Proof. According to Observation 1, YN~ (K1,n) > 0. Now let u be the
central vertex, and let {uy,us,...,u,} be the leaves of the star Ky n. First
let n be even. Define the function f : V(K!.,n) - {-1,1,2} by f(u) =
2, f(u1) = f(uz) = —1 and f(u;) = (—1)* for each vertex u; € V —
{u,u1,u2}. Then the function f is an NNSRDF on K, of weight 0 and
thus 7% (K ) < 0. This implies that 77" (K1,n) = 0 when n is even.

Now let 7 be odd. It is easy to verify that v/ (K1,1) = 74" (K1,3) = 1.
Let next n > 5. Now we distinguish three cases.
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Case 1. Let n = 6p — 1 for an integer p > 1. Define the function
f:V(Kin) = {-1,1,2} by fu) =2, f(u;) =2for 1 <i<2p—1 and
f(u;) = —1 otherwise. Then the function f is an NNSRDF on Ki,n of
weight w(f) = f(N[u]) = 4p — 4p = 0 and so YNV (K1) < 0 in this case.

Case 2. Let n = 6p + 1 for an integer p > 1. Define the function
fiV(Kin) = {-1,1,2} by f(u) =2, f(u1) =1, f(u;) =2for2<i < 2p
and f(u;) = —1 otherwise. Then f is an NNSRDF on K; . of weight
w(f) = f(N[u]) =4p+1—(4p+1) =0and so YN (Ky,n) < 0 in this case.

Case 3. Let n = 6p + 3 for an integer p > 1. Define the function
f : V(Kl,n) — {—1,1,2} by f(u) = 2, f(ul) = f(U2) = 1, f(u,) = 2 for
3<i<2p+1and f(u;) = —1 otherwise. Then f is an NNSRDF on K,
of weight w(f) = f(N[u]) = 4p+2 — (4p+2) = 0 and so Y}V (K;1,n) < O.

Therefore YN (K1,n) = 0 when n > 5 is odd, and the proof is complete.

O

Proposition 3. Forn > 1, yNN(Kn) =1whenn =1,2,4and v}V (Kn) =
0 otherwise.

Proof. Let V(Kp) = {u1,u2,---,Un}. If n =1,2,4, then it is easy to see
that YMV(K,) = 1. Thus let n # 1,2,4. Using Observation 1, we have
752N(Kn) > 0.

First let n be odd. Define the function f : V(K,) = {-1,1,2} by
flu) = 2, flug) = f(uz) = —1 and f(u;) = (—1)* for each vertex u; €
V — {u1,ug,u3}. Then the function f is an NNSRDF on K, of weight O
and thus YN (K,,) < 0. Hence 7" (K,) = 0 when n is odd and n # 1.

Now let n be even and n > 6. Define the function f : V(K,) —
{=1,1,%} by f(u) = f(uz) = 2, flug) = flus) = f(us) = f(ue) = —1
and f(u;) = (~1)* for each 7 < i < n. Then f is an NNSRDF on K, of
weight 0 and thus YNN(K,,) < 0. So YN (Kn) = 0 when n is even and
n#2,4. O

Propositions 2 and 3 show that Observation 1 is sharp.

Proposition 4. For n > 1, yMV¥(P,) = 0 when n = 0 (mod 3) and
yNN(P,) = 1 otherwise.

Proof. Let P, := ujusy...uy. First let n =0 (mod 3). Define the function
f:V(B) = {-1,1,2} by f(uzit2) =2for 0<i < |25%] and f(w;) = —1
otherwise. Then the function f is an NNSRDF on P, of weight 0 and thus
yMN(P,) < 0. To prove Y] (P,) > 0, we proceed by induction on n. If
n =3, then P; = K12 and we have Y (P;) = 0. Thus let n > 6, and let
f be a NN (P,)-function. Let P,_3 = P, — {u1,uz,us}. If f(ug) = —1,
then the function g : V(Pn-3) = {—1,1,2} defined by g(u:) = f(u;) for
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4 < 1 < nis an NNSRDF of Pn_3 of weight at w(f) — f[uz]. By the
induction hypothesis, we have

ToR (Pn) = w(f) = w(g) + fluz] > v (Pas) + fluz] > 0.

If f(uz) # -1, then flup] > 2. If f(u4) = 2, then the function g :
V(Pn—3) = {-1,1,2} defined by g(u;) = f(u;) for 4 < i < n is an
NNSRDF of P,_3 of weight at w(f) — f[uz] and the result follows by the
induction hypothesis. If f(ug) # 2, then the function g : V(Pa23) =
{-1,1,2} defined by g(us) = f(us) + 1 when f(us) = 1 and g(ug) =
f(ug)+2 when f(ug) = —1 and g(u;) = f(u;) for 5 < i < n is an NNSRDF
of P, _3 of weight at most w(f) — f[uy] + 2. By the induction hypothesis,
we deduce that

VR (Pa) = w(f) > w(g) + fluz] =2 > ¥ (Pa—sz) + fluz] =2 > 0.

Therefore we have, YN (P,) = 0 when n = 0 (mod 3).

Now let n =1 (mod 3). Define the function f : V(P,) - {-1,1,2}
by f(usit2) =2for0<i < [-"g—2j, f(un) =1 and f(u;) = —1 otherwise.
Then f is an NNSRDF on P, of weight 1 and thus yNV(P,) < 1. Using
an argument similar to that described in the case above, we can see that
YNN(P,) > 1 and thus YNV (P,) = 1 when n = 1 (mod 3).

Finally let n = 2 (mod 3). Define the function f : V(P,) = {-1,1,2}
by f(usi+2) =2 for 0 <i < |2] and f(u;) = —1 otherwise. Then f is an
NNSRDF on P, of weight 1 and thus y¥V(P,) < 1. Using an argument
similar to that described above, we can see that yV(P,) > 1 and thus
ANN(P,) =1 when n =2 (mod 3) and this completes the proof. 0

Proposition 5. For n > 3,

0 (mod 3)
1 (mod 3)
2

0 n
'7:;2N (Cn) = 2= m
1 n=2 (mod 3).

mm

Proof. Let Cy, := (u1uz...u,). By Proposition 3, the result is valid for
n = 3. Let now n > 4. First let n = 0 (mod 3). Define the function
f:V(Cn) = {~1,1,2} by f(usi+2) =2 for 0 <i < |251] and f(us) = -1
otherwise. Then the function f is an NNSRDF on C,, of weight 0 and thus
ANN(C,,) < 0. On other hand if g is a Y (Cy)-function, then

1R (Cn) = w(g) = Z glusit2] >0,

0<i<| 252

Thus ;¥ (C,) = 0 when n = 0 (mod 3).
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Next let n = 1 (mod 3). Define the function f : V(C,) = {-1,1,2}
by f(usit2) =2 for 0 < i < |252], f(un) =2 and f(u,) = —1 otherwise.
Then f i 15 an NNSRDF on C, of weight 2 and thus YNV (C,,) < 2. Now let
g be a YNV (Cy)-function. If g(u;) # 2 for every i, then

Y (Ca) =wlg) = ) glw) >4,

1<i<n

a contradiction. Thus assume, without loss of generality, that g(un) = 2.
Then we observe that

'YﬁlN(Cn) =w(g) = Z glugit2] + 9(un) 2 2,
0<i<|252)

and so YNV (C,) =2 when n =1 (mod 3).

Finally let n = 2 (mod 3). Define the function f : V(Cp) = {-1, 1,2}
by f(usit2) =2 for 0 < i < 2] and f(u,) = —1 otherwise. Then f is
an NNSRDF on C, of weight 1 and thus YN (C,) < 1. Now let g be a

NN (Cp)-function. If g(u;) # 2 for every i, then

'YﬁtN(Cn) =w(g) = Z 9(u;) > 5,

1<in

a contradiction. Thus assume, without loss of generality, that g(u,) = 2.
This implies that

73}2 (Cn) =w(g) = Z glusi+2] + 9(un-1) + g(uy) > 1.
0<i<| 232

Thus YNV (Cn) = 1 when n = 2 (mod 3) and this completes the proof. [J

In Proposition 2, we determined exact values of the nonnegative signed
Roman domination number of K ,,. In the following, we determine exact
values of the nonnegative signed Roman domination number of K,, ,, for
n,m> 2.

Proposition 6. For n >m 2 2,

3 m=3

R (Km,n) = { 2 otherwise.

Proof. Let K n be a complete bipartite graph with partite sets X =
{z1,22,...,zm} and Y = {y1,¥2,...,yn}. First assume that m = 2. If
n is even, then define the function f : V(K,,) = {-1,1,2} by f(z1) =
fn) = 2, f(z2) = =1 and f(yi) = (-1)**! for 2 < i < n. Then the
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function f is an NNSRDF on K , of weight 2 and thus yNN (K2,,) < 2. If
n is odd, then define the function f : V(K,,) = {1, 1,2} by f(x1) = 2,
f(z2) =1and f(y;) = (=1)* for 1 < i < n. Then f is an NNSRDF on Ko n
of weight 2 and thus 7Y (K2,n) < 2. Now let g be a YN (K>,,)-function.
If g(z1), g(z2) # 2, then for each i, g(y;) # —1. It follows that

YR (K2n) =w(g) = ) g(u)>2.
ueXuvYy

Let now g(z;) = 2. Then
’YﬁzN(KZn) = w(g) = g(z1) + g[z2] > 2.

Now assume that m = 3. If n is even, then define the function f :
V(Ksn) = {-1,1,2} by f(z1) = f(n1) = 2, f(z2) = -1, f(z3) = 1
and f(y:) = (=1)**! for 2 < i < n. Then f is an NNSRDF on K3,
of weight 3 and thus 7&” (K3n) < 3. If n is odd, then define the func-
tion f : V(K3,n) - {-1,1,2} by f(z1) = 2, f(z2) = f(z3) = 1 and
f(yi) = (-1)* for 1 < i < n. Then f is an NNSRDF on K3,, of weight
3 and thus Y{¥(K3,) < 3. Now let g be a YNV(K3,)-function. If
g(z1),9(z2), 9(z3) # 2, then for each %, g(y;) # —1. Thus

Y g(u)>3.

ueXuyY

'YﬁiN(KS,n) e w(g)

Now let, without loss of generaltiy, g(z1) = 2. If g(z3) # —1 (9(z3) # —1
is similar), then

AN (K3 n) = w(g) = gzs] + g(z1) + g(z2) >0+2+1=3.

Thus let g(z2) = g(z3) = —1. Since g[y;] > 0 for each i, we deduce that
9(y;) # —1 for each 7. Hence

YN (Kap) =wlg)= Y g(@:)+ Y, 9(y:) >0+3=3.
1<i<3 1<i<n

Let m > 4. We first show that YN (Km ) < 2. Assume that m is
even. If n is even, then define the function f : V(Kp ) = {-1,1,2} by
f(z1) = f(y1) = 2, f(z:) = (-1)"*! for 2 < i < m and f(y;) = (-1)*
for 2 < j < n. Then f is an NNSRDF on Ky, of weight 2 and thus
fyﬁzN (Kmn) < 2. If nis odd, then define the function f : V(Kmn) =
{—1,1,2} by f(z1) = f(y1) = f(y2) = 2, f(z2) = f(y3) = f(ya) = -1,
f(z;) = (-1) for 3 <i <mand f(y;) = (=1)’ for 5 < j < n. Then fisan
NNSRDF on K, ,, of weight 2 and thus 'yﬁzN (Kmxn) <2. Finallyletm > 5
be odd. If n is even, then define the function f : V(Kmn) — {-1,1,2} by
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f(@1) = f(@2) = f(y1) = 2, f(z3) = f(wa) = f(y) = —1, f(z:) = (—1)
for 5 <i<mand f(y;) = (- )J for 3 < j < n. Then f is an NNSRDF
on Ky, n of weight 2 and thus 73 N (Kmsn) <2 If n is odd, then define the

function f : V(Kmn) = {—1,1,2} by f(z1) = f(z2) = f(y1) = f(y2) = 2,

fz3) = f(za) = f(ys) = f(ya) = =1, f(z:) = (=1)" for 5 < i < m and
fly;)=(- )J for 5 <j < mn. Then f i 1s an NNSRDF on K, . of weight 2

and thus v} (Km n) < 2. Therefore YN (Kpm,n) < 2 when m > 4.
To prove Y N3¥ (Kmn) > 2, assume that g is a YN (Km,n)-function. If
g(u) # 2 for every u € X (u €Y is similar), then g(y;) 21 for 1 < i < n.

This yields to

YN (Kmp) =w(g) = ) g(w:)+glyn] 2n—123,
2<i<n

a contradiction. Thus we assume, without loss of generality, that g(z1) =
91) =2. I g(z;) # -1, 2 < i <m (9(y;) # —1, 2 < j < n is similar),

then
TR (Kmn) = w(g) = glz1] + Z 9(z;) > 3,
2<i<m
a contradiction. Thus we may assume that g(z2) = g(y2) = —1. Since

glz2] > 0, we observe that ZKK" 9(y;) > 1, and since g[y2] > 0, we have
Z1<;<m g(z;) > 1. Hence

T Kmn)=w(@) = D gl@)+ Y gw)=1+1=2,

1<i<m 1<i<n

and this completes the proof. O

3 Bounds on 7V (G)

In this section we start with some simple upper bounds on the nonneg-
ative signed Roman domination number of a graph Furthermore, we
show that 7]}V (G) > 2(v8n+1—-1) — n and 4V (G) > (8n — 12m) /7.
In addition, if G is a bipartite graph of order n, then we prove that
YNV (G) > 2(/4n+9 - 3) —n, and we characterize the extremal graphs.

Proposition 7. If G is a graph of order n, then
ek (G) < m,
with equality if and only if G = K,,.

Proof. Define the function f : V(G) = {-1,1,2} by f(v) = 1 for each
vertex v € V(G). Then the function f is an NNSRDF on G of weight n
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and thus Y¥V(G) < n. If G = K, then obviously 7¥/¥(G) = n. Now let
’YﬁgN(G) =n. If G # K,, then §(G) > 1. Let u be a vertex of minimum
degree in G and let v be a neighbor of u. Then, f = ({u},V — {u,v}, {v})
is an NNSRDF in G, and so yNN(G) < n — 1. Hence G = K,,. 0

Theorem 8. Let G be a connected graph of order n > 2. Then yV(G) =
n — 1 if and only if n = 2.

Proof. Clearly, if n = 2, then 7\ (G) =1 = n — 1. Conversely, assume
that YNV (G) =n-1.

If diam(G) = 1, then G is the complete graph, and Proposition 3 implies
the desired result.

Let now diam(G) > 3, and let ujuy...up be a diametral path. Define
the function f : V(G) = {-1,1,2} by f(u1) = f(up) = -1, f(uz) =
f(up—1) =2 and f(x) = 1 otherwise. Since p > 4, it is easy to verify that
f is an NNSRDF on G of weight n — 2, a contradiction.

Finally, let diam(G) = 2, and let uvw be a diametral path. Let v1,v2,..., v
be the vertices of degree two with the property that N(v;) = {u,w} with
vi#vforl <i<t.

If there is no such vertex of degree two, then define the function f :
V(G) = {-1,1,2} by f(u) = f(w) = -1, f(v) = 2 and f(z) = 1 otherwise.

If t > 1, then define the function f : V(G) — {-1,1,2} by f(u) =
f(w) =2, f(v) = f(v1) = -1 and f(z) =1 otherwise.

In both cases it is easy to check that f is an NNSRDF on G of weight
at most n — 2, a contradiction. O

Corollary 9. Let G be a graph of order n > 2. Then YNN(G) =n —1 if
and only if G consists of a K3 and n — 2 isolated vertices.

Corollary 10. Let G be a graph of order n > 2 such that G # K, and
G # KUK, _5. Then YNN(G) <n-2.

Theorem 11. If G is a graph of order n with minimum degree §(G) > 1,
then
i(G)+1
5 y

B (E) <n+1-2)
Proof. Definet = léﬁ%)i_lj . Let v € V(G) be a vertex of maximum degree,
and let A = {uy,us,...,u:} be aset of t neighbors of v. Define the function

f:V(G) = {-1,1,2} by f(v) =2, f(w;)=—-1for 1 <i<tand f(w) =1
for w € V(G) — (AU {v}). If z € V(G) — (AU {v}), then

flz] > —t+1+(5(G)—t)=6(G)+1—2t=6(G)+1—2lég—G%} > 0.
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If z € A, then

fle) 2 4+ ((6) - -1) =@ +1-21=8(G) +1-2 [ DL | >0
Now if £ = v, then
flz] = —t+2+(A(G)— 1) = A(G) +2— 2t = A(G) +2~2 [i(—G;—ﬂJ >0

Therefore f is an NNSRDF on G of weight 2—t+ (n—t—1) =n+1—2¢
andthusvﬁ{v(G)§n+1—-2t=n+1—2[ﬂ%ﬁlj. O

In [6], we have proved the following proposition for the signed Roman
k-domination function when k& > 1.

Proposition 12. [6/ Let k > 1 be an integer. Assume that f = (V_;, V1, V3)
is an SRKDF on a graph G of order n. If § > k — 1, then

L (A+ 8+ 2w(f) > (64 2k — A)n + (8 — A)|Val.

§+2k—2A—
2. w(f) 24 +:>.A+6+31)n +|Vel.

It is a simple matter to verify that Proposition 12 remains valid for
k = 0. Hence we have the following useful result.

Proposition 13. If f = (V_;, W, V2) is an NNSRDF on a graph G of order
n, then

1L (A+35+2w(f) > (6 —A)n+ (6 — A)|Va|.
2. w(f) > G2E=UR 4y,

As an application of the 1. inequality in Proposition 13, we obtain
a lower bound on the nonnegative signed Roman domination number for
regular graphs.

Corollary 14. If G is an regular graph, then 7i" (G) > 0.
Propositions 3 and 5 demonstrate that Corollary 14 is sharp.
Corollary 15. If G is a graph with § < A, then

Yor (G) 2 2A+6+3
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Proof. Multiplying both sides of the inequality 2. in Proposition 13 by A—§

and adding the resulting inequality to the inequality 1. in Proposition 13,

we obtain

(—2A%+2A0 —2A +26)n _ 2n(6 - A)
(A+1)(2A4+6+3) ~ 2A0+46+3°

74 (G) >
a

Ezample 16. Let z1,%2,...,T2p be the leaves of the star K2, withp > 2.
If we add the edges T122, 3%y, . .., T2p-1T2p to the star K zp, then denote
the resulting graph by H. Now let Hy, Ha,...,H, be p copies of H with the
central vertices v1,v2,...,Vp. Define the graph G as the disjoint union of
H,,Ha,...,H, such that all central vertices are pairwise adjacent. Then
d(G) =2, AG) = 3p—1 and n(G) = p(2p + 1). Define the function
f:V(G) > {-1,1,2} by f(vi) =2 for 1 < i < p and f(z) = —1 otherwise.
It is easy to verify that 3,y f(z) = 0 for every vertez u € V(G).
Therefore f is an NNSRDF on G] of weight

b _ 2n(G)(4(G) — A(G))
wif) = =2 -1) = S ey T 6 +3 -
Example 16 shows that Corollary 15 is sharp.

Theorem 17. Let G be a graph of order n > 2 with maximum degree
A(G) £ n—2. If §(G) is the minimum degree, then

M (G) > 6(G) +4-n.

Proof. Let f be a YNV (G)-function. If f(z) = 1 for each vertex z € V(G),
then YV (G) = n > 6(G) + 4 — n. Now assume that there exists a vertex
w with f(w) = —1. Then w has a neighbor v with f(v) = 2. Since
d(v) < A(G) £ n — 2, there exists a vertex u not adjacent to v. Therefore
we obtain the desired bound as follows.

KRG = > f@=fO+ ) fl=)+ X f(z)
zeV(G) ZEN[u] z€V(G)—(N[u]u{v})
> 240-(n—d(u)—2)=4+d(u)—n2>6(G)+4—n.

O
Corollary 18. Let G be an r-regular graph of order n. If r = n — 2, then
YNN(G) > 2, and if r = n — 3, then 77 (G) > 1.

Corollary 18 is an improvement of Corollary 14 for the special case that
G is (n — 2)-regular or (n — 3)-regular. The cycles C4 and Cs show that
equality in Corollary 18 is possible. Combining Corollary 18 with Theorem
11, we arrive at the next result.
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Corollary 19. Let G be an r-regular graph of order n. If r = n — 2, then
2 <yNMN(G) < 3. Ifr=n—3 and n is even, then 1 <7/} (G) < 3, and if
r=n—3 and n is odd, then 1 <YNN(G) < 4.

We call a set S C V(G) a 2-packing of the graph G if N[ujn N[v] = 0
for any two distinct vertices of u,v € S. The maximum cardinality of a
2-packing is the 2-packing number of G, denoted by p(G).

Theorem 20. If G is a graph of order n such that §(G) > 1, then
ek (G) 2 (§(G) +1) - p(G) — n.

Proof. Let {v1,v2,...,v,)} be a 2-packing of G, and let f be a NN (G)-

function. If we define the set A = (J2{$) N[u;] then, since {v1,v2, . . ., Vp(G)}

is a 2-packing of G, we have

p(G)
4] =) (d(w) +1) 2 (§(G) +1) - p(G).
=1
It follows that
p(G)
PG = > fw=> flul+ Y f@
u€V(G) i=1 ueV(G)-A

> ) flw)2-n+|4

ueV(G)-A
2 (6(G)+1)-p(G) —n.

Corollary 21. If G is a graph of order n such that §(G) > 1, then

diam(G
(6 2 (@) + )+ | 2EE ) -
Proof. Let d = diam(G) = 3t + r with integers t >0 and 0 <7 < 2, and
let {v1,v2,...,v3} be a diametral path. Then A = {vg,vs,...,v3} is a
2-packing of G such that |A| =1+ l_d’%(gl_l Since p(G) > |A|, Theorem
20 implies that

1V (G) 2 (5(G) +1)- p(G) — n > (6(C) + (1 + {ia—“@}) g

3
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If n > 5, then Proposition 3 shows that Theorem 20 and Corollary 21
are sharp.

Now we determine a lower bound on the nonnegative signed Roman
domination number of a graph. For this purpose, we define a family of
graphs as follows. For k > 1, let F, = {F} | k£ > 1} be a family of graph
as follows. Let X vertex set of the complete graph Kj and let Fy be the
graph obtained from K} by adding 2k new vertices to each vertex of the
complete graph such that for each new vertex z, 1 < d(z) < 2 and for every
u € X, d(u) = 3k — 1. We note that Fj has order n = k(2k +1) = 2k? + k.
Let F = Uk21 Fk.

Theorem 22. If G is a graph of order n, then

FAN(G) > %(\/811 +1-1)-n,
with equality if and only if G € F.

Proof. Let f = (V_1,W4,V2) be a yNV(G)-function. If V_; = @, then
YNN(G) = n > 3(v8n+1 - 1) — n. Hence, we may assume that V_; #
0. Since each vertex in V_; has at least one neighbor in V3, it follows
from the Pigeonhole Principle that at least one vertex v of V; has at least
K,“z‘ = "= neighbors in V_;. Therefore, 0 < f[v] < 2n2 +ny - =, and
so 2n2 + nyng —n_; > 0. Since n = ny + ny + n_1, we have equivalently
that 2n§ + ning +ng +ny; —n > 0. Since ny > 1 and n, is a non-negative
integer, %nlng - %nl > 0. Therefore

2 1 1 8 8 2
2(n2 + §n1 =t 1)2— §—n=2n§+§nf+§n1n2+n2+§n1 -n
) 1
> (2n3 + nynz +n2 +ny —n) + (§n1n2 = §n1) 2 0.

or equivalently, 3n, + 211 > 3(v/8n+1—1). Thus

3
11 (G) =32 +2m —n2 7(VBn+1-1)—n.

which establishes the desired lower bound.

Suppose that vV (G) = 3(v/8n + 1-1)—n. Then all the above inequal-
ities must be equalities. In particular, n; = 0 and 2n3 = n_,. Furthermore,
each vertex of V_, is adjacent to exactly one vertex of V2 and therefore has
degree one or two in G, while each vertex of V; is adjacent to all other
ng — 1 vertices of V, and to 2ny vertices of V_;. Therefore, G € F.

On the other hand, suppose that G € F. Then G € F and G = F;
such that k > 1. Assigning to the every vertex of Ky the value 2, and to
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all other vertices the value -1, we produce an NNSRDF f of weight

)= 3 fu) =2k — k(2k) = 2" + 2k = J(W/ERF 1~ 1) — -

veV

Therefore,

V() < (V) = WERFT - 1) -

Consequently,

3
AN (G) = Z(\/8n+ 1-1)-n.
O

Theorem 23. If G is a connected graph of order n > 2 and size m, then

Proof. Let f = (V_1, V1, V2) be a YN (G)-function, |V;| = n;, m(G[Vi]) =
m; for i € {1 12} and |V1UV2| = n12 and m(G[V1 U V2]) = myo. If
Vo1 =0, then 4V (G) = n > 82=12m  Now we assume that V_; # 0.
Since each vertex of V_; is adjacent to at least one vertex of V5, we have

S o, Vol = Vo, Vall 2 .
vEV,

Furthermore, for each v € V3, we observe that 0 < f[v] = f(v)+2|[v, V2]| +
|[v, Vi]| = |[v, V-1]| and thus |[v, V_1]] < 2|[v, Va]| + |[v, Va]| + 2. We deduce
that

no <) Vol <3 @, Vall + v, Vall + 2)

veEV, veV,
= dmy + |[W, Va]| + 2ng = 4myq + 2ny — 4my — 3|[V1, V2|,

and thus mia > (n—1 — 2ny + 4m; + 3|[V4, V4]|)/4. This inequality and
n-i S “V_l, Vg” lead to

(AV4

myg + |[V-1, V]| + |[V1, V]|
1
Z(n—l — 2np + 4my + 3|[V1, V2]|) + n—1 + [V, V-4

m

v

1
4—(5n_1 — 22 + 2nq + 4my + 3|[V1,V2]| - 4|[V1, V—l“)

1
= Z(5n — Tnyg + 20y + 4my + 3|[V, Val| + 4|[Va, V-1]|)-
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It follows that

ni2 > ;(Sn — 4m + 2ny + 4my + 3|[V2, Ve| + 4|[V1, V-a]l),

and so
WNNG) = mp+mp—n =32 +2m-—n=3npp-n-m
> %—(Sn —4m + 2ny + 4my + 3|[Wy, Vo] + 4][Va, Vau|) - n—ny
= %(Sn —12m) + %(12"11 +9|[V1, Vo]| + 12|[V1, V4| = ma).
Let

[1(711) =12m; + 9|[V1, Vz]l 8 12|[V1, V_1]| - n;.

It suffices to show that p(n;) > 0, because then YN (G) > 82=12m | which
establish the desired lower bound. If n; = 0, then u(n;) = 0. Now we
assume that that n; > 1. Let Hi,Ha,...,H; be the components of the
induced subgraph G[V] of order hi, h, ..., hs. Since G is connected, each
component H; contains a vertex adjacent to a vertex of V; or to a vertex
of V_, for 1 <i <t. This implies

my + |[Vi, Vo] + |[[Vi, Vaall 2 (hi=1)+(he—1)+ ...+ (he —1) + ¢
= h1+h2+...+ht=n1.

This leads to

p(ny) = 12my+9|[Vy, V]| + 12|V, V]| =
> my+ |V, Vo]l + |[Va, Voa]| =1 > 0,
and the proof is complete. O
Corollary 24. If T is a tree of order n > 2, then

12 —4n
nRI ) =

Next example demonstrates that the lower bounds in Theorem 23 and
Corollary 24 are sharp.

Ezample 25. For k > 1, let Fy, be the graph obtained from a connected
graph F of order k by adding 2dr(v) + 2 pendant edges to each vertez v of
F'. Then

n(F) = n(F) + Z (2dp(v) + 2) = 3n(F) 4+ 4m(F)
vEV(F)
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and
m(F) =m(F)+ Y (2dr(v)+2) = 2n(F) + 5m(F).
veV(F)
Assigning to every vertez in V(F) the weight 2 and to every vertez in
V(Fi) = V(F) the weight -1 produces an NNSRDF f of weight
8n(Fx) — 12m(Fy)
o) =20(F) = Y (de(s) +2) = —am(F) = LTI,

veV(F)

Using Theorem 23, we obtain ’YﬁzN(Fk) - sn(sz—;2m(Fk2.

Next we determine a lower bound on the nonnegative signed Roman
domination number of a bipartite graph. For this purpose, we define a
family of bipartite graphs as follows. For k > 1, let By = {Bx | k > 1}
be a family of bipartite graph as follows. Let X and Y be the partite sets
of the complete bipartite graph Kjx and let By be the bipartite graph
obtained from Ky x by adding 2k + 2 new vertices to each vertex of the
complete bipartite graph such that for each new vertex z, 1 < d(z) < 2
and for every u € X UY, d(u) = 3k + 2. We note that By has order

n = 2k(2k + 3) = 4k? + 6k. Let B = Uy>; B
Theorem 26. If G is a bipartite graph of order n, then

'yﬁ;N(G) > g(\/4n+ 9-3)—mn,

with equality if and only if G € B.

Proof. Let X and Y be the partite sets of the bipartite graph G. Let
f = (V-1,W1,Va) be a 4N (G)-function and let X_1, X1, and X2 be the
set of vertices in X that are assigned the value -1, 1 and 2, respectively
under f. Let Y_;, ¥}, and Y, be defined analogously. Let |X_1] = s,
1X1| = 81, [X2| = so, [Yoy| = ¢, |V3] = t1, [Y2| = to. Thus, n—1 =5 +t,
n = 81 +t; and ny = s +1t,. We First show that

s<tr(2 45, +2), t<s(2+t+2) (1)

For each vertex y € Y,, we have that f(y)+2dx,(¥)+dx, (y)—dx_, (y) =
fls] 2 0,and so dx_, (y) < 2dx, (y)+dx, () +f(¥) = 2dx2(y)+dx, (y)+2 £
259+51+2. By the definition of an NNSRDF, each vertex in X_, is adjacent

to at least one vertex in Y3, and so

s=|X_y| < [Xon, Xl = ) dx, ()
y€eY2

<Y (2s2+81+2)
yeY,

< t2(282 +s5+ 2).
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Analogously, we have that t < s2(2t2 +t; + 2). Now we show that

’ 9
s1+s2+t +t2 2 n+z+%(sl+t1)—g. (2)

We note that for integers s and ¢, we have s + t2 > 2st, with equality if

and only if s = ¢t. Hence by simple algebra and by inequality (1), we have
that

(gs +ag ¥ oty ¢ +3)2
3 1 2 3 1 2 2

2, 42 4 4 9
> 85 + 15+ 2s3t0 + §Szt1 & 531t2 + 382 + 3ty + 251 + 2t; + 1

9
> 4soty + 8ot + S1t2 + 352 + 3t + 851+t + Z

9
>s+t+sy+t2+ 38 +t1+z
—n+g

1

The desired inequality now follows by taking squaring roots on both sides
and rearranging terms. We now return to the proof of Theorem 26. By
inequality (2), we have

’)’ﬁzN(G) =2ny+n; —
=3ny + 2n, —
=3(ng+mn;)—n1—n
=3(se+to+s1+t)—(s1+t1)—n

/ 9 1 3
23( n+z+§(31+t1)-5)—(81+t1)—n
/ 9 9

(V4n =3)=

which establishes the desired lower bound.

Suppose that N \/4n+ —3) — n. Then all the above in- -
equalities, including the mequahtles in (1) and (2), must be equalities. In
particular, s; = t; = 0 and s2 + ¢2 = 2st, implying that s, = t;. Equality
(1), implies that s = t3(2s2 + 2), t = s2(2t2 + 2) and that every vertex in
X, is adjacent to every vertex in Y, and vice versa. Further, every vertex
zin X_; has 1 < d(z) < 2 and is adjacent to exactly one vertex of Y»
while every vertex in Y> is adjacent to exactly 2s2 + 2 vertices in X_1.
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Analogously, every vertex y in Y_; has 1 < d(y) < 2 and is adjacent to
exactly one vertex of X, while every vertex in X, is adjacent to exactly
2t, + 2 vertices in Y_;. Thus, G = By, and so G € B.

On the other hand, suppose G € B. Then G € Br and G = Bg such
that k > 1. Assigning to the every vertex of Ky x the value 2, and to all
other vertices the value -1, we produce an NNSRDF f of weight

FV) = Y £(0) = 202k) ~ 24(2k +2) = ~4k? = S(VIn F9 - 3) = n.

veV
Therefore, 5
TR (6) £ f(V) = 5(VIn+9 -3) —n.
Consequently, 5
1R (G) = 5(Van+9-3) —n.
O
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