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Abstract

The 3-path graph P3(G) of a connected graph G of order 3
or more has the set of all 3-paths (paths of order 3) of G as
its vertex set and two vertices of P3(G) are adjacent if they
have a 2-path in common. A Hamiltonian walk in a nontrivial
connected graph G is a closed walk of minimum length that
contains every vertex of G. With the aid of spanning trees and
Hamiltonian walks in graphs, we provide sufficient conditions
for the 3-path graph of a connected graph to he Hamiltonian.
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1 Introduction

The line graph L(G) of a nonempty graph G has the set of edges in G as
its vertex set where two vertices of L(G) are adjacent if the corresponding
edges of G are adjacent. Harary and Nash-Williams [4] characterized those
graphs whose line graph is Hamiltonian. Their characterization primarily
involved the existence of a circuit in a graph called a dominating circuit in
which every edge of the graph is incident with a vertex of the circuit.

Theorem 1.1 [4] Let G be a graph without isolated vertices. Then L(G)
is Hamiltonian if and only if G is the star K, ; for some integert > 3 or G
contains a dominating circuit.

While a connected graph G with no vertices of degree 1 or 2 need not
have a Hamiltonian line graph (see Figure 1), Chartrand and Wall 2] ver-
ified that if G is a connected graph with §(G) > 3, then L(G) must have
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a spanning subgraph containing an Eulerian circuit, which is a dominating
circuit of L(G) and, consequently, gives the following result.

—0

G: L(G) :

Figure 1: A connected 3-regular graph G and its line graph L(G)

Theorem 1.2 [2] If G is a connected graph with 6(G) > 3, then L(L(G))
is Hamiltonian.

There are graphs possessing a variety of Hamiltonian properties where
spanning trees or spanning walks play a major role. There is an alternative
proof of Theorem 1.2 that can be given with the aid of spanning trees and
Hamiltonian walks (see [1]). For the purpose of describing this technique,
we refer to a concept introduced in [1] that provides us with another way
to look at hoth L(G) and L(L(G)) for a graph G. The vertex set of the
line graph L(G) is the set of 2-paths of a graph G (the paths P; of order 2)
where two vertices of L(G) are adjacent if the corresponding paths of G
have a path P; in common. This observation leads us to a generalization
of line graphs. Let k > 2 be an integer and let G be a graph containing k-
paths. The k-path graph Pi(G) of G has the set of k-paths of G as its vertex
set where two distinct vertices of Pi(G) are adjacent if the corresponding
k-paths of G have a (k — 1)-path in common. Thus, the 2-path graph
of a nonempty graph is its line graph. Here, we are especially interested
in the case when k = 3, that is, the 3-path graph P3(G) of a connected
graph G of order at least 3, which therefore has the set of 3-paths in G
as its vertex set where two distinct vertices of P3(G) are adjacent if the
corresponding 3-paths of G have a 2-path (an edge) in common. Since
every 3-path in a graph G is both a vertex of P3(G) and an edge of L(G)
and every 3-path is obtained from a pair of adjacent edges of G, it follows
that P3(G) = L(L(G)). In terms of 3-path graphs, Theorem 1.2 can be
restated as follows.

Theorem 1.3 If G is a connected graph with §(G) > 3, then P3(G) is
Hamiltonian.
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A Hamiltonian walkin a connected graph G is a closed walk of minimum
length that contains every vertex of G. This concept was introduced by
Goodman and Hedetniemi (3] who showed that if G is a connected graph
of order n and size m, then the length of Hamiltonian walk W in G is at
least n and at most 2m. Furthermore, every edge of G occurs at most twice
in W. The length of W is n if and only if G is Hamiltonian (in which case
W is a Hamiltonian cycle) and the length of W is 2m if and only if G is a
tree (in which case each edge of G appears exactly twice in W).

Every embedding of a tree T in the plane gives rise to a Hamiltonian
walk in T. For example, let T be the star K4 of order 5 whose four
edges are labeled a,b,c,d. Figures 2(a) and 2(b) show two different em-
beddings of T in the plane. By tracing the walk as shown in Figure 2(c)
using the embedding of T in Figure 2(a), we construct the Hamiltonian
walk W; = (w,v,T,v,y,v,2,v,w) or, in terms of edges of T, the walk
Wy = (a,b,b,¢,¢,d,d,a). While every edge of T occurs exactly twice on
W;, the 3-path (w,v,z) = (a,b) = ab occurs once in W; but the 3-path
(w,v,y) = ac does not occur at all in W;. On the other hand, the em-
bedding of T' shown in Figure 2(b) gives rise to the Hamiltonian walk
Wy = (w,v,y,v,2,v,2,v,w) = (a,cc¢,b,b,d,d,a), which contains the 3-
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path (w,v,y) but not the 3-path (w,v,z).
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Figure 2: Two embeddings of K} 4 in the plane

2 A More General Result

With the aid of spanning trees and Hamiltonian walks in graphs, we can
not only extend Theorem 1.3 but apply this technique to establish sufficient
conditions for the 3-path graph of a connected graph to possess stronger
Hamiltonian properties. First, we present a few lemmas.

Lemma 2.1 Let {f1, f2,..., fx} be the edge set of a star I of size k > 2
in a connected graph. For{ = (’;), there is a sequence s : Hy, Ho, ..., H¢ of
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3-paths in F consisting of ¢ distinct ordered pairs f;f; where 1 <i# j <k
such that

(i) H; and H;4, have an edge in common fori=1,2,...,£—1 and
(i1) Hy = f1f; and Hy = f;j f1 for some integers i,j > 2 where i # j

Lemma 2.2 Let {fi, fo,... ’fkl be the edge set of a star F' of size k > 3
in a connected graph. For £ = (;) — 1, there is a sequence Hy, Ha, ..., He
of 3-paths in F consisting of ¢ ordered pairs fif; where 1 <i# j < k and
{i,7} # {1,k} such that

(i) H; and H;4 have an edge in common fori=1,2,...,k —1 and
(i) Hy = fi1f; and Hy = f;fx for integers i and j with i # 2 and j # 1.

Lemma 2.3 Let G be a connected graph of order at least 4 such that
every vertez of degree 2 is adjacent to an end-verter and a vertez of degree
at least 3 and let T be a spanning tree of G, where W is a Hamiltonian walk
of T. There ezists a sequence S: Ay, Az, ..., Ap, Aps1 = A; of 3-paths
of G consisting of all 3-paths belonging to W and all 3-paths of G whose
interior verter is an end-verter of T such that A; and A;4, have an edge
in common for i = 1,2,...,p. Furthermore, all 3-paths of S are distinct
except for those 3-paths belonging to W whose interior vertex has degree 2

in T and those 3-paths appear ezactly twice in S.

Proof. Let W = (vy,vs,...,0,vt41 = v;) be a Hamiltonian walk of T'.
First, consider the sequence

So : (v1,v9,v3), (v2,v3,v4), ..., (Vt,V1,72)

consisting of t walks of length 2 lying on W. A walk of length 2 on W is a
3-path on W if its interior vertex is not an end-vertex of T. Furthermore,
a 3-path on W appears exactly once in Sy if its interior vertex has degree
at least 3 and a 3-path on W appears exactly twice in Sy if its interior
vertex has degree 2. For each end-vertex vj of T, the walk (vj_1, vj, vj41)
belongs to Sy and so vj—; = vj4+1. Thus, (vj-2,vj-1,v;), (Vj=1,Vj,Vj+1)s
(vj, Vj+1,Vj42) are three consecutive terms in Sp, where v;_; = v;41. Let
T = Uj—2Vj-1, @ = Vj-1Vj = ¥;¥j4+1 and ¥ = vj41vj42. Then za,aa,ay are
three consecutive terms in Sy and aa appears exactly once in Sp.

We claim that deggv; # 2; for otherwise, the two edges incident with
vj in G are bridges of G and hence they must belong to T. However
then, degpv; = 2, which is a contradiction. Thus, either deggv; = 1 or
degg vj = k > 3. If degg v; = 1, then we delete aa from Sp. If degg v; =
k > 3, then let a=ey, €9, €3, ..., x—1, ex be the k distinct edges incident

with v; in G where then only a = e; helongs to T'. There are (g) = /¢



3-paths of G with interior vertex v; that do not belong to Sp. Each of
these 3-paths has the form e.e, where r,s € {1,2,...,k} and 7 # s. By
Lemma 2.1, there is an ordering Hy, Ha,..., H; of these £ 3-paths such that
H, = eje; and H; = eje;, where 7,5 > 2 and i # j. We replace aa = e;e;
in So by Hy, H,,...,Hg or, equivalently, replace ze;, eje;, e;y in So by
zey, Hi,H,,...,Hy, e1y. Applying this procedure to every end-vertex of
T, we obtain a sequence S with the desired property. o

Lemma 2.4 Let G be a connected graph of order at least 4 such that every
vertez of degree 2 is adjacent to an end-verter and a vertez of degree at least
3 and let T be a spanning tree of G containing vertices of degree 2, where
W is a Hamiltonian walk of T. There exists a sequence S: Ay, A, ..., Ap,
Api1 = Ay of distinct 3-paths of G consisting of

(i) all 3-paths belonging to W,
(it) all 3-paths of G whose interior vertez has degree 1 or 2 in T and

(2i2) all 3-paths of G whose interior vertez is a neighbor of a verter of
degree 2 in G such that A; and A4y have an edge in common for

1 By S N

Proof. Let W = (v1,vs,...,%, V41 = v1) be a Hamiltonian walk of T
By Lemma 2.3, there exists a sequence

81 . B], B2, afut ey Bq, Bq+1 = Bl

of 3-paths of G consisting of all 3-paths belonging to W and all 3-paths of
G whose interior vertex is an end-vertex of 7" such that B; and B;,; have
an edge in common for ¢ = 1,2,...,q. Furthermore, all 3-paths of S; are
distinct except for those 3-paths belonging to W whose interior vertex has
degree 2 in T" and those 3-paths appear exactly twice in S.

Let v be a vertex of degree 2 in T and let a and b denote the two edges
incident with v in T. Since v appears exactly twice on W, the 3-path ab
appears exactly twice in S;. Suppose that v appears first as v; in W and
so the 3-path ab = (vj_1,v;,v;4+1) appears first in S; where a = v;_v;
and b = v;v;41. Let z = v;_ov;_; and y = vj41v;42. Thus, za, ab, by are
three consecutive terms in S;. We consider two cases according to whether
deggv; =2 or deggv; =k > 3.

Case 1. deggv; = 2. Then v; is adjacent to an end-vertex and a
vertex of degree at least 3 in G. We may assume, without loss of generality,

that v;41 is an end vertex of G and vj_; is a vertex of degree at least
3 in G. There are two subcases, according to whether degrv;_; = 2 or

degT Vj-1 2> 3.
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Subcase 1.1. degrvj—1 = 2. Since deggvj—1 > 3, there are edges
f1,f2,..., ft of G that are incident with vj—1 but not in T, where t =
deggvj—1 —2 > 1. Then S; contains

2x,za,ab, ba,ar (1)

as consecutive terms for some edge z of T. [Note that the walk bb of
length 2 in W was deleted from the sequence in the proof of Lemma 2.3.)
Since degp v;_1 = 2 and degg v, = t+2, there are (t','jz) —1 = { 3-paths of
G with interior vertex v;_; that do not belong to S;. Applying Lemma 2.2
to the set {z, fi,..., fi,a}, we obtain an ordering

SliHl,Hg,...,He

of distinct 3-paths such that H; = zf; and H, = af;. Now, we replace
the consecutive terms za,ab in (1) by the sequence s;, resulting in a new
sequence of 3-paths that contains the consecutive terms

zz; Hy =zf1, Ha, . . 7Hy ='a fi, ba, az.
Subcase 1.2. degrvj—1 > 3. Then S; contains
zz,a,ab, ba,ay (2)

as consecutive terms for some edges y and z of T, where = # y. If every edge
incident with v;_; belongs to T, that is, degg vj—1 = degr v;—1, then every
3-path whose interior vertex is v;_; belongs to S;. Thus, we may assume
that there are edges of G incident with v;_; that do not belong to T". Let
f1, f2,..., ft be the edges of G incident with v;_; that do not belong to T°
where t = deg; vj—1 —degrvj—;1 > 1 and let z,a,ey,é€q,...,€x be the edges
of G incident with v;_; that belong to T, where k = degpvj—1—2 > 1. We
may assume, without loss of generality, that T is embedded in the plane so
that the edges z, a, ey, €, .. ., ex of T incident with v;_, appear in this order
in W (not necessarily as consecutive terms). Hence, for every integer ¢ with
1 < i < d, each edge e; appears in the consecutive terms x;e;, e;e;4;1 for
some edge z; of T in 8. Let £ = (*4?) —1. There are ("32) 14kt = £+ kt
3-paths of G with interior vertex v;_; that do not belong to S;. Next, we
add these 3-paths to S; and delete the 3-path ab in (2) as follows:

* Applying Lemma 2.2 to the set {, fi,..., fi,a} givesrise to an order-
ing so: Hy, Ha, ..., He of distinct 3-paths of G such that H; = zf,
and H; = af;. We replace ab in (2) by the sequence so.

%« For1<i<k,lets;: eifi,eifz,...,eife. Weinsert s; between the
two consecutive terms z;e; and e;ei+1 in ;.



This produces a new sequence consisting of all 3-paths in S and all distinct
3-paths of G' whose interior vertex is v;_1.

Case 2. deggv; = k > 3. Let a=ey, ey, €3, ..., €-1, €& = b be the
k distinct edges incident with v; in G where then only a = €; and b = ¢,
belong to T. There are (§) — 1 = ¢ 3-paths of G with interior vertex v;
that do not belong to S;. Each of these 3-paths has the form e,e, where
r,s € {1,2,...,k} and {r,s} # {1,k}. By Lemma 2.2, there is an ordering
Hy, Ha,...,Hg of these £ 3-paths such that H; = eje, and Hy = e,ey,
where r # k and s # 1. We replace ab = ejex in S; by Hy, Ha, ..., Hy, (or,
equivalently, replace ze;, ejex, exy in S; by ze;, Hy, Ha, ..., Hy, ery).

Applying this procedure to every vertex of degree 2 in T, we obtain a
sequence S with the desired property. m

Lemma 2.5 Let G be a connected graph of order at least 4 such that every
vertez of degree 2 is adjacent to an end-vertex and a vertez of degree at least
3 and let T be a spanning tree of G containing vertices of degree 3 and let
W be a Hamiltonian walk of T. There ezists a sequence

S:.Ay, Agy i:s5 Ay Apty = Ay
of distinct 3-paths of G consisting of
(i) all 3-paths belonging to W,
(it) all 3-paths of G whose interior vertez has degree 1,2 or 3 in T and

(i12) all 3-paths of G whose interior vertezr is a neighbor of a verter of
degree 2 in G such that A; and A;+, have an edge in common for
i=1,2....,P.

Proof. Let W = (v,vs,...,v:,v41 = v;) be a Hamiltonian walk of 7.
By Lemma 2.4, there exists a sequence S; : By, By, ..., By, Byy1 = By
of distinct 3-paths of G consisting of (7) all 3-paths belonging to W, (it)
all 3-paths of G whose interior vertex has degree 1 or 2 in T and (iii) all
3-paths of G whose interior vertex is a neighbor of a vertex of degree 2 in G
such that such that B; and B;.; have an edge in common fori =1,2,...,q.

Let v be a vertex of degree 3 in T. If v is a neighbor of a vertex of
degree 2 in G, then we needn’t do anything. Thus, we may assume that
v is not a neighbor of a vertex of degree 2 in G. Let e;, ez and e3 denote
the three edges incident with v in 7. We may assume that the sequence S,
contains

(1) three consecutive terms aej, ejes, €9,

(2) three consecutive terms cez, e2€3, ead and
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(3) three consecutive terms fes, ese,e1g.

If every edge incident with v belongs to T, then we needn’t do anything.
On the other hand, suppose that there are k > 1 edges incident with v
that do not belong to T, say fi, f2,- .-, fk- Applying Lemma 2.1 to the set
{e1, f1,.-., fx}, there is a sequence

SliHl,Hg,...,He

consisting of £ = (k‘gl) distinct ordered pairs zy where z,y € {e1, f1,..., fx }
such that

(1) H; and H;, have an edge in common for i =1,2,...,£—1 and
(i7) Hy = e, f) and Hy = fre
Next, we
* insert s; between ae; and eje; in Sy,
* insert esf1,e2fa,...,e2fr between e;e; and exb and
* insert ez fi1,e3fa,...,e3fr between ezez and esd.

Applying this procedure to every vertex of degree 3 in T', we obtain a
sequence S with the desired property. o

We are now prepared to prove the following theorem.

Theorem 2.6 IfG is a connected of order at least 4 such that each vertex

of degree 2 is adjacent to an end-verter and a vertex of degree at least 3,
then P3(G) is Hamiltonian.

Proof. It suffices to show that there exists an ordering
S: Al, AQ, .oy Ap, Ap+1 = Al

of all 3-paths 4; (1 < i < p) of G such that A; and A;;; have an edge
in common for ¢« = 1,2,...,p. We verify this by showing the following
statement. :

For every spanning tree T of G and a Hamiltonian walk W
of T, there ezists a sequence S: Ay, As, ..., Ap, Apy1 = Ay of
distinct 3-paths of G consisting of (i) all 3-paths belonging to W
(iz) all 3-paths of G whose interior vertez has degree k or less
for every integer k with k = 3,4,...,A(T) in T and (iii) all
3-paths of G whose interior vertez is a neighbor of a vertez of
degree 2 in G such that A; and Ai+y have an edge in common
fori=1,2,...,p.
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We verify this statement by induction on k > 3. Let T be a spanning tree
of G. By Lemma 2.5, the result is true for k = 3. Therefore, if A(T) = 2 or
A(T) = 3, then the result follows. Hence, we may assume that A(T) > 4.
Assume, for an integer k with 3 < k < A(T), that there exists a sequence

Sl . B], BQ, ooy Bq, Bq+1 = B]

of distinct 3-paths of G consisting of (i) all 3-paths belonging to W, (i)
all 3-paths of G whose interior vertex whose interior vertex has degree 1,
2,...,k in T and (ii7) all 3-paths of G whose interior vertex is a neighbor
of a vertex of degree 2 in G such that B; and B;; have an edge in common
for i =1,2,...,q. If T has no vertex of degree k + 1 in T, then the result
follows. Hence, we may assume that T contains one or more vertices of
degree k+1>4inT.

Let v be a vertex of degree k+1 > 4 in T'. If v is a neighbor of a vertex
of degree 2 in G, then we needn’t do anything. Thus, we may assume
that v is not a neighbor of a vertex of degree 2 in G. Let ej,e2,...,€k+1
denote the k + 1 edges incident with v in T. We may assume, by relabeling
e1,€s,...,eky if necessary, that

(i) S; contains the 3-paths e;e;y; for 1 <i < k and exy1e; and

(i1) these 3-paths appear in &) in the order ejeq, ese3, ..., exert+1, €xt+1€1
not necessarily consecutive terms in Sj.

Hence, there are 3-paths having interior vertex v do not belong to S;. Let
X be the set of all such 3-paths and so

X]= () -k+1) 22
Divide X into k — 1 subsets X;, X,..., Xx_1 where
Xi={eres: 3<s<k}and X, ={ees€ X: r+2<s<k+1}

for 2 < r < k—1. In particular, X; = {eies,ereq,...,€16}, Xo =
{6264,€2€5w-,ezek,ezekﬂ} and Xx_; = {ek—1€k+1}- Next, let s; be an
ordering of vertices of X,. for 1 < r < k — 1. The sequence S; contains the
following k + 1 three consecutive terms

arér,erril,erirby for 1 <7 < k and aryi1€k+1, €k+1€1, €10K41.

for some edges ar,br,ars1 and bryy of T. If every edge incident with v
belongs to T, then we insert s, between are, and erepyy for 1 < 7 < K.
On the other hand, suppose that there are d > 1 edges incident with v
that do not belong to T, say fi, fa,..., fa- Applying Lemma 2.1 to the set
{e1, f1,-.., fa}, there is a sequence

so: Hy,Ha,...,He
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consisting of { = (dzl) distinct ordered pairs zy where z,y € {ey, fi,..., fa}
such that

(1) H; and H,;:; have an edge in common for i =1,2,...,£ —1 and
(i1) Hy = e, f; and Hy = fje; where1<i# j<dand Hy = Hgifd = 1.

Next, we insert s;,sg between aje; and e;e; in S; and insert s, between
a-e- and eqe,:; for 2 < r < k—1. Applying this procedure to every vertex
of degree k + 1 in T, we obtain a sequence S with the desired property. =

Theorem 2.6 is best possible in the sense that if a connected graph G
contains even one vertex of degree 2 that does not satisfy the conditions in
Theorem 2.6, then P3(G) need not be Hamiltonian. For example, the graph
G of Figure 3 has exactly one vertex of degree 2, each of whose neighbors
have degree 3. Since the 3-path ab of G is a cut-vertex of P3(G), it follows
that P3(G) is not Hamiltonian. If H is the graph obtained from the graph
G of Figure 3 by subdividing the edge a exactly once, then H contains
a vertex of degree 2 that is adjacent to another vertex of degree 2 and a
vertex of degree 3 in H and so H contains a path (u,v,w,z) where v and w
have degree 2 in H and u and z have degree 3. In this case, P3(H) contains
a bhridge joining the two 3-paths (u, v, w) and (v, w, z) and so P3(H) is not
Hamiltonian. Furthermore, if F is a connected graph containing a vertex v
of degree 2 such that v is adjacent to an end-vertex u and another vertex w
of degree 2, the the 3-path (u,v,w) is an end-vertex in P3(F) and so P3(F)
is not Hamiltonian.

a
b
Figure 3: Showing Theorem 2.6 is best possible
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