Nonnegative signed Roman domination in graphs

Nasrin Dehgardi
Department of Mathematics and Computer Science
Sirjan University of Technology
Sirjan, I.R. Iran
n.dehgardi@sirjantech.ac.ir

L. Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Abstract

Let G be a finite and simple graph with vertex set V(G). A nonnegative signed Roman dominating function (NNSRDF) on a graph G is a function $f:V(G)\to \{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N[v]}f(x)\geq 0$ for each $v\in V(G)$, where N[v] is the closed neighborhood of v, and (ii) every vertex u for which f(u)=-1 has a neighbor v for which f(v)=2. The weight of an NNSRDF f is $\omega(f)=\sum_{v\in V(G)}f(v)$. The nonnegative signed Roman domination number $\gamma_{sR}^{NN}(G)$ of G is the minimum weight of an NNSRDF on G. In this paper, we initiate the study of the nonnegative signed Roman domination number of graphs, and we present different bounds on $\gamma_{sR}^{NN}(G)$. We determine the nonnegative signed Roman domination number of some classes of graphs. If n is the order and m the size of the graph G, then we show that $\gamma_{sR}^{NN}(G) \geq \frac{3}{4}(\sqrt{8n+1}-1)-n$ and $\gamma_{sR}^{NN}(G) \geq (8n-12m)/7$. In addition, if G is a bipartite graph of order n, then we prove that $\gamma_{sR}^{NN}(G) \geq \frac{3}{2}(\sqrt{4n+9}-3)-n$, and we characterize the extremal graphs.

Keywords: nonnegative signed Roman dominating function, nonnegative signed Roman domination

MSC 2000: 05C69

1 Introduction

In this paper, we continue the study of Roman dominating functions in graphs. Let G be a finite and simple graph with vertex set V = V(G) and edge set E(G). The integers n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the size of the graph G, respectively. We write $d_G(v) = d(v)$ for the degree of a vertex v. The minimum and maximum degree are $\delta(G) = \delta$ and $\Delta(G) = \Delta$. The sets $N_G(v) = N(v) = \{u \mid uv \in E(G)\}$ and $N_G[v] = N[v] = N(u) \cup \{v\}$ are called the open neighborhood and closed neighborhood of the vertex v, respectively. A graph G is regular or r-regular if $\Delta(G) = \delta(G) = r$. For disjoint subsets U and V of vertices, we denote by [U,V] the set of edges between U and V. For a set $S \subseteq V(G)$, its open neighborhood is the set $N(S) = \bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S] = N(S) \cup S$. Also if $S \subseteq V(G)$, then G[S] is the subgraph induced by S.

A cycle on n vertices is denoted by C_n , while a path on n vertices is denoted by P_n . We denote by K_n the complete graph on n vertices and by $K_{m,n}$ the complete bipartite graph with one partite set of cardinality m and the other of cardinality n. A star is a complete bipartite graph of the form $K_{1,n}$. A vertex of degree one is called a leaf. The complement of a graph G is denoted by \overline{G} .

For a real-valued function $f: V(G) \to R$, the weight of f is $\omega(f) = \sum_{v \in V(G)} f(v)$, and for $S \subseteq V(G)$, we define $f(S) = \sum_{v \in S} f(v)$, so $\omega(f) = f(V(G))$. Consult [3] and [4] for notation and terminology which are not defined here.

For an integer $k \geq 1$, a signed Roman k-dominating function (SRkDF) on a graph G is defined in [6] as a function $f: V(G) \to \{-1,1,2\}$ such that $\sum_{u \in N_G[v]} f(u) \geq k$ for every $v \in V(G)$, and every vertex u for which f(u) = -1 is adjacent to a vertex v for which f(v) = 2. The weight of an SRkDF f on a graph G is $\omega(f) = \sum_{v \in V(G)} f(v)$. The signed Roman k-domination number $\gamma_{sR}^k(G)$ of G is the minimum weight of an SRkDF on G. The special case k = 1 was introduced in [1]. Signed Roman domination in graphs and digraphs is well studied in the literature, see for example [2, 5, 7, 8, 9]. Following [6], we initiate the study of nonnegative signed Roman dominating functions on graphs G.

A nonnegative signed Roman dominating function (NNSRDF) on G is defined as a function $f:V(G)\to \{-1,1,2\}$ such that $\sum_{u\in N[v]}f(u)\geq 0$ for every $v\in V(G)$ and every vertex u for which f(u)=-1 has a neighbor v for which f(v)=2. For a vertex $v\in V$, we denote f(N[v]) by f[v] for notational convenience. The weight of an NNSRDF f on a graph G is $\omega(f)=\sum_{v\in V(G)}f(v)$. The nonnegative signed Roman domination number $\gamma_{sR}^{NN}(G)$ of G is the minimum weight of an NNSRDF on G. A $\gamma_{sR}^{NN}(G)$ -

function is a nonnegative signed Roman dominating function on G of weight $\gamma_{sR}^{NN}(G)$. For an NNSRDF f on G, let $V_i = V_i^f = \{v \in V(G) : f(v) = i\}$ for i = -1, 1, 2. An NNSRDF $f: V(G) \rightarrow \{-1, 1, 2\}$ can be represented by the ordered partition (V_{-1}, V_1, V_2) of V(G). Further, we let $n_{-1} = |V_{-1}|$, $n_1 = |V_1|, n_2 = |V_2|, \text{ and so } n = n_2 + n_1 + n_{-1}.$ Therefore $\gamma_{sR}^{NN}(G) =$ $2n_2+n_1-n_{-1}$.

We present different sharp lower and upper bounds on $\gamma_{sR}^{NN}(G)$. We determine the nonnegative signed Roman domination number of some classes of graphs. We show that $\gamma_{sR}^{NN}(G) \geq \frac{3}{4}(\sqrt{8n+1}-1) - n$ and $\gamma_{sR}^{NN}(G) \geq$ (8n-12m)/7. In addition, if G is a bipartite graph of order n, then we prove that $\gamma_{sR}^{NN}(G) \geq \frac{3}{2}(\sqrt{4n+9}-3)-n$, and we characterize the extremal graphs.

Special classes of graphs 2

In this section, we determine the nonnegative signed Roman domination number of special classes of graphs. We start with an easy but useful observation

Observation 1. If G is a graph of order n with maximum degree $\Delta(G)$, then

$$\gamma_{sR}^{NN}(G) \ge \Delta(G) + 1 - n.$$

Proof. Let $v \in V(G)$ be a vertex of maximum degree, and let f be a $\gamma_{sR}^{NN}(G)$ -function. Then the definitions imply

$$\begin{split} \gamma_{sR}^{NN}(G) &= \sum_{u \in V(G)} f(u) = \sum_{u \in N[v]} f(u) + \sum_{u \in V(G) - N[v]} f(u) \\ &\geq 0 + \sum_{u \in V(G) - N[v]} f(u) \geq -(n - (\Delta(G) + 1)) = \Delta(G) - n + 1, \end{split}$$

and the proof is complete.

Proposition 2. For $n \geq 1$, $\gamma_{sR}^{NN}(K_{1,n}) = 0$ with exception of the cases that n = 1 or n = 3, in which cases we have $\gamma_{sR}^{NN}(K_{1,1}) = \gamma_{sR}^{NN}(K_{1,3}) = 1$.

Proof. According to Observation 1, $\gamma_{sR}^{NN}(K_{1,n}) \geq 0$. Now let u be the central vertex, and let $\{u_1, u_2, \ldots, u_n\}$ be the leaves of the star $K_{1,n}$. First let n be even. Define the function $f: V(K_{1,n}) \to \{-1,1,2\}$ by f(u) =2, $f(u_1) = f(u_2) = -1$ and $f(u_i) = (-1)^i$ for each vertex $u_i \in V$ $\{u, u_1, u_2\}$. Then the function f is an NNSRDF on $K_{1,n}$ of weight 0 and thus $\gamma_{sR}^{NN}(K_{1,n}) \leq 0$. This implies that $\gamma_{sR}^{NN}(K_{1,n}) = 0$ when n is even. Now let n be odd. It is easy to verify that $\gamma_{sR}^{NN}(K_{1,1}) = \gamma_{sR}^{NN}(K_{1,3}) = 1$.

Let next $n \geq 5$. Now we distinguish three cases.

Case 1. Let n=6p-1 for an integer $p\geq 1$. Define the function $f:V(K_{1,n})\to \{-1,1,2\}$ by f(u)=2, $f(u_i)=2$ for $1\leq i\leq 2p-1$ and $f(u_i)=-1$ otherwise. Then the function f is an NNSRDF on $K_{1,n}$ of weight $\omega(f)=f(N[u])=4p-4p=0$ and so $\gamma_{sR}^{NN}(K_{1,n})\leq 0$ in this case.

Case 2. Let n=6p+1 for an integer $p \geq 1$. Define the function $f: V(K_{1,n}) \to \{-1,1,2\}$ by f(u)=2, $f(u_1)=1$, $f(u_i)=2$ for $1\leq i\leq 2p$ and $f(u_i)=-1$ otherwise. Then $1\leq i\leq 2p$ and $1\leq 2p$ and

Case 3. Let n=6p+3 for an integer $p\geq 1$. Define the function $f:V(K_{1,n})\to \{-1,1,2\}$ by f(u)=2, $f(u_1)=f(u_2)=1$, $f(u_i)=2$ for $3\leq i\leq 2p+1$ and $f(u_i)=-1$ otherwise. Then f is an NNSRDF on $K_{1,n}$ of weight $\omega(f)=f(N[u])=4p+2-(4p+2)=0$ and so $\gamma_{sR}^{NN}(K_{1,n})\leq 0$.

Therefore $\gamma_{sR}^{NN}(K_{1,n}) = 0$ when $n \geq 5$ is odd, and the proof is complete.

Proposition 3. For $n \ge 1$, $\gamma_{sR}^{NN}(K_n) = 1$ when n = 1, 2, 4 and $\gamma_{sR}^{NN}(K_n) = 0$ otherwise.

Proof. Let $V(K_n) = \{u_1, u_2, \dots, u_n\}$. If n = 1, 2, 4, then it is easy to see that $\gamma_{sR}^{NN}(K_n) = 1$. Thus let $n \neq 1, 2, 4$. Using Observation 1, we have $\gamma_{sR}^{NN}(K_n) \geq 0$.

First let n be odd. Define the function $f: V(K_n) \to \{-1, 1, 2\}$ by $f(u_1) = 2$, $f(u_2) = f(u_3) = -1$ and $f(u_i) = (-1)^i$ for each vertex $u_i \in V - \{u_1, u_2, u_3\}$. Then the function f is an NNSRDF on K_n of weight 0 and thus $\gamma_{sR}^{NN}(K_n) \leq 0$. Hence $\gamma_{sR}^{NN}(K_n) = 0$ when n is odd and $n \neq 1$.

Now let n be even and $n \geq 6$. Define the function $f: V(K_n) \rightarrow \{-1,1,2\}$ by $f(u_1)=f(u_2)=2$, $f(u_3)=f(u_4)=f(u_5)=f(u_6)=-1$ and $f(u_i)=(-1)^i$ for each $1 \leq i \leq n$. Then $1 \leq i \leq n$ so $1 \leq i \leq n$ weight 0 and thus $1 \leq i \leq n$ so $1 \leq i \leq n$ and $1 \leq i \leq n$ when $1 \leq i \leq n$ so $1 \leq i \leq n$ so $1 \leq i \leq n$ when $1 \leq i \leq n$ so $1 \leq i \leq n$ when $1 \leq i \leq n$ and $1 \leq i \leq n$ so $1 \leq i \leq n$ when $1 \leq i \leq n$ so $1 \leq i \leq n$ and $1 \leq i \leq n$ so $1 \leq i \leq n$ when $1 \leq i \leq n$ so $1 \leq i \leq n$ and $1 \leq i \leq n$ so $1 \leq i \leq n$ and $1 \leq i \leq n$ so $1 \leq i \leq n$ and $1 \leq i \leq n$ so $1 \leq i \leq n$ so $1 \leq i \leq n$ so $1 \leq i \leq n$ and $1 \leq i \leq n$ so $1 \leq$

Propositions 2 and 3 show that Observation 1 is sharp.

Proposition 4. For $n \geq 1$, $\gamma_{sR}^{NN}(P_n) = 0$ when $n \equiv 0 \pmod{3}$ and $\gamma_{sR}^{NN}(P_n) = 1$ otherwise.

Proof. Let $P_n:=u_1u_2\ldots u_n$. First let $n\equiv 0\pmod 3$. Define the function $f:V(P_n)\to \{-1,1,2\}$ by $f(u_{3i+2})=2$ for $0\le i\le \lfloor\frac{n-1}{3}\rfloor$ and $f(u_i)=-1$ otherwise. Then the function f is an NNSRDF on P_n of weight 0 and thus $\gamma_{sR}^{NN}(P_n)\le 0$. To prove $\gamma_{sR}^{NN}(P_n)\ge 0$, we proceed by induction on n. If n=3, then $P_3=K_{1,2}$ and we have $\gamma_{sR}^{NN}(P_3)=0$. Thus let $n\ge 6$, and let f be a $\gamma_{sR}^{NN}(P_n)$ -function. Let $P_{n-3}=P_n-\{u_1,u_2,u_3\}$. If $f(u_3)=-1$, then the function $g:V(P_{n-3})\to \{-1,1,2\}$ defined by $g(u_i)=f(u_i)$ for

 $4 \le i \le n$ is an NNSRDF of P_{n-3} of weight at $\omega(f) - f[u_2]$. By the induction hypothesis, we have

$$\gamma_{sR}^{NN}(P_n) = \omega(f) = \omega(g) + f[u_2] \ge \gamma_{sR}^{NN}(P_{n-3}) + f[u_2] \ge 0.$$

If $f(u_3) \neq -1$, then $f[u_2] \geq 2$. If $f(u_4) = 2$, then the function $g: V(P_{n-3}) \to \{-1,1,2\}$ defined by $g(u_i) = f(u_i)$ for $4 \leq i \leq n$ is an NNSRDF of P_{n-3} of weight at $\omega(f) - f[u_2]$ and the result follows by the induction hypothesis. If $f(u_4) \neq 2$, then the function $g: V(P_{n-3}) \to \{-1,1,2\}$ defined by $g(u_4) = f(u_4) + 1$ when $f(u_4) = 1$ and $g(u_4) = f(u_4) + 2$ when $f(u_4) = -1$ and $g(u_i) = f(u_i)$ for $1 \leq i \leq n$ is an NNSRDF of $1 \leq i \leq n$ of weight at most $1 \leq i \leq n$. By the induction hypothesis, we deduce that

$$\gamma_{sR}^{NN}(P_n) = \omega(f) \ge \omega(g) + f[u_2] - 2 \ge \gamma_{sR}^{NN}(P_{n-3}) + f[u_2] - 2 \ge 0.$$

Therefore we have, $\gamma_{sR}^{NN}(P_n) = 0$ when $n \equiv 0 \pmod{3}$.

Now let $n \equiv 1 \pmod{3}$. Define the function $f: V(P_n) \to \{-1, 1, 2\}$ by $f(u_{3i+2}) = 2$ for $0 \le i \le \lfloor \frac{n-2}{3} \rfloor$, $f(u_n) = 1$ and $f(u_i) = -1$ otherwise. Then f is an NNSRDF on P_n of weight 1 and thus $\gamma_{sR}^{NN}(P_n) \le 1$. Using an argument similar to that described in the case above, we can see that $\gamma_{sR}^{NN}(P_n) \ge 1$ and thus $\gamma_{sR}^{NN}(P_n) = 1$ when $n \equiv 1 \pmod{3}$.

Finally let $n \equiv 2 \pmod{3}$. Define the function $f: V(P_n) \to \{-1, 1, 2\}$ by $f(u_{3i+2}) = 2$ for $0 \le i \le \lfloor \frac{n}{3} \rfloor$ and $f(u_i) = -1$ otherwise. Then f is an NNSRDF on P_n of weight 1 and thus $\gamma_{sR}^{NN}(P_n) \le 1$. Using an argument similar to that described above, we can see that $\gamma_{sR}^{NN}(P_n) \ge 1$ and thus $\gamma_{sR}^{NN}(P_n) = 1$ when $n \equiv 2 \pmod{3}$ and this completes the proof. \square

Proposition 5. For $n \geq 3$,

$$\gamma_{sR}^{NN}(C_n) =
\begin{cases}
0 & n \equiv 0 \pmod{3} \\
2 & n \equiv 1 \pmod{3} \\
1 & n \equiv 2 \pmod{3}.
\end{cases}$$

Proof. Let $C_n := (u_1 u_2 \dots u_n)$. By Proposition 3, the result is valid for n = 3. Let now $n \geq 4$. First let $n \equiv 0 \pmod{3}$. Define the function $f: V(C_n) \to \{-1, 1, 2\}$ by $f(u_{3i+2}) = 2$ for $0 \leq i \leq \lfloor \frac{n-1}{3} \rfloor$ and $f(u_i) = -1$ otherwise. Then the function f is an NNSRDF on C_n of weight 0 and thus $\gamma_{sR}^{NN}(C_n) \leq 0$. On other hand if g is a $\gamma_{sR}^{NN}(C_n)$ -function, then

$$\gamma_{sR}^{NN}(C_n) = \omega(g) = \sum_{0 \le i \le \lfloor \frac{n-1}{3} \rfloor} g[u_{3i+2}] \ge 0,$$

Thus $\gamma_{sR}^{NN}(C_n) = 0$ when $n \equiv 0 \pmod{3}$.

Next let $n \equiv 1 \pmod{3}$. Define the function $f: V(C_n) \to \{-1, 1, 2\}$ by $f(u_{3i+2}) = 2$ for $0 \le i \le \lfloor \frac{n-2}{3} \rfloor$, $f(u_n) = 2$ and $f(u_i) = -1$ otherwise. Then f is an NNSRDF on C_n of weight 2 and thus $\gamma_{sR}^{NN}(C_n) \le 2$. Now let g be a $\gamma_{sR}^{NN}(C_n)$ -function. If $g(u_i) \ne 2$ for every i, then

$$\gamma_{sR}^{NN}(C_n) = \omega(g) = \sum_{1 \le i \le n} g(u_i) \ge 4,$$

a contradiction. Thus assume, without loss of generality, that $g(u_n) = 2$. Then we observe that

$$\gamma_{sR}^{NN}(C_n) = \omega(g) = \sum_{0 \le i \le \lfloor \frac{n-2}{3} \rfloor} g[u_{3i+2}] + g(u_n) \ge 2,$$

and so $\gamma_{sR}^{NN}(C_n) = 2$ when $n \equiv 1 \pmod{3}$.

Finally let $n \equiv 2 \pmod{3}$. Define the function $f: V(C_n) \to \{-1, 1, 2\}$ by $f(u_{3i+2}) = 2$ for $0 \le i \le \lfloor \frac{n}{3} \rfloor$ and $f(u_i) = -1$ otherwise. Then f is an NNSRDF on C_n of weight 1 and thus $\gamma_{sR}^{NN}(C_n) \le 1$. Now let g be a $\gamma_{sR}^{NN}(C_n)$ -function. If $g(u_i) \ne 2$ for every i, then

$$\gamma_{sR}^{NN}(C_n) = \omega(g) = \sum_{1 \le i \le n} g(u_i) \ge 5,$$

a contradiction. Thus assume, without loss of generality, that $g(u_n) = 2$. This implies that

$$\gamma_{sR}^{NN}(C_n) = \omega(g) = \sum_{0 \le i \le \lfloor \frac{n-3}{3} \rfloor} g[u_{3i+2}] + g(u_{n-1}) + g(u_n) \ge 1.$$

Thus $\gamma_{sR}^{NN}(C_n) = 1$ when $n \equiv 2 \pmod{3}$ and this completes the proof. \square

In Proposition 2, we determined exact values of the nonnegative signed Roman domination number of $K_{1,n}$. In the following, we determine exact values of the nonnegative signed Roman domination number of $K_{m,n}$ for $n,m \geq 2$.

Proposition 6. For $n \ge m \ge 2$,

$$\gamma_{sR}^{NN}(K_{m,n}) = \begin{cases} 3 & m = 3 \\ 2 & \text{otherwise.} \end{cases}$$

Proof. Let $K_{m,n}$ be a complete bipartite graph with partite sets $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$. First assume that m = 2. If n is even, then define the function $f: V(K_{2,n}) \to \{-1, 1, 2\}$ by $f(x_1) = f(y_1) = 2$, $f(x_2) = -1$ and $f(y_i) = (-1)^{i+1}$ for $2 \le i \le n$. Then the

function f is an NNSRDF on $K_{2,n}$ of weight 2 and thus $\gamma_{sR}^{NN}(K_{2,n}) \leq 2$. If n is odd, then define the function $f: V(K_{2,n}) \to \{-1,1,2\}$ by $f(x_1) = 2$, $f(x_2) = 1$ and $f(y_i) = (-1)^i$ for $1 \leq i \leq n$. Then f is an NNSRDF on $K_{2,n}$ of weight 2 and thus $\gamma_{sR}^{NN}(K_{2,n}) \leq 2$. Now let g be a $\gamma_{sR}^{NN}(K_{2,n})$ -function. If $g(x_1), g(x_2) \neq 2$, then for each $i, g(y_i) \neq -1$. It follows that

$$\gamma_{sR}^{NN}(K_{2,n}) = \omega(g) = \sum_{u \in X \cup Y} g(u) \ge 2.$$

Let now $g(x_1) = 2$. Then

$$\gamma_{sR}^{NN}(K_{2,n}) = \omega(g) = g(x_1) + g[x_2] \ge 2.$$

Now assume that m=3. If n is even, then define the function $f:V(K_{3,n})\to \{-1,1,2\}$ by $f(x_1)=f(y_1)=2$, $f(x_2)=-1$, $f(x_3)=1$ and $f(y_i)=(-1)^{i+1}$ for $2\leq i\leq n$. Then f is an NNSRDF on $K_{3,n}$ of weight 3 and thus $\gamma_{sR}^{NN}(K_{3,n})\leq 3$. If n is odd, then define the function $f:V(K_{3,n})\to \{-1,1,2\}$ by $f(x_1)=2$, $f(x_2)=f(x_3)=1$ and $f(y_i)=(-1)^i$ for $1\leq i\leq n$. Then f is an NNSRDF on $K_{3,n}$ of weight 3 and thus $\gamma_{sR}^{NN}(K_{3,n})\leq 3$. Now let g be a $\gamma_{sR}^{NN}(K_{3,n})$ -function. If $g(x_1),g(x_2),g(x_3)\neq 2$, then for each $i,g(y_i)\neq -1$. Thus

$$\gamma_{sR}^{NN}(K_{3,n}) = \omega(g) = \sum_{u \in X \cup Y} g(u) \ge 3.$$

Now let, without loss of generaltiy, $g(x_1) = 2$. If $g(x_2) \neq -1$ ($g(x_3) \neq -1$ is similar), then

$$\gamma_{sR}^{NN}(K_{3,n}) = \omega(g) = g[x_3] + g(x_1) + g(x_2) \ge 0 + 2 + 1 = 3.$$

Thus let $g(x_2) = g(x_3) = -1$. Since $g[y_i] \ge 0$ for each i, we deduce that $g(y_i) \ne -1$ for each i. Hence

$$\gamma_{sR}^{NN}(K_{3,n}) = \omega(g) = \sum_{1 \le i \le 3} g(x_i) + \sum_{1 \le i \le n} g(y_i) \ge 0 + 3 = 3.$$

Let $m \geq 4$. We first show that $\gamma_{sR}^{NN}(K_{m,n}) \leq 2$. Assume that m is even. If n is even, then define the function $f: V(K_{m,n}) \to \{-1,1,2\}$ by $f(x_1) = f(y_1) = 2$, $f(x_i) = (-1)^{i+1}$ for $1 \leq i \leq m$ and $1 \leq i \leq m$ and $1 \leq i \leq m$ and thus for $1 \leq i \leq m$. Then $1 \leq i \leq m$ is an NNSRDF on $1 \leq i \leq m$ of weight $1 \leq i \leq m$ and thus $1 \leq i \leq m$ is odd, then define the function $1 \leq i \leq m$ and thus $1 \leq i \leq m$ and $1 \leq i \leq m$

 $f(x_1) = f(x_2) = f(y_1) = 2$, $f(x_3) = f(x_4) = f(y_2) = -1$, $f(x_i) = (-1)^i$ for $5 \le i \le m$ and $f(y_j) = (-1)^j$ for $3 \le j \le n$. Then f is an NNSRDF on $K_{m,n}$ of weight 2 and thus $\gamma_{sR}^{NN}(K_{m,n}) \le 2$. If n is odd, then define the function $f: V(K_{m,n}) \to \{-1,1,2\}$ by $f(x_1) = f(x_2) = f(y_1) = f(y_2) = 2$, $f(x_3) = f(x_4) = f(y_3) = f(y_4) = -1$, $f(x_i) = (-1)^i$ for $5 \le i \le m$ and $f(y_j) = (-1)^j$ for $5 \le j \le n$. Then f is an NNSRDF on $K_{m,n}$ of weight 2 and thus $\gamma_{sR}^{NN}(K_{m,n}) \le 2$. Therefore $\gamma_{sR}^{NN}(K_{m,n}) \le 2$ when $m \ge 4$.

To prove $\gamma_{sR}^{NN}(K_{m,n}) \geq 2$, assume that g is a $\gamma_{sR}^{NN}(K_{m,n})$ -function. If $g(u) \neq 2$ for every $u \in X$ ($u \in Y$ is similar), then $g(y_i) \geq 1$ for $1 \leq i \leq n$.

This yields to

$$\gamma_{sR}^{NN}(K_{m,n}) = \omega(g) = \sum_{2 \le i \le n} g(y_i) + g[y_1] \ge n - 1 \ge 3,$$

a contradiction. Thus we assume, without loss of generality, that $g(x_1) = g(y_1) = 2$. If $g(x_i) \neq -1$, $2 \leq i \leq m$ $(g(y_j) \neq -1$, $2 \leq j \leq n$ is similar), then

$$\gamma_{sR}^{NN}(K_{m,n}) = \omega(g) = g[x_1] + \sum_{2 \le i \le m} g(x_i) \ge 3,$$

a contradiction. Thus we may assume that $g(x_2) = g(y_2) = -1$. Since $g[x_2] \ge 0$, we observe that $\sum_{1 \le i \le n} g(y_i) \ge 1$, and since $g[y_2] \ge 0$, we have $\sum_{1 \le i \le m} g(x_i) \ge 1$. Hence

$$\gamma_{sR}^{NN}(K_{m,n}) = \omega(g) = \sum_{1 \le i \le m} g(x_i) + \sum_{1 \le i \le n} g(y_i) \ge 1 + 1 = 2,$$

and this completes the proof.

3 Bounds on $\gamma_{sR}^{NN}(G)$

In this section we start with some simple upper bounds on the nonnegative signed Roman domination number of a graph. Furthermore, we show that $\gamma_{sR}^{NN}(G) \geq \frac{3}{4}(\sqrt{8n+1}-1)-n$ and $\gamma_{sR}^{NN}(G) \geq (8n-12m)/7$. In addition, if G is a bipartite graph of order n, then we prove that $\gamma_{sR}^{NN}(G) \geq \frac{3}{2}(\sqrt{4n+9}-3)-n$, and we characterize the extremal graphs.

Proposition 7. If G is a graph of order n, then

$$\gamma_{sR}^{NN}(G) \leq n,$$

with equality if and only if $G = \overline{K_n}$.

Proof. Define the function $f: V(G) \to \{-1,1,2\}$ by f(v) = 1 for each vertex $v \in V(G)$. Then the function f is an NNSRDF on G of weight n

and thus $\gamma_{sR}^{NN}(G) \leq n$. If $G = \overline{K_n}$, then obviously $\gamma_{sR}^{NN}(G) = n$. Now let $\gamma_{sR}^{NN}(G) = n$. If $G \neq \overline{K_n}$, then $\delta(G) \geq 1$. Let u be a vertex of minimum degree in G and let v be a neighbor of u. Then, $f = (\{u\}, V - \{u, v\}, \{v\})$ is an NNSRDF in G, and so $\gamma_{sR}^{NN}(G) \leq n-1$. Hence $G = \overline{K_n}$.

Theorem 8. Let G be a connected graph of order $n \geq 2$. Then $\gamma_{sR}^{NN}(G) = n-1$ if and only if n=2.

Proof. Clearly, if n=2, then $\gamma_{sR}^{NN}(G)=1=n-1$. Conversely, assume that $\gamma_{sR}^{NN}(G)=n-1$.

If diam(G) = 1, then G is the complete graph, and Proposition 3 implies the desired result.

Let now diam $(G) \geq 3$, and let $u_1u_2 \dots u_p$ be a diametral path. Define the function $f: V(G) \to \{-1,1,2\}$ by $f(u_1) = f(u_p) = -1$, $f(u_2) = f(u_{p-1}) = 2$ and f(x) = 1 otherwise. Since $p \geq 4$, it is easy to verify that f is an NNSRDF on G of weight n-2, a contradiction.

Finally, let diam(G) = 2, and let uvw be a diametral path. Let v_1, v_2, \ldots, v_t be the vertices of degree two with the property that $N(v_i) = \{u, w\}$ with $v_i \neq v$ for $1 \leq i \leq t$.

If there is no such vertex of degree two, then define the function $f: V(G) \to \{-1, 1, 2\}$ by f(u) = f(w) = -1, f(v) = 2 and f(x) = 1 otherwise.

If $t \geq 1$, then define the function $f: V(G) \rightarrow \{-1,1,2\}$ by f(u) = f(u) = 2, $f(v) = f(v_1) = -1$ and f(x) = 1 otherwise.

In both cases it is easy to check that f is an NNSRDF on G of weight at most n-2, a contradiction.

Corollary 9. Let G be a graph of order $n \ge 2$. Then $\gamma_{sR}^{NN}(G) = n-1$ if and only if G consists of a K_2 and n-2 isolated vertices.

Corollary 10. Let G be a graph of order $n \geq 2$ such that $G \neq \overline{K_n}$ and $G \neq K_2 \cup \overline{K_{n-2}}$. Then $\gamma_{sR}^{NN}(G) \leq n-2$.

Theorem 11. If G is a graph of order n with minimum degree $\delta(G) \geq 1$, then

$$\gamma_{sR}^{NN}(G) \leq n+1-2\left|\frac{\delta(G)+1}{2}\right|.$$

Proof. Define $t = \left\lfloor \frac{\delta(G)+1}{2} \right\rfloor$. Let $v \in V(G)$ be a vertex of maximum degree, and let $A = \{u_1, u_2, \dots, u_t\}$ be a set of t neighbors of v. Define the function $f: V(G) \to \{-1, 1, 2\}$ by f(v) = 2, $f(u_i) = -1$ for $1 \le i \le t$ and f(w) = 1 for $w \in V(G) - (A \cup \{v\})$. If $x \in V(G) - (A \cup \{v\})$, then

$$f[x] \ge -t+1+(\delta(G)-t)=\delta(G)+1-2t=\delta(G)+1-2\left\lfloor \frac{\delta(G)+1}{2} \right\rfloor \ge 0.$$

If $x \in A$, then

$$f[x] \ge -t + (\delta(G) - (t-1)) = \delta(G) + 1 - 2t = \delta(G) + 1 - 2\left\lfloor \frac{\delta(G) + 1}{2} \right\rfloor \ge 0.$$

Now if x = v, then

$$f[x] = -t + 2 + (\Delta(G) - t) = \Delta(G) + 2 - 2t = \Delta(G) + 2 - 2\left\lfloor \frac{\delta(G) + 1}{2} \right\rfloor \geq 0.$$

Therefore
$$f$$
 is an NNSRDF on G of weight $2-t+(n-t-1)=n+1-2t$ and thus $\gamma_{sR}^{NN}(G) \leq n+1-2t=n+1-2\left\lfloor \frac{\delta(G)+1}{2} \right\rfloor$.

In [6], we have proved the following proposition for the signed Roman k-domination function when $k \geq 1$.

Proposition 12. [6] Let $k \ge 1$ be an integer. Assume that $f = (V_{-1}, V_1, V_2)$ is an SRkDF on a graph G of order n. If $\delta \ge k - 1$, then

1.
$$(\Delta + \delta + 2)\omega(f) \ge (\delta + 2k - \Delta)n + (\delta - \Delta)|V_2|$$
.

2.
$$\omega(f) \ge \frac{(\delta+2k-2\Delta-1)n}{2\Delta+\delta+3} + |V_2|$$
.

It is a simple matter to verify that Proposition 12 remains valid for k = 0. Hence we have the following useful result.

Proposition 13. If $f = (V_{-1}, V_1, V_2)$ is an NNSRDF on a graph G of order n, then

1.
$$(\Delta + \delta + 2)\omega(f) \ge (\delta - \Delta)n + (\delta - \Delta)|V_2|$$
.

2.
$$\omega(f) \ge \frac{(\delta - 2\Delta - 1)n}{2\Delta + \delta + 3} + |V_2|$$
.

As an application of the 1. inequality in Proposition 13, we obtain a lower bound on the nonnegative signed Roman domination number for regular graphs.

Corollary 14. If G is an regular graph, then $\gamma_{sR}^{NN}(G) \geq 0$.

Propositions 3 and 5 demonstrate that Corollary 14 is sharp.

Corollary 15. If G is a graph with $\delta < \Delta$, then

$$\gamma_{sR}^{NN}(G) \ge \frac{2n(\delta - \Delta)}{2\Delta + \delta + 3}$$

Proof. Multiplying both sides of the inequality 2. in Proposition 13 by $\Delta - \delta$ and adding the resulting inequality to the inequality 1. in Proposition 13, we obtain

$$\gamma_{sR}^{NN}(G) \geq \frac{(-2\Delta^2 + 2\Delta\delta - 2\Delta + 2\delta)n}{(\Delta+1)(2\Delta+\delta+3)} = \frac{2n(\delta-\Delta)}{2\Delta+\delta+3}.$$

Example 16. Let x_1, x_2, \ldots, x_{2p} be the leaves of the star $K_{1,2p}$ with $p \geq 2$. If we add the edges $x_1x_2, x_3x_4, \ldots, x_{2p-1}x_{2p}$ to the star $K_{1,2p}$, then denote the resulting graph by H. Now let H_1, H_2, \ldots, H_p be p copies of H with the central vertices v_1, v_2, \ldots, v_p . Define the graph G as the disjoint union of H_1, H_2, \ldots, H_p such that all central vertices are pairwise adjacent. Then $\delta(G) = 2$, $\Delta(G) = 3p-1$ and n(G) = p(2p+1). Define the function $f: V(G) \rightarrow \{-1, 1, 2\}$ by $f(v_i) = 2$ for $1 \leq i \leq p$ and f(x) = -1 otherwise. It is easy to verify that $\sum_{x \in N[u]} f(x) = 0$ for every vertex $u \in V(G)$. Therefore f is an NNSRDF on G of weight

$$\omega(f) = -2p(p-1) = \frac{2n(G)(\delta(G) - \Delta(G))}{2\Delta(G) + \delta(G) + 3}.$$

Example 16 shows that Corollary 15 is sharp.

Theorem 17. Let G be a graph of order $n \geq 2$ with maximum degree $\Delta(G) \leq n-2$. If $\delta(G)$ is the minimum degree, then

$$\gamma_{sR}^{NN}(G) \ge \delta(G) + 4 - n.$$

Proof. Let f be a $\gamma_{sR}^{NN}(G)$ -function. If f(x) = 1 for each vertex $x \in V(G)$, then $\gamma_{sR}^{NN}(G) = n \ge \delta(G) + 4 - n$. Now assume that there exists a vertex w with f(w) = -1. Then w has a neighbor v with f(v) = 2. Since $d(v) \le \Delta(G) \le n - 2$, there exists a vertex u not adjacent to v. Therefore we obtain the desired bound as follows.

$$\begin{array}{lcl} \gamma_{sR}^{NN}(G) & = & \displaystyle \sum_{x \in V(G)} f(x) = f(v) + \sum_{x \in N[u]} f(x) + \sum_{x \in V(G) - (N[u] \cup \{v\})} f(x) \\ & \geq & 2 + 0 - (n - d(u) - 2) = 4 + d(u) - n \geq \delta(G) + 4 - n. \end{array}$$

Corollary 18. Let G be an r-regular graph of order n. If r = n - 2, then $\gamma_{sR}^{NN}(G) \geq 2$, and if r = n - 3, then $\gamma_{sR}^{NN}(G) \geq 1$.

Corollary 18 is an improvement of Corollary 14 for the special case that G is (n-2)-regular or (n-3)-regular. The cycles C_4 and C_5 show that equality in Corollary 18 is possible. Combining Corollary 18 with Theorem 11, we arrive at the next result.

Corollary 19. Let G be an r-regular graph of order n. If r = n - 2, then $2 \le \gamma_{sR}^{NN}(G) \le 3$. If r = n - 3 and n is even, then $1 \le \gamma_{sR}^{NN}(G) \le 3$, and if r = n - 3 and n is odd, then $1 \le \gamma_{sR}^{NN}(G) \le 4$.

We call a set $S \subseteq V(G)$ a 2-packing of the graph G if $N[u] \cap N[v] = \emptyset$ for any two distinct vertices of $u, v \in S$. The maximum cardinality of a 2-packing is the 2-packing number of G, denoted by $\rho(G)$.

Theorem 20. If G is a graph of order n such that $\delta(G) \geq 1$, then

$$\gamma_{sR}^{NN}(G) \ge (\delta(G) + 1) \cdot \rho(G) - n.$$

Proof. Let $\{v_1, v_2, \ldots, v_{\rho(G)}\}$ be a 2-packing of G, and let f be a $\gamma_{sR}^{NN}(G)$ -function. If we define the set $A = \bigcup_{i=1}^{\rho(G)} N[v_i]$ then, since $\{v_1, v_2, \ldots, v_{\rho(G)}\}$ is a 2-packing of G, we have

$$|A| = \sum_{i=1}^{\rho(G)} (d(v_i) + 1) \ge (\delta(G) + 1) \cdot \rho(G).$$

It follows that

$$\gamma_{sR}^{NN}(G) = \sum_{u \in V(G)} f(u) = \sum_{i=1}^{\rho(G)} f[v_i] + \sum_{u \in V(G) - A} f(u)$$

$$\geq \sum_{u \in V(G) - A} f(u) \geq -n + |A|$$

$$\geq (\delta(G) + 1) \cdot \rho(G) - n.$$

Corollary 21. If G is a graph of order n such that $\delta(G) \geq 1$, then

$$\gamma_{sR}^{NN}(G) \ge (\delta(G)+1)(1+\left\lfloor rac{\operatorname{diam}(G)}{3}
ight
floor) - n.$$

Proof. Let $d = \operatorname{diam}(G) = 3t + r$ with integers $t \ge 0$ and $0 \le r \le 2$, and let $\{v_1, v_2, \ldots, v_d\}$ be a diametral path. Then $A = \{v_0, v_3, \ldots, v_{3t}\}$ is a 2-packing of G such that $|A| = 1 + \left\lfloor \frac{\operatorname{diam}(G)}{3} \right\rfloor$. Since $\rho(G) \ge |A|$, Theorem 20 implies that

$$\gamma_{sR}^{NN}(G) \geq (\delta(G)+1) \cdot \rho(G) - n \geq (\delta(G)+1)(1+\left\lfloor \frac{\operatorname{diam}(G)}{3} \right\rfloor) - n.$$

If $n \geq 5$, then Proposition 3 shows that Theorem 20 and Corollary 21 are sharp.

Now we determine a lower bound on the nonnegative signed Roman domination number of a graph. For this purpose, we define a family of graphs as follows. For $k \geq 1$, let $\mathcal{F}_k = \{F_k \mid k \geq 1\}$ be a family of graph as follows. Let X vertex set of the complete graph K_k and let F_k be the graph obtained from K_k by adding 2k new vertices to each vertex of the complete graph such that for each new vertex x, $1 \leq d(x) \leq 2$ and for every $u \in X$, d(u) = 3k - 1. We note that F_k has order $n = k(2k + 1) = 2k^2 + k$. Let $\mathcal{F} = \bigcup_{k \geq 1} \mathcal{F}_k$.

Theorem 22. If G is a graph of order n, then

$$\gamma_{sR}^{NN}(G) \geq \frac{3}{4}(\sqrt{8n+1}-1)-n,$$

with equality if and only if $G \in \mathcal{F}$.

Proof. Let $f=(V_{-1},V_1,V_2)$ be a $\gamma_{sR}^{NN}(G)$ -function. If $V_{-1}=\emptyset$, then $\gamma_{sR}^{NN}(G)=n\geq \frac{3}{4}(\sqrt{8n+1}-1)-n$. Hence, we may assume that $V_{-1}\neq\emptyset$. Since each vertex in V_{-1} has at least one neighbor in V_2 , it follows from the Pigeonhole Principle that at least one vertex v of V_2 has at least $\frac{|V_{-1}|}{|V_2|}=\frac{n_{-1}}{n_2}$ neighbors in V_{-1} . Therefore, $0\leq f[v]\leq 2n_2+n_1-\frac{n_{-1}}{n_2}$, and so $2n_2^2+n_1n_2-n_{-1}\geq 0$. Since $n=n_2+n_1+n_{-1}$, we have equivalently that $2n_2^2+n_1n_2+n_2+n_1-n\geq 0$. Since $n_2\geq 1$ and n_1 is a non-negative integer, $\frac{5}{3}n_1n_2-\frac{1}{3}n_1\geq 0$. Therefore

$$2(n_2 + \frac{2}{3}n_1 + \frac{1}{4})^2 - \frac{1}{8} - n = 2n_2^2 + \frac{8}{9}n_1^2 + \frac{8}{3}n_1n_2 + n_2 + \frac{2}{3}n_1 - n$$

$$\geq (2n_2^2 + n_1n_2 + n_2 + n_1 - n) + (\frac{5}{3}n_1n_2 - \frac{1}{3}n_1) \geq 0.$$

or equivalently, $3n_2 + 2n_1 \ge \frac{3}{4}(\sqrt{8n+1} - 1)$. Thus

$$\gamma_{sR}^{NN}(G) = 3n_2 + 2n_1 - n \ge \frac{3}{4}(\sqrt{8n+1} - 1) - n.$$

which establishes the desired lower bound.

Suppose that $\gamma_{sR}^{NN}(G) = \frac{3}{4}(\sqrt{8n+1}-1)-n$. Then all the above inequalities must be equalities. In particular, $n_1 = 0$ and $2n_2^2 = n_{-1}$. Furthermore, each vertex of V_{-1} is adjacent to exactly one vertex of V_2 and therefore has degree one or two in G, while each vertex of V_2 is adjacent to all other $n_2 - 1$ vertices of V_2 and to $2n_2$ vertices of V_{-1} . Therefore, $G \in \mathcal{F}$.

On the other hand, suppose that $G \in \mathcal{F}$. Then $G \in \mathcal{F}_k$ and $G = F_k$ such that $k \geq 1$. Assigning to the every vertex of K_k the value 2, and to

all other vertices the value -1, we produce an NNSRDF f of weight

$$f(V) = \sum_{v \in V} f(v) = 2k - k(2k) = -2k^2 + 2k = \frac{3}{4}(\sqrt{8n+1} - 1) - n.$$

Therefore,

$$\gamma_{sR}^{NN}(G) \le f(V) = \frac{3}{4}(\sqrt{8n+1}-1)-n.$$

Consequently,

$$\gamma_{sR}^{NN}(G) = \frac{3}{4}(\sqrt{8n+1}-1)-n.$$

Theorem 23. If G is a connected graph of order $n \geq 2$ and size m, then

$$\gamma_{sR}^{NN}(G) \ge \frac{8n - 12m}{7}.$$

Proof. Let $f = (V_{-1}, V_1, V_2)$ be a $\gamma_{sR}^{NN}(G)$ -function, $|V_i| = n_i$, $m(G[V_i]) = m_i$ for $i \in \{-1, 1, 2\}$ and $|V_1 \cup V_2| = n_{12}$ and $m(G[V_1 \cup V_2]) = m_{12}$. If $V_{-1} = \emptyset$, then $\gamma_{sR}^{NN}(G) = n \ge \frac{8n-12m}{7}$. Now we assume that $V_{-1} \neq \emptyset$. Since each vertex of V_{-1} is adjacent to at least one vertex of V_2 , we have

$$\sum_{v \in V_2} |[v, V_{-1}]| = |[V_{-1}, V_2]| \ge n_{-1}.$$

Furthermore, for each $v \in V_2$, we observe that $0 \le f[v] = f(v) + 2|[v, V_2]| + |[v, V_1]| - |[v, V_{-1}]|$ and thus $|[v, V_{-1}]| \le 2|[v, V_2]| + |[v, V_1]| + 2$. We deduce that

$$\begin{array}{ll} n_{-1} & \leq & \displaystyle \sum_{v \in V_2} |[v, V_{-1}]| \leq \displaystyle \sum_{v \in V_2} (2|[v, V_2]| + |[v, V_1]| + 2) \\ \\ & = & 4m_2 + |[V_1, V_2]| + 2n_2 = 4m_{12} + 2n_2 - 4m_1 - 3|[V_1, V_2]|, \end{array}$$

and thus $m_{12} \ge (n_{-1} - 2n_2 + 4m_1 + 3|[V_1, V_2]|)/4$. This inequality and $n_{-1} \le |[V_{-1}, V_2]|$ lead to

$$m \geq m_{12} + |[V_{-1}, V_2]| + |[V_1, V_{-1}]|$$

$$\geq \frac{1}{4}(n_{-1} - 2n_2 + 4m_1 + 3|[V_1, V_2]|) + n_{-1} + |[V_1, V_{-1}]|$$

$$= \frac{1}{4}(5n_{-1} - 2n_{12} + 2n_1 + 4m_1 + 3|[V_1, V_2]| + 4|[V_1, V_{-1}]|)$$

$$= \frac{1}{4}(5n - 7n_{12} + 2n_1 + 4m_1 + 3|[V_1, V_2]| + 4|[V_1, V_{-1}]|).$$

It follows that

$$n_{12} \ge \frac{1}{7}(5n - 4m + 2n_1 + 4m_1 + 3|[V_1, V_2]| + 4|[V_1, V_{-1}]|),$$

and so

$$\gamma_{sR}^{NN}(G) = 2n_2 + n_1 - n_{-1} = 3n_2 + 2n_1 - n = 3n_{12} - n - n_1$$

$$\geq \frac{3}{7}(5n - 4m + 2n_1 + 4m_1 + 3|[V_1, V_2]| + 4|[V_1, V_{-1}]|) - n - n_1$$

$$= \frac{1}{7}(8n - 12m) + \frac{1}{7}(12m_1 + 9|[V_1, V_2]| + 12|[V_1, V_{-1}]| - n_1).$$

Let

$$\mu(n_1) = 12m_1 + 9|[V_1, V_2]| + 12|[V_1, V_{-1}]| - n_1.$$

It suffices to show that $\mu(n_1) \geq 0$, because then $\gamma_{sR}^{NN}(G) \geq \frac{8n-12m}{7}$, which establish the desired lower bound. If $n_1 = 0$, then $\mu(n_1) = 0$. Now we assume that that $n_1 \geq 1$. Let H_1, H_2, \ldots, H_t be the components of the induced subgraph $G[V_1]$ of order h_1, h_2, \ldots, h_t . Since G is connected, each component H_i contains a vertex adjacent to a vertex of V_2 or to a vertex of V_{-1} for $1 \leq i \leq t$. This implies

$$m_1 + |[V_1, V_2]| + |[V_1, V_{-1}]| \ge (h_1 - 1) + (h_2 - 1) + \dots + (h_t - 1) + t$$

= $h_1 + h_2 + \dots + h_t = n_1$.

This leads to

$$\mu(n_1) = 12m_1 + 9|[V_1, V_2]| + 12|[V_1, V_{-1}]| - n_1$$

$$> m_1 + |[V_1, V_2]| + |[V_1, V_{-1}]| - n_1 \ge 0,$$

and the proof is complete.

Corollary 24. If T is a tree of order $n \geq 2$, then

$$\gamma_{sR}^{NN}(T) \ge \frac{12 - 4n}{7}.$$

Next example demonstrates that the lower bounds in Theorem 23 and Corollary 24 are sharp.

Example 25. For $k \geq 1$, let F_k be the graph obtained from a connected graph F of order k by adding $2d_F(v) + 2$ pendant edges to each vertex v of F. Then

$$n(F_k) = n(F) + \sum_{v \in V(F)} (2d_F(v) + 2) = 3n(F) + 4m(F)$$

and

$$m(F_k) = m(F) + \sum_{v \in V(F)} (2d_F(v) + 2) = 2n(F) + 5m(F).$$

Assigning to every vertex in V(F) the weight 2 and to every vertex in $V(F_k) - V(F)$ the weight -1 produces an NNSRDF f of weight

$$\omega(f) = 2n(F) - \sum_{v \in V(F)} (2d_F(v) + 2) = -4m(F) = \frac{8n(F_k) - 12m(F_k)}{7}.$$

Using Theorem 23, we obtain $\gamma_{sR}^{NN}(F_k) = \frac{8n(F_k)-12m(F_k)}{7}$.

Next we determine a lower bound on the nonnegative signed Roman domination number of a bipartite graph. For this purpose, we define a family of bipartite graphs as follows. For $k \geq 1$, let $\mathcal{B}_k = \{B_k \mid k \geq 1\}$ be a family of bipartite graph as follows. Let X and Y be the partite sets of the complete bipartite graph $K_{k,k}$ and let B_k be the bipartite graph obtained from $K_{k,k}$ by adding 2k+2 new vertices to each vertex of the complete bipartite graph such that for each new vertex x, $1 \leq d(x) \leq 2$ and for every $u \in X \cup Y$, d(u) = 3k+2. We note that B_k has order $n = 2k(2k+3) = 4k^2 + 6k$. Let $\mathcal{B} = \bigcup_{k>1} \mathcal{B}_k$.

Theorem 26. If G is a bipartite graph of order n, then

$$\gamma_{sR}^{NN}(G) \ge \frac{3}{2}(\sqrt{4n+9}-3)-n,$$

with equality if and only if $G \in \mathcal{B}$.

Proof. Let X and Y be the partite sets of the bipartite graph G. Let $f=(V_{-1},V_1,V_2)$ be a $\gamma_{sR}^{NN}(G)$ -function and let $X_{-1},\,X_1,\,$ and X_2 be the set of vertices in X that are assigned the value -1, 1 and 2, respectively under f. Let $Y_{-1},\,Y_1,\,$ and Y_2 be defined analogously. Let $|X_{-1}|=s,\,$ $|X_1|=s_1,\,|X_2|=s_2,\,|Y_{-1}|=t,\,|Y_1|=t_1,\,|Y_2|=t_2.$ Thus, $n_{-1}=s+t$, $n_1=s_1+t_1$ and $n_2=s_2+t_2.$ We First show that

$$s \le t_2(2s_2 + s_1 + 2), \qquad t \le s_2(2t_2 + t_1 + 2).$$
 (1)

For each vertex $y \in Y_2$, we have that $f(y)+2d_{X_2}(y)+d_{X_1}(y)-d_{X_{-1}}(y)=f[y] \geq 0$, and so $d_{X_{-1}}(y) \leq 2d_{X_2}(y)+d_{X_1}(y)+f(y)=2d_{X_2}(y)+d_{X_1}(y)+2\leq 2s_2+s_1+2$. By the definition of an NNSRDF, each vertex in X_{-1} is adjacent to at least one vertex in Y_2 , and so

$$s = |X_{-1}| \le |[X_{-1}, X_2]| = \sum_{y \in Y_2} d_{X_{-1}}(y)$$

$$\le \sum_{y \in Y_2} (2s_2 + s_1 + 2)$$

$$\le t_2(2s_2 + s_1 + 2).$$

Analogously, we have that $t \leq s_2(2t_2 + t_1 + 2)$. Now we show that

$$s_1 + s_2 + t_1 + t_2 \ge \sqrt{n + \frac{9}{4}} + \frac{1}{3}(s_1 + t_1) - \frac{3}{2}.$$
 (2)

We note that for integers s and t, we have $s^2 + t^2 \ge 2st$, with equality if and only if s = t. Hence by simple algebra and by inequality (1), we have that

$$(\frac{2}{3}s_1 + s_2 + \frac{2}{3}t_1 + t_2 + \frac{3}{2})^2$$

$$\geq s_2^2 + t_2^2 + 2s_2t_2 + \frac{4}{3}s_2t_1 + \frac{4}{3}s_1t_2 + 3s_2 + 3t_2 + 2s_1 + 2t_1 + \frac{9}{4}$$

$$\geq 4s_2t_2 + s_2t_1 + s_1t_2 + 3s_2 + 3t_2 + s_1 + t_1 + \frac{9}{4}$$

$$\geq s + t + s_2 + t_2 + s_1 + t_1 + \frac{9}{4}$$

$$= n + \frac{9}{4}.$$

The desired inequality now follows by taking squaring roots on both sides and rearranging terms. We now return to the proof of Theorem 26. By inequality (2), we have

$$\gamma_{sR}^{NN}(G) = 2n_2 + n_1 - n_{-1}$$

$$= 3n_2 + 2n_1 - n$$

$$= 3(n_2 + n_1) - n_1 - n$$

$$= 3(s_2 + t_2 + s_1 + t_1) - (s_1 + t_1) - n$$

$$\geq 3(\sqrt{n + \frac{9}{4}} + \frac{1}{3}(s_1 + t_1) - \frac{3}{2}) - (s_1 + t_1) - n$$

$$= 3\sqrt{n + \frac{9}{4}} - \frac{9}{2} - n$$

$$= \frac{3}{2}(\sqrt{4n + 9} - 3) - n.$$

which establishes the desired lower bound.

Suppose that $\gamma_{sR}^{NN}(G) = \frac{3}{2}(\sqrt{4n+9}-3)-n$. Then all the above inequalities, including the inequalities in (1) and (2), must be equalities. In particular, $s_1 = t_1 = 0$ and $s^2 + t^2 = 2st$, implying that $s_2 = t_2$. Equality (1), implies that $s = t_2(2s_2 + 2)$, $t = s_2(2t_2 + 2)$ and that every vertex in X_2 is adjacent to every vertex in Y_2 and vice versa. Further, every vertex x in X_{-1} has $1 \leq d(x) \leq 2$ and is adjacent to exactly one vertex of Y_2 while every vertex in Y_2 is adjacent to exactly $2s_2 + 2$ vertices in X_{-1} .

Analogously, every vertex y in Y_{-1} has $1 \le d(y) \le 2$ and is adjacent to exactly one vertex of X_2 while every vertex in X_2 is adjacent to exactly $2t_2 + 2$ vertices in Y_{-1} . Thus, $G = B_k$, and so $G \in \mathcal{B}$.

On the other hand, suppose $G \in \mathcal{B}$. Then $G \in \mathcal{B}_k$ and $G = \mathcal{B}_k$ such that $k \geq 1$. Assigning to the every vertex of $K_{k,k}$ the value 2, and to all other vertices the value -1, we produce an NNSRDF f of weight

$$f(V) = \sum_{v \in V} f(v) = 2(2k) - 2k(2k+2) = -4k^2 = \frac{3}{2}(\sqrt{4n+9} - 3) - n.$$

Therefore,

$$\gamma_{sR}^{NN}(G) \le f(V) = \frac{3}{2}(\sqrt{4n+9}-3) - n.$$

Consequently,

$$\gamma_{sR}^{NN}(G) = \frac{3}{2}(\sqrt{4n+9}-3) - n.$$

References

- H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), 241-255.
 - DOI 10.1007/s10878-012-9500-0.
- [2] N. Dehgardi and L. Volkmann, Signed total Roman k-domination in directed graphs, Commun. Comb. Optim. 1(2) (2016) 165-178.
 DOI: 10.22049/CCO.2016.13576.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors, *Domination in Graphs*, Advanced Topics, Marcel Dekker, Inc., New York (1998).
- [5] M. A. Henning and L. Volkmann, Signed Roman k-domination in trees, Discrete Appl. Math. 186 (2015), 98-105.
- [6] M. A. Henning and L. Volkmann, Signed Roman k-domination in Graphs, Graphs Combin. 32(1) (2016), 175-190.
 DOI 10.1007/s00373-015-1536-3.
- [7] S. M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015), 456-467.

_

[8] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32(3) (2016), 855–871.

DOI: 10.1007/s10878-015-9906-6.

[9] L. Volkmann, Signed total Roman domination in graphs, Graphs Combin. 32(3) (2016), 1217–1227.

DOI: 10.1007/s00373-015-1641-3.