The number of minimal prime ideals in a
k-integral domain and an algorithm for
constructing maximal k-zero divisors in Z,

J Pathak

Department of Mathematical sciences
Lincoln University
1570 Baltimore Pike,
Lincoln University, PA 19352
jpathak@lincoln.edu

January 4, 2018

Abstract

Let R be a commutative ring with identity. For any integer £ > 1, an
element is a k-zero divisor if there are k distinct elements including the given
one, such that the product of all is zero but the product of fewer than all is
nonzero. Let Z(R, k) denote the set of the k-zero divisors of R. A ring with
no k-zero divisors is called a k-domain. In this paper we define the hyper-
graphic constant HG (R) and study some basic properties of k-domains. Our
main result is theorem 5.1 which is as follows:

Let R be a commutative ring such that the total ring of fraction T'(R) is
zero dimensional. If R is a k-domain for k > 2, then R has finitely many
minimal prime ideals.

Using this result and lemma 5.4, we improve a finiteness theorem proved
in [11] to a more robust theorem 5.5 which says:

Suppose R is not a k-domain and has more than k minimal prime ideals.
Further, suppose that T'( R) is a zero dimensional ring. Then Z(R, k) is finite
if and only if R is finite.

We end this paper with a proof of an algorithm describing the maximal
k-zero divisor hyper-graphs on Z,.
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1 Introduction

A simple graph is an ordered pair (V, E), where V' is a vertex set
and E is an edge set with edges of the form {vy, vo} where vy, v,
are two distinct vertices. A zero divisor graph on a commutative ring
R is a simple graph I'(R) whose vertex set is the set of zero divisors
Z(R) = {a € R|thereexists b # 0 withab = 0}. Two distinct
zero divisors form an edge if a - b = 0. The study of a zero divisor
graph on a commutative ring was first introduced in 1988 by Beck in
[5]. Anderson and Livingston [2] modified this definition by remov-
ing zero from the vertex set. We give an example of a zero divisor
graph that follows Anderson and Livingston.

Example 1.1. Suppose R = Z;5. The vertex set is
Z(R)* ={2,3,4,6,8,9,10}

and T'(R) is given below, where the edges are represented by lines
joining pairs of vertices.
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‘Figure 1: Zero divisor graph on Z;3.

More examples and classifications can be found in [2, 3, 7] and
the references cited there. It is clear that the graph is finite if I'( R)
has finitely many vertices. Ganesan proved in [9] that for a ring R
which is not an integral domain, I'( R) is a finite graph if and only if
R is a finite ring.

A hyper-graph is a natural generalization of simple graph. As in
any graph, a hyper-graph is also a pair (V, E) with V a vertex set and
E an edge set. But edges of a hyper-graph can contain more than
two vertices (see Berge [6] for detailed definition). If all edges have
an equal number of elements, say k, then the hyper-graph is called
a k-uniform hyper-graph. Formally, a k-uniform hyper-graph H is



an ordered pair (V| E) where V is a vertex set and £ is a set of k-
element subsets of V' called edges. In 2007, Eslahchi and Rahimi
in [8] used the graphs to hyper-graphs relationship to generalize the
concept of zero divisors and introduced k-zero divisors. This en-
ables us to associate a k uniform hyper graph Hy(R) to a commu-
tative ring R for every k. Example 2.1 shows the k-uniform hyper-
graph Hy(Z;). In the same paper, Eslahchi and Rahimi posed a
finiteness question which was partially answered by the author of
this paper in [11]. In this paper, we give fuller answer to this ques-
tion by counting the number of minimal prime ideals of a ring which
has no k-zero divisors. In section 2 we record definitions and in-
troduce the notations used in this paper. Section 3 contains some
elementary results on reduced rings. Section 4 studies the effect of
localization and quotient modulo the nilradical on k-zero divisors.
In section 5, we prove the main theorem and derive a more robust
form of the finiteness theorem from [11]. In section 6 we design an
algorithm to describe maximal k-zero divisor hyper-graphs of Z,,.

2 Definitions and notations

All rings considered in this paper are commutative with identity. An
element a is called regular if a - b = 0 is true only when b = 0.
The set of regular elements, denoted by R?, is closed under multi-
plication. Hence R° forms a multiplicative set and localization with
respect to this set results in a total ring of fractions (see exercise 9
on page 44 in [4]). We will denote the total ring of fractions of R
by T'(R). Elements of T'(R) are of the form a/r where r € R°. By
identifying element a of R with a/1 in T'(R), we can view R as a
subring of T'(R).

Non regular elements are called zero-divisors. Thus, a is a zero
divisor if there is a nonzero element b such that ab = 0. We will
denote the set of zero divisors by Z(R). An element a of R is called
a nilpotent element if ™ = 0 for some positive integer m. If a
is nilpotent, then 1 + a is a unit (see exercise 1, p.10 in [4]). We
define the nilpotent degree d,;(a) of a nilpotent element a to be
the smallest positive integer n for which a™ = 0. The Nilradical
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of R, denoted by N is the set of all the nilpotent elements of R. If
N = {0} then R is called a reduced ring. We recall the following
definition from [8].

Definition 2.1. Let R be a commutative ring and £ > 2 be a fixed
integer. Element v; € R is called a k-zero divisor if there exist
U, Us, ..., Uk in R such that (1) {v1, vy, ..., vx} are all distinct
clements, (2) [I}v; = 0 and (3) IT;v; # Oforany j, 1 < j < k.

The set of all k-zero divisors is denoted by Z (R, k). Clearly
Z(R,k) C Z(R). A ring in which Z(R, k) is a null set is called a
k-integral domain or just a k-domain.

Condition (3) implies that for each ¢, v; is a nonzero element
which is not regular. Further, if {v], v3, ..., v.} is a proper subset
of {v1, vy, ..., vk}, then ITT_;v; # 0. In fact, (3) is equivalent to
the statement that the product of fewer than all v; 1s nonzero.

We define a k uniform hyper-graph Hy(R) on R as follows. The
vertex set is Z(R, k). Elements vy, vy, ..., Uy Which appear in def-
inition 2.1(2) form a k-edge (edge with k number of vertices) of the
hyper-graph. We also note that a k-domain is a ring without k-zero
divisors. Since k-zero divisors come in groups of k, we may say that
a k-domain is a ring for which Hy(R) is a null graph.

We give some examples.

Example 2.1. We consider the ring Z;, = {0, 1,..., 11} with op-
erations addition and multiplication modulo 12. The graph H3(Z15)
has the vertex set Z(Zi2,3) = {2,3,9,10}. Notice that 6 is not
a vertex (because if 6ab = 0, then 2|a or 2|b resulting in either
6a = 0 or 6b = 0). There are two 3-edges, {2, 3, 10} and {2, 9, 10}
which are represented by the two ovals in the following hyper-graph
H3(Z12): Note that Z,5 is a 4- domain.

Cly @ D480

Figure 2: Three uniform hyper-graph on Z2.
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Example 2.2, H3(Zs) has vertex set
Z(Zys,3) = {2,3,4,8,10, 14, 15, 16}

and six edges, {2,3,15},{4,3,15},{8,3,15}, {10,3,15},{14,3,15} and
{16,3,15}, as shown in Figure 3.

Figure 3: Three uniform hyper-graph H3(Z;3g).

Diagram of this type are particularly hard to draw when there is
a large number of edges. In such cases, we will describe our hyper-
graph by listing vertices and counting the number of edges.

Example 2.3. The vertex set of H3(Zoy) is
Z(Zar,3) = {3,6,12, 15,21, 24}.

Any three elements of the vertex set form an edge (i.e., Z(Zg7, 3) is
a clique). Hence, the number of edges is (3) = 20.

Definition 2.2. For any ring R, we define a hyper-graphic constant
HG(R) to be the smallest integer g such that R is a k-domain for
all kK > g. For any integral domain, we define HG(R) = 0. If R
is not a domain but is a k-domain for all £ > 2, then we say that
HG(R) = 1. If no such integer exists, then we say that HG(R) =

oQ.

By the definition, R is not a g-domain, that is, Z(R, g) # 0. If
HG(R) = g < o0, then the hyper-graph H,(R) will be referred to
as the maximal hyper-graph of R .

Example 2.4. Since Z is a domain, HG(Z) = 0. HG(Z4) = 1 and
HG(le) =3
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n | HG(Z,) =g | Z(Zn,g) | Edges
n<b Oorl 0 0

6 2 {2,3,4) 2

7 0 0 0

8 2 {2,4,6) 2

9 2 (3,6} 1

10 2 {24,685} | 4

11 0 0 0

12 3 {23910} | 2

Table 1: Maximal Hyper-graphs on Z,, for n < 12.

Maximal hyper-graphs of Z, for n < 12 are described in Table
ks

Example 2.5. Let K be a field and K[z] = K|[z),2,,...,) be a
polynomial ring in infinitely many variables. Let I be the ideal gen-
erated by the monomials z}. Then elements of I are finite sum of
monomials [I7z;* where a; = 0 or @; > i. Now for any integers
t,n,1<t<n,ifzt €I, then

b aij
T, = E e, .
J

Since for all j, a,; # t, the above equation gives us a nontriv-
ial algebraic relation among polynomial variables, which is absurd.
Therefore, z¢, is not in I. We now consider the following quotient

nng
A——-K[fl, fg,...,]=K[$1, .’L‘Q,...,]/I

where for each ¢, T; is congruent to z; modulo /. Ring A has only
one minimal prime ideal. To see this, let P be a minimal prime ideal
in A. Since 7; are nilpotent elements, P contains Z; for all 7. Note
that the ideal generated by {z;} is a maximal ideal in K'[z] and the
maximal ideals which contain / in K [z] are mapped onto maximal
ideals in A (see [4], Proposition 1.1 and a comment towards the end
of page 9). Therefore, the ideal generated by {Z; } is a maximal ideal
in A. Since {Z;} C P, P must be equal to the ideal generated by
{Z:}. Thus A has only one minimal (or any kind of) prime ideal.

Now let k > 2. Setn = k-gk—jl—) and consider A = {Z,,,72, ... ,fﬁ}




We claim that A is a k-edge. First we observe that [T (7 ) = Z7 = 0.
Next, for any j > 1, smceZ#]z— M -j=1< —Q“-“L—ll = n,

IT;x;ZTh = T 3 0. Finally, we note that T 188 mlpotcnt element
in A. Therefore, Vi,7 > 1,, 1 — T is a unit. Therefore, T\ # 77,
forany 1 <4 < j < k. This shows that A is a nontrivial k-edge
Hence, A is not a k-domain, which shows that HG(A) = co. For
the future reference, we record that the Krull dimension of the total
ring of fraction T'(A) is zero.

Example 2.6. Suppose R is an integral domain. For any integer
n > 2 let A be the direct product of n copies of R. Elements of
A are ordered n-tuples (ay,...,a,) where g; are in R. The zero
element is the element for which a; = 0 for all 7. Now for each i,
we define

H = {(0’1) S 7ai—1701 Ait1y - - ')an}-

Since A/P; is isomorphic to R which is a domain, P; is a prime
ideal. Further, N\P; = {0} implies that P; is a minimal prime ideal
and A is a reduced ring. Thus A is a reduced ring with n mini-
mal prime ideals. Applying the proposition 3.2, we conclude that

HG(A) =

Example 2.7. Suppose R[z] = R[zy,...,Z,] is a polynomial ring
over any integral domain R. Consider the quotient ring A = R|z]/I
where [ is the ideal generated by II;z;. Note that I is the inter-
section of n prime ideals (z;) generated by z; in R[z]. Now prime
ideals which contain / in R[z] are mapped onto prime ideals in A.
If Z; is congruent to z; modulo I, then (T;) is a prime ideal for each
i. Moreover, N(Z;) = {0}. Now by proposition 1.10 (iii) on page
17 in [4], we can assume that A is a sub-ring of I[;A/(Z;). By our
previous example, I1;A/(z;) is a k-domain for any k£ > n. There-
fore, A is also a k-domain for any k > n. But clearly {Z,...,T,}
is an n -edge. Therefore, HG(A) =

Remark: In theorem 5.1, we prove that k¥ domains have fewer
than k£ minimal prime ideals. As we see in example 2.5, finiteness
of minimal prime ideals is not sufficient for a ring to be a k¥ domain.
Only example we have of a ring which fails to be a k domain for
any of k and which has a finitely many minimal prime ideals is a
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non-noetherian ring (nilradical is not finitely generated). We make
a following conjecture:

Conjecture: Suppose R is a commutative ing with finitely many
minimal prime ideals. Also assume that the nil-radical of R is a
milpotent ideal. Then R is a k domain for some k. In particular, a
noetherian ring is a k£ domain for some k.

Z4 provides an example of a ring which is not a domain but is a
k-domain for all £ > 2. Not many rings have this property, which
we see from the following proposition.

Proposition 2.1. Suppose a ring R is not a domain but is a 2-
domain. Then R is isomorphic to either Zy or Zy[z]/(z?).

Proof. Since R is a 2-domain, it has no 2-edge. We use this to show
that the square of any zero divisor is zero. Let 0 # = € Z(R). Then
there exists y # O suchthatz -y = 0. If z # y, then {z, y} is a
2-edge, which gives a contradiction. Therefore, z = y and 2% = 0,

Next we show that z is the only non-zero element in Z(R). Sup-
pose y # 0 is an element in Z(R) different from z. If z-y = 0, then
{z, y} is a2-edge, so -y # 0. Since y> = 0, 1 — y is a unit. There-
fore, z # z - y and {z, z - y} is a 2-edge, which is a contradiction.
Therefore, no such y existi.e. Z(R) = {0, z}. By [9], R is a finite
ring.

Now if char(R) = 2, then R = Z[z]/(z?). If char(R) # 2
then, since z # 2z and z - 2z = 0, 2z must be equal to 0. Hence
z=2and R =1Z,. O

The following example is given in [8] (see page 3 example 2.3
(1)

Example 2.8. Let n be a positive integer and n = II"p{" be the
prime factorization of n. For any & > ) a;, we will show that Z,
is a k-domain. Suppose cy,...,cx € Zy, are such that II¢; = 0.
We choose a; € Z such that a; = ¢; mod n. Then Ila; = Il
mod n. Since II¢; = 0in Z,, [la; = 0 mod n. Therefore, Ila; is
divisible by n = IIp{" in Z. Canceling p; one by one, we can find a
subset {by,...,b.} < {a1,...,a;}such that n|IIb;. Now if we write
d; = b; mod n, then {dy,...,d,} < {a,...,c} and IId; = 0.
This shows that {ci, . .., cx} is not a k-edge. Thus forall k > 5 a;,



Ly is a k-domain, which implies that HG(Z,) < ¥ ;. It will be
shown in section 6 that forn > 8, HG(Z,) = 5 o;.

3 Elementary results

First we record some results for reduced rings.
Proposition 3.1. Let R be a reduced ring. Then
Z(R,k+1) C Z(R,k).

Proof. If Z(R, k+1) = 0, then the result is vacuously true. Suppose
v € Z(R, k + 1). Then there exists a (k + 1)-edge

A= {v,..., Upy1} withv = v;. Set
i) forl1<i<k-1
: VkUkp1 fori=k

Then I15v; = 0 and II;;v} # 0 for all j. Also since vy, v, . . -, V1
are vertices in a (k + 1)-edge A, v; # v for 1 <i<j < k—1.1If
for some j < k, v; = v, then

(Tiv})? = (Mig pv) (Mi0}) = O.

Since R is a reduced ring, II;%;v; = 0 which is a contradiction be-
cause A is a (k + 1)-edge. Therefore, {v},...,v,} is a k-edge and
v=v; € Z(R, k). This shows that Z(R,k + 1) C Z(R, k). O

By induction, we can derive the following corollaries;

Corollary. Let R be a reduced ring. If R is a k- domain then R is a
t-domain for any t > k.

Corollary. Let R be a reduced ring. If R is a k- domain then
HG(R) < k.

The prime avoidance theorem (proposition 1.11 in [4]) states that
for any prime ideal P and prime ideals @;, 1 < ¢ < r, P C UQ; if
and only if P C @Q; for some 7. Thus, if none of the Q; contain P,
then P contains an element which is not in UQ);.
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Proposition 3.2. If R is a reduced ring with a finite number of min-
imal prime ideals, then HG(R) is equal to the number of minimal

prime ideals.

Proof. Suppose there are n minimal prime ideals P, P, ..., P, in
R. By proposition 3.2 (1) in [11], R is a k-domain for any £ > n.
We will produce an n-edge to complete the proof. Let v; be an
element of P; which is not in P; for any j # ¢ (prime avoidance).
Clearly all v; are distinct. Further, [lv; € NP, = N = {0} and since
I1i4v; € P; V3, iz # 0. Thus, {vy, vy, ... v, } isann-edge. O

Ring R and it's polynomial ring R[z] have equal number of min-
imal prime ideals. Also, if R is reduced, then so is R[z]. Hence we
have the following corollary.

Corollary. If R is a reduced ring with a finite number of minimal
prime ideals, then HG(R) = HG(R|[z)).

In general, HG(R) may not be equal to HG(R([z]). For example,
HG(Z4) = 1 whereas HG(Z4[z]) = 2.

We now turn our attention to the nilradical N of a ring R. We
say that NV has a finite exponent e if a® = 0 for all a € N. This does
not imply that N* = {0} for some ¢. But if NV is finitely generated
(and has a finite exponent), then we can find such a t. We will say
that NV is nilpotent ideal if we can find a positive integer ¢ such that
Nt = {0}. If R is a k-domain, then N has an exponent less than
k(k +1)/2. We record a result from [11] which states a little more.

Lemma 3.3. Let R be a ring with finitely many k-zero divisors. Then
N has a finite exponent. Further, if N is finitely generated, then N

is nilpotent ideal.

Proof. Proof of the statement can be found in proposition 2.2 in
[11]. O
Corollary. Suppose R|z) is a k-domain. Then the nilradical N of
R has an exponent r < k.

Proof. Suppose a € Np is such that d,(a) = t > k. Define

e’ e for1<i<k-1
Y |atkHig-1 fori =k



We claim that A = {vy, vy, ..., v} is a k-edge. Clearly

R k(k=1

Now if az' = az? for some i < j, then z(a — az?~%) = 0. Now '
is not a zero divisor, therefore, a = az?~* which is a contradiction.
Finally, since dn;;(a) = t, forany s, 1 < s < ¢, a® # 0. Therefore,
Migjvi = at™9z® # 0 where a = €51 _ 5 Thus, A is a k-edge,
which is a contradiction as R[z] is a k-domain. Therefore, for all
a € N, dni(a) < k. This completes the proof. O

4 Localization and quotient of a £-domain

Subrings inherit the hyper-graph substructure. That is, if A is a sub-
ring of B, then Z(A,k) C Z(B, k). Further, any edge in Hi(A)
is an edge in Hi(B). In this sense, Hi(A) is a sub-hyper-graph
of Hi(B). Moreover, if B is a k-domain then so is A. Hence,
HG(A) < HG(B).

Proposition 4.1. Suppose S C R° is a multiplicative set where R’
is the set of regular elements of a ring R. Then R is a k- domain if
and only if S~'(R) is k-domain.

Proof. If S~!(R) is a k-domain, then so is R since R is a subring
of S~!(R). For the reverse implication, suppose {wi, wy, ..., Wk}
is a k-edge over S~'(R). Now we choose s € S such that v; =
sw; € R. Clearly all v; are distinct and ITv; = 0. Since R is a k-
domain, Il;x;v; = 0 for some j which implies that s*~!(I;..;w;) =
0. Since s is a regular element, II;2;w; = 0 which is a contradiction.
Therefore, S~!(R) is a k-domain. O

Corollary. Suppose S C R°. Then HG(R) = HG(S7(R)). In
particular, if T(R) is a total ring of fractions, then
HG(R) = HG(T(R)).

Proposition 4.2. If R is a k domain, then R/N is also a k domain.

Proof. We prove by contradiction. Suppose that R is a k-domain
but R/N is not. Suppose for 1 < 7 < k, v; € R are such that
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{01, U2, ..., U} is a k-edge where U is the image of v under the
canonical map R = R/N. Now Ily; = IIt; = 0 implies that
Iv; € N. On the other hand, IT;z;jv; = Ilix;U # 0 implies that
ITiz;v; ¢ N for any j. Suppose dni(Ilv;) = n.

We claim that {v], v}, ..., vp} forms an edge in Hi(R). If for
some 7 # j, v} = vP, then (hgvi)®" = (Iag;vi)"(Mva)” = 0
contradicts the fact that IT,.;v, € N. Thus all the v} are distinct.
Further, since [T;z;u; ¢ N, (Iliz;v;)" cannot be zero. This shows

that v}, v3, ..., v} is a k-edge, a contradiction. 0
The converse of the above proposition is not true.

Example 4.1. The nilradical of R = Zgg is N = 6Z3s. Therefore,
R/N = Zg. Now Zg is a 3-domain because it is a reduced ring with
two minimal prime ideals, but {2, 3, 6} is a 3-edge, showing that Z3¢
is not a 3-domain.

An interesting consequence of the proposition 4.2 is the follow-
ing corollary.
Corollary. Let R be a ring with HG(R) < oo. Then HG(R/N) <
HG(R).
Proof. Suppose HG(R) = g. Then R is a g + 1-domain and so is

R/N. Since R/N is a reduced ring, by the second corollary of the
proposition 3.1, HG(R/N) < g + 1. a
Proposition 4.3. Suppose R is a k domain with finitely generated
nilradical, then HG(R) < oo. Further if N* = 0, then HG(R) <
t(k —1).

Proof. Since N is finitely generated, NV is nilpotent ideal. So we

can assume that N* = {0} for some ¢. Let k; be an integer and
ki > t(k — 1). We claim that R is a k;-domain. Assume that R is

not a k;-domain and suppose A = {v1, vy, ..., U, } is @ kj-edge.
Now for any

{’wl, Wy, ..., wk—l} & {Ul, V2y vy ’Ukl}-

set wy = Ilyw,Vi to be the product of all the v; # w; for 1 <
j < k — 1. Clearly [lw; = 0 and V7, Il;z;w; # 0. Since R is
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a k-domain, w; = w; for some i # j. But w;, Wy, ..., Wk—; are
pairwise distinct by the hypothesis. Therefore, w; = wy for some
1, 1 <1 < k- 1. This shows that (I'I:.:llw,-)2 = 0. Thus the product
of any k — 1 elements of the set A is in N. Since k; > t(k — 1),
%Dy, € Nt = {0}. Therefore, A is not a k;-edge, or R is a
k1-domain which completes the proof. O

5 Main result

The Krull dimension of a ring is the length of a longest chain of
prime ideals (starting from zero). Thus a zero dimensional ring has
only minimal prime ideals. Kaplansky’s theorem states that in a zero
dimensional reduced ring, every principal ideal is an idempotent.
That is for any element a which is not a unit, there exists y such that
a = a’y (Theorem 3.1 on page 5 in [1]). Thus aR = (ay)R with
(ay)? = ay. We will use this result in our main theorem.

Theorem S.1. Let R be a ring such that the total ring of fraction
T(R) is zero dimensional. If R is a k-domain, then R has finitely
many minimal prime ideals. In particular, the number of minimal
prime ideals is less than k.

Proof. If k = 2, then by the proposition 2.1, R has only one minimal
prime ideal. Thus we can assume that k£ > 3. Now if R is a k domain
then by proposition 4.2 R/N is also a k-domain which has the same
number of minimal prime ideals as R has. So we can assume that
R is a reduced ring. Further, by proposition 4.1, if R is a k-domain
then so is the total ring of fractions T'( R) and both R and T'(R) have
the same number of minimal prime ideals. Thus we can assume that
R is a zero dimensional reduced ring. We claim that R has less than
k minimal prime ideals.

Suppose P, P, ..., P are minimal prime ideals in R. For each
i, choose an element e; € P; which is not in P; for any j # . By
Kaplansky’s theorem, we can assume that the e; are idempotents.
Now ITI¥te; - (1 — IT¥1¢;) = 0.

Observe that for any distinct ¢ and j, e; # e;. Further, since
I¥'e; € Pjfor1 <j < k—1,e #1—I%"e; for any such j.
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Thus, A = {ey, €g,..., ex—1, I} "'e;} is a set of distinct ele-
ments with zero product. We now show that no proper subset has a
zero product. First observe that IT¥~le; # 0 because it does not be-
long to P Next, P; does not contain either of I\ 'e; or 1 - IT} ;.
Since, P; is a prime ideal, IT{7e;(1 — I} '¢;) is not in P;. In par-
ticular, Hf;;ei(l — II}'e;) # 0. This shows that A is a k-edge
which is a contradiction. Therefore R has fewer than & minimal
prime ideals. O

Example 2.5 provides a counter example to the converse of the
theorem. This result combined with the following lemmas extends
theorem 3.4 of [11]. For completeness, we will state the theorem
here.

Theorem 3.4. [11] Suppose R is not a k-integral domain and
is such that (1) the nilradical N is finitely generated and (2) R has
finitely many and more than k minimal prime ideals. If R has finitely
many k-zero divisors, then R is finite.

Lemma 5.2. Suppose k > 2 and R is a reduced ring such that T'(R)
has a zero dimension. If |Z(R, k)| < oo, then R has finitely many
minimal prime ideals.

Proof. By proposition 3.1, Z(R,k + 1) C Z(R, k). Inductively,
we can derive that Z(R,n) C Z(R,k) for any n > k. Suppose
n > |Z(R,k)|. If H,(R) # 0, then there is an n-edge containing n
distinct element of Z(R,n). But Z(R,n) C Z(R, k). Therefore,

n < |Z(R,n)| <| Z(R,k)| <n

which is a contradiction. Hence Z(R,n) = 0 and R is an n-domain.
We apply now theorem 5.1 to conclude that R has finitely many

minimal prime ideals. U

Lemma 5.3. Suppose in a ring R, Z(R, k) is nonempty and finite.
Then the nilradical N is finite.

Proof. Suppose N is infinite. Let {a,,as, ...} be an infinite subset
of N and A = {vy,vs,...,v} be a k-edge. Now for all 7, define
v1(i) = (14 a;) - v1. Since 1 + a; is a unit, the elements vy (2),
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vy, . - -, Uk satisfy conditions (2) and (3) of the definition 2.1 of k-
zero divisors. But there are only finitely many k-zero divisors. There-
fore, there exists 4o such that (1 + a;) - v1 = (1 + &) - vy, or
ai, * VY1 = a; - v; for infinitely many values of 7. Since [V is an
ideal, a; — a;, € N for all 7. Let b} = a; — a;,, then b} - a; = 0 for
infinitely many values of i.. Hence, the annihilator Ann(v;) con-
tains infinitely many nilpotent elements, namely {by, bs, ...}. Now
Ann(wv;) N N is an infinite ideal, so we can repeat the same process
for vy to find infinite subset of {b;} in Ann(vp). By induction, we
can find an infinite subset {c;, ¢y, ...} of N, which is contained in
N* Ann(v;).
Now for each 7, define

e vi+c¢ fori=1
A% U; otherwise

Clearly ITw;(j) = Ilv; == 0. Further,
H#h’wi(j) — Hi;eh’vi =0, Yh

Now for any integers s and t, s # t, v; + ¢ # v + ¢;. Since there
are infinitely many c;, and only finitely many v; we obtain infinitely
many k-zero divisors w;(j) = v; + ¢;, which is a contradiction. O

Lemma 5.4. Fork > 2, if R is a ring with |Z(R, k)| < oo in which
N is finitely generated, then R is a t-domain for some t.

Proof. By lemma 3.3, the nilradical NV is a nilpotent ideal. Assume
that N¢ = {0} for some positive integer d. Let n = |Z(R, k)| and
r =[] andt = (r +d)(k — 1) + 1. We claim that R is a ¢-
domain. If not, then there exists a t-edge A on R. Now we partition
A into 7+ d disjoint subsets A; of size k—1 and one singleton subset
Aryda+1- Now for any A; = {vy,,vs,...,Uk_1}, define vy to be the
product of rest of the elements in A.

Clearly, [T%_,v; = 0 and since A isat-edgeand A; C A, Tl;zpv; #
0. If all v; are pairwise distinct, then the set A; consists of k-zero
divisors. Otherwise, v; = v, for some ¢ < h. Since vy, Vs, ..., Uk_y
are part of a t-edge A, h must be equal to k. But then,

(k2 1wp)? = (M§un) (Mgt vn) = O,
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which implies that ITA; = II%~!v; € N. Thus for any j, either
A; contains k-zero divisors or [TA; € N. If there are more than r
subsets A; containing k-zero divisors, then |Z(R, k)| > r(k — 1) >
n which is not true. Therefore at least d subsets A; have product
belonging to N. By reordering, we can assume that first d subsets
are such that [TA; € N. But then II¢A; € N = {0}, showing that
A is not a t-edge. This proves that R is a t-domain. O

From the above lemmas and theorem 3.4 from [11], we conclude
the following theorem:

Theorem 5.5. For kK > 2, if R is not a k-domain and has more
than k minimal prime ideals. Further, suppose that T'(R) is a zero
dimensional ring. Then Z(R, k) is finite if and only if R is finite.

Proof. By the lemma 5.3, N is finite and hence has an exponent,
Hence by the lemma 5.4, R is a t domain for some ¢. Next we apply
theorem 5.1 to conclude that R has finitely many and less than ¢
minimal prime ideals. Now theorem 3.4 from [11] completes the
proof. O

6 Maximal hyper-graphs on Z,

In this section, we present a way to construct a maximal k-uniform
hyper-graph on Z,. Recall that Hy(R) is maximal if k = HG(R).
For n < 5, HG(Z,) is either zero or one and hence, Z, has a null
maximal hyper-graph. Forn = 6, 8 and 9, HG(Z,) = 2. We have
described the maximal hyper-graphs of Z, for n < 12 in the table 2
of section 2.

When n is a prime, HG(Z,) = 0 and hence Z, has a null
maximal hyper-graph. Therefore, for the rest of the paper we will
assume that n 1s a composite integer. We will also assume that
n=py'py?...pom where py, py, . . ., Dm are distinct primes. By ex-
ample 2.8, HG(Z,) < Y a;. For n > 8,we will produce a k-edge
of length " a; to show that HG(Z,) = }_ ;. For any positive in-
teger n, let U(n) = {a € Z|1 £ a < n-1,GCD(a,n) = 1} be
the set of units modulo n and let ¢(n) be the cardinality of U(n).
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Now for any prime p, we define,

Uy(n) = {g(n/p) if p|n

(n) otherwise

and ¢,(n) = |Up(n)] = ¢(n/p), ¢ is well known as the Euler
phi function in literature (see page 107 in [10]). The Euler func-
tion is multiplicative, that is, for two relatively prime integers m, n,
d(mn) = #(m)- #(n) (see theorem 4.3.3 on page 108 in [10]). Now
for such m and n, if p divides mn, then p divides m or p divides 7,
but not both. Therefore, ¢, is also multiplicative. In the following
lemma we will employ this property.

Lemma 6.1. Suppose p®|n for some prime p and n > 8. Then
dp(n) 2 .

Proof. Without loss of generality, we may assume that « is a max-
imum integer for which p*|n. Then n = n'p® where n’ is not a
multiple of p. If @ = 1, then since 1 € Up(n), the result is true.
Suppose o > 1. Then

8p(n) = $p(n')dp(0%) = $(n)B(p*") = P(n")p°**(p - 1).
Now an easy induction argument can verify that for p > 2, p* >
o + 1. Therefore, if p > 2, thenp*~2(p—1) > (@ —1)(2) > o
Hence ¢,(n) > a.

For p = 2, we consider two cases.

Case 1: Suppose n’ = 1. Since n > 8, @ > 3. Again, using
induction we can show that 2*=2 > a. Hence ¢(n’)-2°72 = 2272 >
Q.

Case 2: Suppose n’ > 1. Since n' is not divisible by p = 2,
n' > 3. Now 1, n' — 1 € U(n'), hence, ¢(n') > 2. Therefore,

d(n)p*p-1)> 2! >afora> 1.
O

Suppose u € Uy, (n). Then GCD(u,n/p;) = 1. If a; > 1, then
pi|(n/p;) and therefore, u € U(n). Further, u < n/p;. Hence,

Up(n) = {u € U(n)|1 < u < n/p} whena; > 1.

55



Example 6.1. Suppose n = 18 = 2 - 32, Then
U(18) = {1,5,7,11,13,17},

Uy(18) = U(9) = {1,2,4,5,7,8} and ¢5(18) = 6. Similarly
Us(18) = U(6) = {1,5} and ¢s(18) = 2.

Theorem 6.2. Forn > 8, HG(Z,) = 3 .

Proof. Let u; < uy € U, (n). Then uyp; < ugp; < m. There-
fore, u;p; and ugp; are distinct elements in Z,. Since there are
at least o; elements in U, (n), we can select o; distinct elements
Wyi, Wai - - -, Wayi Of the form u - p; with u € Up,(n). It is easy to
show that A = {w;;} forms a k-edge with k = ) ;. Therefore Z,
is not a k-domain. Since HG(Z,) < k, the proof is complete. O

In the following theorem, elements of the quotient ring Z, will
be denoted by their representatives in {1,2,...,n — 1}.

Theorem 6.3. Suppose n > 8 has a prime factorization n = II7"p;"
and A is a k-edge in Hy(Z,) where k = >_ a;. Then for each vertex
T € A, there is exactly one p; such that p;|x. Further, for each i,
there are a; vertices in A whose representatives are of the form up;
withu € Uy, (n).

Proof. Suppose A = {z1,...,}. First we note that Z(Z,, k) C
Z(Zy,). Therefore, for all [, p; divides z; for some j. Therefore,
z; = up;. Now we will prove that only one prime p; divides z;.
Suppose there is an element, say z;, which is divisible by more than
one pj, that is, T, = up; - pn, J # h for some h € Z. Let

Aj={x € {m;zs...,ax}; nedividesiz},

We will write ITA; for the product of elements of A;. Now H’fa:z is
divisible by n. Therefore, the exponent of p; in the prime factoriza-
tion of ITz; must be at least ;. Hence p;* divides Il z; = IIA;,
that is, [1A; = ap;* for some integer a.

Now z; € A; N Aj. For each ¢, We will chose a subset B; of A;
with the following properties:

l. 2, ¢ Bjand z, € B,
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2. Cardinality of Bj is at most min(a; — 1, |A;]).
3, For 4 # j, cardinality of B; is at most min(a;, |Aj]).

Set B = UB;. First we observe that [B| < Y a; — 1. Hence,
B < {}. Further, p* divides I1B; for all i. Therefore, n divides
I1B. But then we have B = {Tj|z € B} < A with IIB = 0, which
contradicts the hypothesis that A is a k-edge. Thus, V!, z; is of the
form up; where u is not a multiple of any other prime pj, where
h# .

Thus for each z; € A, we have a unique j such that z; € A;.
In other words, sets A; partitions A. Therefore, } . |A;| = [A] =
> loal-

Now suppose for some j, |4;] > a;. Choose a subset B; of
A; of cardinality equal to ;. Then B = Ui;4; U B; < A and
1B = 0 which is a contradiction. Therefore, |4;| < o;. Finally,
since Y, |[Ai| = >, ||, |4;] = ;. for all j, this completes the
proof.

Now if a; = 1, then u < n/p;, is a unit modulo n/p;. Hence
u € Up,;(n). For a;j > 1, we will show that z # ap? to prove that
u € Up,(n). To the contrary, let us assume that z; = ap?. Once
again, we will chose subsets B; of A; with the following properties:

I T ¢ Bj
2. Cardinality of B; is at most min(o; — 2, |A;|).
3. For ¢ # j, cardinality of B; is at most min(a, |4;|).

Set B = (UB;) U {z,}. Observe that |B| < Y a; — 1. Hence,
B < {z;}. Further, p{* divides IIB for all 7. Therefore, n divides
I1B. Thus we have B = {Zj|z; € B} < A and [IB = 0, which is
a contradiction. This shows that p? does not divides z;. Thus, z; =
up; and u is not divisible by the prime p;. Therefore, u € Uy, (n).
To complete the proof, we need to show that |4;| = ;. Suppose
a; = 1. If |A;| > 1, then the set B consisting of one element from
A; and all elements of A;, i # j has less than k elements. Also
[IB = 0 mod n, which is a contradiction. Therefore, |4;| = 1.
When o; > 1, we note the following properties of A;, namely, (1)
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p* divides I1A, (2) p? does not divide any element of A4, and (3) no
other prime divides any element of A;. It is clear that |A;| > .
Since ) a; = k = |UA,|, |Ai| = ai. This completes the proof. O

Remark: Let v € Z(Z,, k). By the theorem 6.3, v is a multiple
of p; for exactly one . If a; > 1, then v is a multiple of p; but
not of p?. This implies that v = p; - u for some unit u. Suppose
u = r(n/p;)+1. Then, v = p;-u = p;-u'. Therefore, v € p;-Up, (n).

When a; = 1, then v = p? - u for some unit v and @ > 0. Set

' = p?~! . u, then we can write v = p; - v’ where v’ € U(n/p:).
Once again we get, v € p;-Up, (n). Thus, Z(Z,, k) is a disjoint union
of p; - Up,(n) for 1 < i < m. We summarize this in the following
formulas:

o Vertex set Z(Z,, k) Ulp,- )
o |Z(RK) = X7 b(n) = DT 4(2)
o Number of edges = |E| = IT72, (*»(™).
To illustrate the procedure, we will redo the example 2.2.
Example 6.2. Suppose R = Z,g. Then
U,(18) = U(9) = {1,2,4,5.7.8} and U5(18) = U(6) = {1, 5}.
Therefore,
Z(Z18,3) = 2- Uy(18) U3 - Us(18) = {2, 4, 8, 10, 14, 16, 3, 15}.

Number of edges =(**\!*)) . (»(®) = (%) . (%) = 6. We can write
the edges explicitly by selecting one element from 2 - U»(18) and
two (both) elements from 3 - U3(18). The edges are e; = {2, 3, 15},
es = {4,3,15},es = {8,3,15},e5 = {10,3,15},es = {14,3,15}
and eg = {16, 3, 15}

Example 6.3. Suppose n = 180 = 22 . 32.5. We will compute
¢p(n) and |E|.

$2(180) = ¢(90) = ¢(2-3%.5) = 24
$3(180) = $(60) = $(2*- 3- 5) = 16
$2(180) = $(36) = $(2° - 37) = 12
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Thus there are 24 + 16 + 12 = 52 5-zero divisors in Z;gq and the
number of 5-edges of Hj(Z;sy) equals

o= (3) (z)- (1)

= (276)(120)(12) = 397, 440.
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